Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Aust Endod J ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963178

ABSTRACT

To evaluate the effects of the association of host defence peptide IDR-1002 and ciprofloxacin on human dental pulp cells (hDPSCs). hDPSCs were stimulated with ciprofloxacin and IDR-1002. Cell viability (by MTT assay), migration capacity (by scratch assay), production of inflammatory and anti-inflammatory mediators by hDPSCs (RT-PCR) and osteogenic differentiation (alizarin red staining) were evaluated. Phenotypic profile of hDPSCs demonstrated 97% for positive marked mesenchymal stem cell. Increased pulp cell migration and proliferation were observed after 24 and 48 h of exposure to IDR-1002 with ciprofloxacin. Mineral matrix formation by hDPSCs was observed of the association while its reduction was observed in the presence of peptide. After 24 h, the association between ciprofloxacin and IDR-1002 significantly downregulated TNFRSF-1, IL-1ß, IL-8, IL-6 and IL-10 gene expression (p ≤ 0.0001). The association between the IDR-1002 and ciprofloxacin showed favourable immunomodulatory potential, emerging as a promising option for pulp revascularisation processes.

2.
Biomater Adv ; 159: 213805, 2024 May.
Article in English | MEDLINE | ID: mdl-38457904

ABSTRACT

Bone defects may occur in different sizes and shapes due to trauma, infections, and cancer resection. Autografts are still considered the primary treatment choice for bone regeneration. However, they are hard to source and often create donor-site morbidity. Injectable microgels have attracted much attention in tissue engineering and regenerative medicine due to their ability to replace inert implants with a minimally invasive delivery. Here, we developed novel cell-laden bioprinted gelatin methacrylate (GelMA) injectable microgels, with controllable shapes and sizes that can be controllably mineralized on the nanoscale, while stimulating the response of cells embedded within the matrix. The injectable microgels were mineralized using a calcium and phosphate-rich medium that resulted in nanoscale crystalline hydroxyapatite deposition and increased stiffness within the crosslinked matrix of bioprinted GelMA microparticles. Next, we studied the effect of mineralization in osteocytes, a key bone homeostasis regulator. Viability stains showed that osteocytes were maintained at 98 % viability after mineralization with elevated expression of sclerostin in mineralized compared to non-mineralized microgels, showing that mineralization can effectively enhances osteocyte maturation. Based on our findings, bioprinted mineralized GelMA microgels appear to be an efficient material to approximate the bone microarchitecture and composition with desirable control of sample injectability and polymerization. These bone-like bioprinted mineralized biomaterials are exciting platforms for potential minimally invasive translational methods in bone regenerative therapies.


Subject(s)
Gelatin , Microgels , Gelatin/pharmacology , Gelatin/chemistry , Biocompatible Materials , Methacrylates/chemistry
3.
Biomicrofluidics ; 18(2): 021502, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38464668

ABSTRACT

Head and neck cancers (HNCs) rank as the sixth most common cancer globally and result in over 450 000 deaths annually. Despite considerable advancements in diagnostics and treatment, the 5-year survival rate for most types of HNCs remains below 50%. Poor prognoses are often attributed to tumor heterogeneity, drug resistance, and immunosuppression. These characteristics are difficult to replicate using in vitro or in vivo models, culminating in few effective approaches for early detection and therapeutic drug development. Organs-on-a-chip offer a promising avenue for studying HNCs, serving as microphysiological models that closely recapitulate the complexities of biological tissues within highly controllable microfluidic platforms. Such systems have gained interest as advanced experimental tools to investigate human pathophysiology and assess therapeutic efficacy, providing a deeper understanding of cancer pathophysiology. This review outlines current challenges and opportunities in replicating HNCs within microphysiological systems, focusing on mimicking the soft, glandular, and hard tissues of the head and neck. We further delve into the major applications of organ-on-a-chip models for HNCs, including fundamental research, drug discovery, translational approaches, and personalized medicine. This review emphasizes the integration of organs-on-a-chip into the repertoire of biological model systems available to researchers. This integration enables the exploration of unique aspects of HNCs, thereby accelerating discoveries with the potential to improve outcomes for HNC patients.

4.
J Endod ; 50(3): 362-369, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38211820

ABSTRACT

INTRODUCTION: Evidence indicates that senescence can affect essential dental pulp functions, such as defense capacity and repair, consequently affecting the successes of conservative endodontic treatments. This study aims to evaluate the effects of senescence on the morphology, migration, proliferation, and immune response of human dental pulp cells. METHODS: Cells were treated with doxorubicin to induce senescence, confirmed by ß-galactosidase staining. Morphological changes, cellular proliferation, and migration were evaluated by scanning electron microscopy, trypan blue cells, and the scratch method, respectively. Modifications in the immune response were evaluated by measuring the genes for pro-inflammatory cytokines tumor necrosis factor alpha and interleukin (IL)-6 and anti-inflammatory cytokines transforming growth factor beta 1 and IL-10 using the real time polymerase chain reaction assay. RESULTS: An increase in cell size and a decrease in the number of extensions were observed in senescent cells. A reduction in the proliferative and migratory capacity was also found in senescent cells. In addition, there was an increase in the gene expression of inflammatory cytokines tumor necrosis factor alpha and IL-6 and a decrease in the gene expression of IL-10 and transforming growth factor beta-1, suggesting an exacerbated inflammatory situation associated with immunosuppression. CONCLUSIONS: Cellular senescence is possibly a condition that affects prognoses of conservative endodontic treatments, as it affects primordial cellular functions related to this treatment.


Subject(s)
Dental Pulp , Interleukin-10 , Humans , Dental Pulp/metabolism , Cell Differentiation , Interleukin-10/metabolism , Tumor Necrosis Factor-alpha/metabolism , Cytokines/metabolism , Cell Proliferation , Interleukin-6/metabolism , Immunity , Cellular Senescence , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...