Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mech Ageing Dev ; 220: 111954, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821184

ABSTRACT

As organisms age, the activity of the endocannabinoid system in the brain declines, coinciding with increased neuroinflammation and disrupted hypothalamic functions. Notably, cannabinoid receptors type-1 (CB1) are highly expressed in the ventromedial hypothalamic nucleus (VMH) within the mediobasal hypothalamus, a central area of neuroendocrine regulation. This study investigates whether the CB1 receptor influences age-related changes in a brain region-dependent manner. Therefore, we performed stereotaxic injections of rAAV1/2 expressing Cre recombinase in 2-month-old CB1flox/flox male animals to delete the CB1 gene and in CB1-deficient (CB1-STOP) mice to induce its re-expression. The intensity of pro-inflammatory glial activity, gonadotropin-releasing hormone (GnRH) and insulin-like growth factor-1 receptor (IGF-1R) expression was assessed in the hypothalamus of mice at 18-19 months of age. Site-specific CB1 receptor deletion induced pro-inflammatory glial activity and increased hypothalamic Igf1r mRNA expression. Unexpectedly, GnRH levels remained unaltered. Importantly, rescuing the receptor in null mutant animals had the opposite effect: it reduced pro-inflammatory glial activation and decreased Igf1r mRNA expression without affecting GnRH production. Overall, the study highlights the important role of the CB1 receptor in the VMH in reducing age-related inflammation and modulating IGF-1R signaling.

2.
Sci Signal ; 14(712): eabj8393, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34874746

ABSTRACT

The nuclear translocation and activity of the cotranscriptional activators YAP and TAZ (YAP/TAZ) in endothelial cells (ECs) are crucial during developmental angiogenesis. Here, we studied the role of YAP/TAZ signaling in ECs in tumor angiogenesis and found that the expression of YAP/TAZ and downstream target genes in ECs correlated with tumor vascularization in human colorectal carcinomas and skin melanoma. Treatment with the YAP/TAZ inhibitor verteporfin reduced vessel density and tumor progression in a mouse colorectal cancer (CRC) model. Conditional deletion of YAP/TAZ in ECs reduced tumor angiogenesis and growth in a mouse B16-F10 melanoma model. Using cultured ECs and mice with EC-specific ablation, we showed that signal transducer and activator of transcription 3 (STAT3) was required for the activation of YAP/TAZ in tumor-associated ECs. Moreover, we showed that STAT3-mediated signaling promoted YAP/TAZ activity and that the nuclear shuttling machinery for STAT3 was also required for YAP/TAZ nuclear translocation. Together, our data highlight the role of YAP/TAZ as critical players in ECs during tumor angiogenesis and provide insight into the signaling pathways leading to their activation.


Subject(s)
Endothelial Cells , Neoplasms , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Endothelial Cells/metabolism , Humans , Phosphoproteins/genetics , Phosphoproteins/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , YAP-Signaling Proteins
3.
Cell Death Dis ; 8(2): e2588, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28151480

ABSTRACT

Necroptosis is an inflammatory form of programmed cell death requiring receptor-interacting protein kinase 1, 3 (RIPK1, RIPK3) and mixed lineage kinase domain-like protein (MLKL). The kinase of RIPK3 phosphorylates MLKL causing MLKL to form a pore-like structure, allowing intracellular contents to release and cell death to occur. Alternatively, RIPK1 and RIPK3 have been shown to regulate cytokine production directly influencing inflammatory immune infiltrates. Recent data suggest that necroptosis may contribute to the malignant transformation of tumor cells in vivo and we asked whether necroptosis may have a role in the tumor microenvironment altering the ability of the tumor to grow or metastasize. To determine if necroptosis in the tumor microenvironment could promote inflammation alone or by initiating necroptosis and thereby influencing growth or metastasis of tumors, we utilized a syngeneic tumor model of metastasis. Loss of RIPK3 in the tumor microenvironment reduced the number of tumor nodules in the lung by 46%. Loss of the kinase activity in RIPK1, a member of the necrosome also reduced tumor nodules in the lung by 38%. However, the loss of kinase activity in RIPK3 or the loss of MLKL only marginally altered the ability of tumor cells to form in the lung. Using bone marrow chimeras, the decrease in tumor nodules in the Ripk3-/- appeared to be due to the stromal compartment rather than the hematopoietic compartment. Transmigration assays showed decreased ability of tumor cells to transmigrate through the vascular endothelial layer, which correlated with decreased permeability in the Ripk3-/- mice after tumor injection. In response to permeability factors, such as vascular endothelial growth factor, RIPK3 null endothelial cells showed decreased p38/HSP27 activation. Taken together, our results suggest an alternative function for RIPK1/RIPK3 in vascular permeability leading to decreased number of metastasis.


Subject(s)
Capillary Permeability/physiology , Necrosis/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Apoptosis/physiology , Bone Marrow/metabolism , Bone Marrow/pathology , Cell Death/physiology , Cell Line , Cell Line, Tumor , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Human Umbilical Vein Endothelial Cells , Humans , Inflammation/metabolism , Inflammation/pathology , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Necrosis/pathology , Vascular Endothelial Growth Factor A/metabolism
4.
Nat Rev Neurol ; 12(8): 439-54, 2016 08.
Article in English | MEDLINE | ID: mdl-27364743

ABSTRACT

Brain function critically relies on blood vessels to supply oxygen and nutrients, to establish a barrier for neurotoxic substances, and to clear waste products. The archetypal vascular endothelial growth factor, VEGF, arose in evolution as a signal affecting neural cells, but was later co-opted by blood vessels to regulate vascular function. Consequently, VEGF represents an attractive target to modulate brain function at the neurovascular interface. On the one hand, VEGF is neuroprotective, through direct effects on neural cells and their progenitors and indirect effects on brain perfusion. In accordance, preclinical studies show beneficial effects of VEGF administration in neurodegenerative diseases, peripheral neuropathies and epilepsy. On the other hand, pathologically elevated VEGF levels enhance vessel permeability and leakage, and disrupt blood-brain barrier integrity, as in demyelinating diseases, for which blockade of VEGF may be beneficial. Here, we summarize current knowledge on the role and therapeutic potential of VEGF in neurological diseases.


Subject(s)
Drug Delivery Systems/trends , Nervous System Diseases/drug therapy , Nervous System Diseases/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Clinical Trials as Topic/methods , Humans , Recombinant Proteins/administration & dosage , Vascular Endothelial Growth Factor A/antagonists & inhibitors
5.
Cell ; 136(5): 839-851, 2009 Mar 06.
Article in English | MEDLINE | ID: mdl-19217150

ABSTRACT

A key function of blood vessels, to supply oxygen, is impaired in tumors because of abnormalities in their endothelial lining. PHD proteins serve as oxygen sensors and may regulate oxygen delivery. We therefore studied the role of endothelial PHD2 in vessel shaping by implanting tumors in PHD2(+/-) mice. Haplodeficiency of PHD2 did not affect tumor vessel density or lumen size, but normalized the endothelial lining and vessel maturation. This resulted in improved tumor perfusion and oxygenation and inhibited tumor cell invasion, intravasation, and metastasis. Haplodeficiency of PHD2 redirected the specification of endothelial tip cells to a more quiescent cell type, lacking filopodia and arrayed in a phalanx formation. This transition relied on HIF-driven upregulation of (soluble) VEGFR-1 and VE-cadherin. Thus, decreased activity of an oxygen sensor in hypoxic conditions prompts endothelial cells to readjust their shape and phenotype to restore oxygen supply. Inhibition of PHD2 may offer alternative therapeutic opportunities for anticancer therapy.


Subject(s)
Blood Vessels/cytology , DNA-Binding Proteins/metabolism , Endothelial Cells/metabolism , Immediate-Early Proteins/metabolism , Neoplasm Metastasis , Neoplasms/blood supply , Oxygen/metabolism , Animals , Blood Vessels/embryology , Blood Vessels/metabolism , Cell Shape , DNA-Binding Proteins/genetics , Endothelial Cells/cytology , Glycolysis , Heterozygote , Hypoxia/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases , Immediate-Early Proteins/genetics , Mice , Neoplasms/pathology , Procollagen-Proline Dioxygenase
SELECTION OF CITATIONS
SEARCH DETAIL
...