Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Cell Dev Biol ; 9: 625680, 2021.
Article in English | MEDLINE | ID: mdl-33614655

ABSTRACT

Acute exercise increases the amount of circulating inflammatory cells and cytokines to maintain physiological homeostasis. However, it remains unclear how physical training regulates exercise-induced inflammation and performance. Here, we demonstrate that acute high intensity exercise promotes an inflammatory profile characterized by increased blood IL-6 levels, neutrophil migratory capacity, and leukocyte recruitment to skeletal muscle vessels. Moreover, we found that physical training amplified leukocyte-endothelial cell interaction induced by acute exercise in skeletal muscle vessels and diminished exercise-induced inflammation in skeletal muscle tissue. Furthermore, we verified that disruption of the gp-91 subunit of NADPH-oxidase inhibited exercise-induced leukocyte recruitment on skeletal muscle after training with enhanced exercise time until fatigue. In conclusion, the training was related to physical improvement and immune adaptations. Moreover, reactive oxygen species (ROS) could be related to mechanisms to limit aerobic performance and its absence decreases the inflammatory response elicited by exercise after training.

2.
J Immunol Res ; 2019: 9015292, 2019.
Article in English | MEDLINE | ID: mdl-31781685

ABSTRACT

Graft-versus-host disease (GVHD) is the most serious complication limiting the clinical utility of allogeneic hematopoietic stem cell transplantation (HSCT), in which lymphocytes of donors (graft) are activated in response to the host antigen. This disease is associated with increased inflammatory response through the release of inflammatory mediators such as cytokines, chemokines, and reactive oxygen species (ROS). In this study, we have evaluated the role of ROS in GVHD pathogenesis by treatment of recipient mice with apocynin (apo), an inhibitor of intracellular translocation of cytosolic components of NADPH oxidase complex. The pharmacological blockade of NADPH oxidase resulted in prolonged survival and reduced GVHD clinical score. This reduction in GVHD was associated with reduced levels of ROS and TBARS in target organs of GVHD in apocynin-treated mice at the onset of the mortality phase. These results correlated with reduced intestinal and liver injuries and decreased levels of proinflammatory cytokines and chemokines. Mechanistically, pharmacological blockade of the NADPH oxidase was associated with inhibition of recruitment and accumulation of leukocytes in the target organs. Additionally, the chimerism remained unaffected after treatment with apocynin. Our study demonstrates that ROS plays an important role in mediating GVHD, suggesting that strategies aimed at blocking ROS production may be useful as an adjuvant therapy in patients subjected to bone marrow transplantation.


Subject(s)
Acetophenones/pharmacology , Graft vs Host Disease/drug therapy , Graft vs Host Disease/etiology , Immunosuppressive Agents/pharmacology , Animals , Cytokines/metabolism , Graft vs Host Disease/metabolism , Graft vs Host Disease/mortality , Hematopoietic Stem Cell Transplantation/adverse effects , Liver/immunology , Liver/metabolism , Liver/pathology , Macrophages/metabolism , Mice , NADPH Oxidases , Oxidative Stress , Reactive Oxygen Species/metabolism , Transplantation Chimera , Transplantation, Homologous
SELECTION OF CITATIONS
SEARCH DETAIL