Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 28(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36615601

ABSTRACT

Extending the range of use of the heterologous fibrin biopolymer, this pre-clinical study showed a new proportionality of its components directed to the formation of scaffold with a lower density of the resulting mesh to facilitate the infiltration of bone cells, and combined with therapy by laser photobiomodulation, in order to accelerate the repair process and decrease the morphofunctional recovery time. Thus, a transoperative protocol of laser photobiomodulation (L) was evaluated in critical bone defects filled with deproteinized bovine bone particles (P) associated with heterologous fibrin biopolymer (HF). The groups were: BCL (blood clot + laser); HF; HFL; PHF (P+HF); PHFL (P+HF+L). Microtomographically, bone volume (BV) at 14 days, was higher in the PHF and PHFL groups (10.45 ± 3.31 mm3 and 9.94 ± 1.51 mm3), significantly increasing in the BCL, HFL and PHFL groups. Histologically, in all experimental groups, the defects were not reestablished either in the external cortical bone or in the epidural, occurring only in partial bone repair. At 42 days, the bone area (BA) increased in all groups, being significantly higher in the laser-treated groups. The quantification of bone collagen fibers showed that the percentage of collagen fibers in the bone tissue was similar between the groups for each experimental period, but significantly higher at 42 days (35.71 ± 6.89%) compared to 14 days (18.94 ± 6.86%). It can be concluded that the results of the present study denote potential effects of laser radiation capable of inducing functional bone regeneration, through the synergistic combination of biomaterials and the new ratio of heterologous fibrin biopolymer components (1:1:1) was able to make the resulting fibrin mesh less dense and susceptible to cellular permeability. Thus, the best fibrinogen concentration should be evaluated to find the ideal heterologous fibrin scaffold.


Subject(s)
Bone Matrix , Fibrin , Rats , Animals , Cattle , Fibrin/therapeutic use , Rats, Wistar , Bone Regeneration , Lasers , Bioengineering , Collagen , Tissue Scaffolds
2.
J Photochem Photobiol B ; 162: 663-668, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27497370

ABSTRACT

Autogenous bone grafts are used to repair bone defects, and the stabilization is needed for bone regeneration. Laser photobiomodulation is a modality of treatment in clinical practice for tissue regeneration, and it has therapeutic effects as an anti-inflammatory, analgesic and modulating cellular activity. The aim of the present study was to evaluate the effects of low-level laser therapy (LLLT) on an autogenous bone graft integration process stabilized with a new heterologous fibrin sealant. Forty rats were divided into two groups: Autogenous Fibrin Graft (AFG, n=20), in which a 5mm dome osteotomy was conducted in the right parietal bone and the graft was adhered to the left side using fibrin sealant; and Autogenous Fibrin Graft Laser (AFGL, n=20), which was subjected to the same procedures as AFG with the addition of LLLT. The treatment was performed immediately following surgery and then three times a week until euthanasia, using an 830nm laser (30mW, 6J/cm(2), 0.116cm(2), 258.6mW/cm(2), 2.9J). Five animals from each group were euthanized at 10, 20, 30 and 40days postoperative, and the samples were submitted to histomorphological and histomorphometric analysis. Partial bone regeneration occurred, with new bone tissue integrating the graft to the recipient bed and small areas of connective tissue. Comparative analysis of the groups at the same intervals revealed minor interfaces in group AFGL, with statistically significant differences (p<0.05) at all of the analyzed intervals (10days p=0.0087, 20days p=0.0012, 30days p<0.0001, 40days p=0.0142). In conclusion, low-level laser therapy stimulated bone regeneration and accelerated the process of integration of autogenous bone grafts.


Subject(s)
Bone Diseases/therapy , Bone Transplantation , Fibrin Tissue Adhesive/therapeutic use , Low-Level Light Therapy , Animals , Bone Regeneration , Bone and Bones/pathology , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL