Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Clin Exp Dent Res ; 10(2): e861, 2024 04.
Article in English | MEDLINE | ID: mdl-38558491

ABSTRACT

OBJECTIVES: The main objective of this study was to evaluate how an apparently minor anomaly of the sphenoid bone, observed in a haploinsufficient mouse model for Sonic Hedgehog (Shh), affects the growth of the adult craniofacial region. This study aims to provide valuable information to orthodontists when making decisions regarding individuals carrying SHH mutation. MATERIALS AND METHODS: The skulls of embryonic, juvenile and adult mice of two genotypes (Shh heterozygous and wild type) were examined and measured using landmark-based linear dimensions. Additionally, we analysed the clinical characteristics of a group of patients and their relatives with SHH gene mutations. RESULTS: In the viable Shh+/ - mouse model, bred on a C57BL/6J background, we noted the presence of a persistent foramen at the midline of the basisphenoid bone. This particular anomaly was attributed to the existence of an ectopic pituitary gland. We discovered that this anomaly led to premature closure of the intrasphenoidal synchondrosis and contributed to craniofacial deformities in adult mice, including a longitudinally shortened skull base. This developmental anomaly is reminiscent of that commonly observed in human holoprosencephaly, a disorder resulting from a deficiency in SHH activity. However, sphenoid morphogenesis is not currently monitored in individuals carrying SHH mutations. CONCLUSION: Haploinsufficiency of Shh leads to isolated craniofacial skeletal hypoplasia in adult mouse. This finding highlights the importance of radiographic monitoring of the skull base in all individuals with SHH gene mutations.


Subject(s)
Hedgehog Proteins , Holoprosencephaly , Adult , Animals , Humans , Mice , Hedgehog Proteins/genetics , Holoprosencephaly/genetics , Mice, Inbred C57BL , Mutation , Sphenoid Bone
2.
Genet Med ; 26(7): 101126, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38529886

ABSTRACT

PURPOSE: DISP1 encodes a transmembrane protein that regulates the secretion of the morphogen, Sonic hedgehog, a deficiency of which is a major cause of holoprosencephaly (HPE). This disorder covers a spectrum of brain and midline craniofacial malformations. The objective of the present study was to better delineate the clinical phenotypes associated with division transporter dispatched-1 (DISP1) variants. METHODS: This study was based on the identification of at least 1 pathogenic variant of the DISP1 gene in individuals for whom detailed clinical data were available. RESULTS: A total of 23 DISP1 variants were identified in heterozygous, compound heterozygous or homozygous states in 25 individuals with midline craniofacial defects. Most cases were minor forms of HPE, with craniofacial features such as orofacial cleft, solitary median maxillary central incisor, and congenital nasal pyriform aperture stenosis. These individuals had either monoallelic loss-of-function variants or biallelic missense variants in DISP1. In individuals with severe HPE, the DISP1 variants were commonly found associated with a variant in another HPE-linked gene (ie, oligogenic inheritance). CONCLUSION: The genetic findings we have acquired demonstrate a significant involvement of DISP1 variants in the phenotypic spectrum of midline defects. This underlines its importance as a crucial element in the efficient secretion of Sonic hedgehog. We also demonstrated that the very rare solitary median maxillary central incisor and congenital nasal pyriform aperture stenosis combination is part of the DISP1-related phenotype. The present study highlights the clinical risks to be flagged up during genetic counseling after the discovery of a pathogenic DISP1 variant.


Subject(s)
Alleles , Holoprosencephaly , Phenotype , Humans , Female , Male , Holoprosencephaly/genetics , Holoprosencephaly/pathology , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/pathology , Child, Preschool , Child , Infant , Cleft Palate/genetics , Cleft Palate/pathology , Heterozygote , Membrane Proteins/genetics , Incisor/abnormalities , Cleft Lip/genetics , Cleft Lip/pathology , Homozygote , Mutation, Missense/genetics , Adolescent , Anodontia
3.
Mod Pathol ; 36(11): 100304, 2023 11.
Article in English | MEDLINE | ID: mdl-37580018

ABSTRACT

BRCA1 and BRCA2 genes play a crucial role in repairing DNA double-strand breaks through homologous recombination. Their mutations represent a significant proportion of homologous recombination deficiency and are a reliable effective predictor of sensitivity of high-grade ovarian cancer (HGOC) to poly(ADP-ribose) polymerase inhibitors. However, their testing by next-generation sequencing is costly and time-consuming and can be affected by various preanalytical factors. In this study, we present a deep learning classifier for BRCA mutational status prediction from hematoxylin-eosin-safran-stained whole slide images (WSI) of HGOC. We constituted the OvarIA cohort composed of 867 patients with HGOC with known BRCA somatic mutational status from 2 different pathology departments. We first developed a tumor segmentation model according to dynamic sampling and then trained a visual representation encoder with momentum contrastive learning on the predicted tumor tiles. We finally trained a BRCA classifier on more than a million tumor tiles in multiple instance learning with an attention-based mechanism. The tumor segmentation model trained on 8 WSI obtained a dice score of 0.915 and an intersection-over-union score of 0.847 on a test set of 50 WSI, while the BRCA classifier achieved the state-of-the-art area under the receiver operating characteristic curve of 0.739 in 5-fold cross-validation and 0.681 on the testing set. An additional multiscale approach indicates that the relevant information for predicting BRCA mutations is located more in the tumor context than in the cell morphology. Our results suggest that BRCA somatic mutations have a discernible phenotypic effect that could be detected by deep learning and could be used as a prescreening tool in the future.


Subject(s)
Deep Learning , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , BRCA2 Protein/genetics , BRCA1 Protein/genetics , Carcinoma, Ovarian Epithelial/genetics , Mutation , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
4.
Clin Res Hepatol Gastroenterol ; 46(5): 101888, 2022 05.
Article in English | MEDLINE | ID: mdl-35189426

ABSTRACT

BACKGROUND: Low miR-31-3p expression was identified as predictive of anti-EGFR efficacy in RAS-wt mCRC. Primary tumor side was also proposed as a predictive factor of anti-EGFR benefit. This retrospective multicentric study evaluated the predictive role of miR-31-3p in right-sided RAS-wt mCRC patients treated with first-line CT+anti-EGFR or CT+bevacizumab (Beva). METHODS: Seventy-two right-sided RAS-wt mCRC patients treated in first-line with CT+anti-EGFR (n = 43) or Beva (n = 29) were included. Overall survival (OS), progression-free survival (PFS) and response rate (RR) were analyzed and stratified according to tumor miR-31-3p expression level and targeted therapy (TT). RESULTS: BRAF V600E mutation was more frequent in high vs low miR-31-3p expressers (60.6% vs 15.4%, P < 0.001). PFS was significantly longer with CT+Beva than with CT+anti-EGFR (13 vs 7 months; P = 0.024). Among low miR-31-3p expressers, PFS, OS and RR were not significantly different between the two groups, while in high miR-31-3p expressers, only PFS was longer in the CT+Beva group (11 vs 6 months; P = 0.03). In patients treated with CT+anti-EGFR, low miR-31-3p expressers had a significantly longer OS (20 vs 13 months; P = 0.02) than high miR-31-3p expressers. ORR was not significantly different between the two groups of treatment, in both low and high miR-31-3p expressers. MiR-31-3p expression status was statistically correlated between primary tumors and corresponding metastases. CONCLUSION: In this study, miR-31-3p couldn't identify a subgroup of patients with right-sided RAS-wt mCRC who might benefit from anti-EGFR and suggest that Beva is the TT of choice in first-line treatment of these patients.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , MicroRNAs , Antineoplastic Combined Chemotherapy Protocols , Bevacizumab/therapeutic use , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colorectal Neoplasms/pathology , ErbB Receptors/genetics , Humans , MicroRNAs/genetics , Retrospective Studies
5.
BMC Med Inform Decis Mak ; 21(1): 274, 2021 10 02.
Article in English | MEDLINE | ID: mdl-34600518

ABSTRACT

BACKGROUND: Artificial intelligence (AI) has the potential to transform our healthcare systems significantly. New AI technologies based on machine learning approaches should play a key role in clinical decision-making in the future. However, their implementation in health care settings remains limited, mostly due to a lack of robust validation procedures. There is a need to develop reliable assessment frameworks for the clinical validation of AI. We present here an approach for assessing AI for predicting treatment response in triple-negative breast cancer (TNBC), using real-world data and molecular -omics data from clinical data warehouses and biobanks. METHODS: The European "ITFoC (Information Technology for the Future Of Cancer)" consortium designed a framework for the clinical validation of AI technologies for predicting treatment response in oncology. RESULTS: This framework is based on seven key steps specifying: (1) the intended use of AI, (2) the target population, (3) the timing of AI evaluation, (4) the datasets used for evaluation, (5) the procedures used for ensuring data safety (including data quality, privacy and security), (6) the metrics used for measuring performance, and (7) the procedures used to ensure that the AI is explainable. This framework forms the basis of a validation platform that we are building for the "ITFoC Challenge". This community-wide competition will make it possible to assess and compare AI algorithms for predicting the response to TNBC treatments with external real-world datasets. CONCLUSIONS: The predictive performance and safety of AI technologies must be assessed in a robust, unbiased and transparent manner before their implementation in healthcare settings. We believe that the consideration of the ITFoC consortium will contribute to the safe transfer and implementation of AI in clinical settings, in the context of precision oncology and personalized care.


Subject(s)
Artificial Intelligence , Neoplasms , Algorithms , Humans , Machine Learning , Precision Medicine
6.
Elife ; 102021 01 13.
Article in English | MEDLINE | ID: mdl-33438577

ABSTRACT

The microphthalmia-associated transcription factor (MITF) is a critical regulator of melanocyte development and differentiation. It also plays an important role in melanoma where it has been described as a molecular rheostat that, depending on activity levels, allows reversible switching between different cellular states. Here, we show that MITF directly represses the expression of genes associated with the extracellular matrix (ECM) and focal adhesion pathways in human melanoma cells as well as of regulators of epithelial-to-mesenchymal transition (EMT) such as CDH2, thus affecting cell morphology and cell-matrix interactions. Importantly, we show that these effects of MITF are reversible, as expected from the rheostat model. The number of focal adhesion points increased upon MITF knockdown, a feature observed in drug-resistant melanomas. Cells lacking MITF are similar to the cells of minimal residual disease observed in both human and zebrafish melanomas. Our results suggest that MITF plays a critical role as a repressor of gene expression and is actively involved in shaping the microenvironment of melanoma cells in a cell-autonomous manner.


Subject(s)
Epithelial-Mesenchymal Transition , Extracellular Matrix/metabolism , Focal Adhesions/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Cell Line, Tumor , Humans , Melanoma/metabolism , Microphthalmia-Associated Transcription Factor/metabolism
7.
Mol Genet Metab Rep ; 24: 100621, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32670797

ABSTRACT

Chronic intestinal pseudoobstruction (CIPO) is a severe form of intestinal dysmotility, and patients often undergo iterative abdominal surgeries and require parenteral nutrition. Several genes are known to be responsible for this pathology, including ACTG2 (autosomal dominant) and MYH11 (autosomal recessive). We report the first case of unexpected trio medical exome sequencing diagnosis of mucopolysaccharidosis type I (MPS-I) in a patient with an early CIPO. There was no clinical suspicion of MPS-I at the time of the prescription. It allowed biochemical confirmation of MPS-I, expert clinical evaluation and early treatment. Enzyme replacement therapy (ERT) with laronidase was started at 9 months old, and hematopoietic stem cell transplantation was carried out at 10 months and a half. The patient also had a 1.7 mb heterozygous deletion in chromosomal region 16p13.11p12.3, comprising several genes, including MYH11, paternally inherited. Her father has no symptoms of CIPO or other digestive symptoms. One previous association of CIPO and MPS-I was reported in 1986. Moreover, the number of incidental findings of inherited metabolic disorders with therapeutic impact will inevitably increase as pangenomic analyses become cheaper and easily available.

8.
Brain ; 143(7): 2027-2038, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32542401

ABSTRACT

Synonymous single nucleotide variants (sSNVs) have been implicated in various genetic disorders through alterations of pre-mRNA splicing, mRNA structure and miRNA regulation. However, their impact on synonymous codon usage and protein translation remains to be elucidated in clinical context. Here, we explore the functional impact of sSNVs in the Sonic Hedgehog (SHH) gene, identified in patients affected by holoprosencephaly, a congenital brain defect resulting from incomplete forebrain cleavage. We identified eight sSNVs in SHH, selectively enriched in holoprosencephaly patients as compared to healthy individuals, and systematically assessed their effect at both transcriptional and translational levels using a series of in silico and in vitro approaches. Although no evidence of impact of these sSNVs on splicing, mRNA structure or miRNA regulation was found, five sSNVs introduced significant changes in codon usage and were predicted to impact protein translation. Cell assays demonstrated that these five sSNVs are associated with a significantly reduced amount of the resulting protein, ranging from 5% to 23%. Inhibition of the proteasome rescued the protein levels for four out of five sSNVs, confirming their impact on protein stability and folding. Remarkably, we found a significant correlation between experimental values of protein reduction and computational measures of codon usage, indicating the relevance of in silico models in predicting the impact of sSNVs on translation. Considering the critical role of SHH in brain development, our findings highlight the clinical relevance of sSNVs in holoprosencephaly and underline the importance of investigating their impact on translation in human pathologies.


Subject(s)
Codon Usage/genetics , Hedgehog Proteins/genetics , Holoprosencephaly/genetics , Protein Biosynthesis/genetics , Humans , Polymorphism, Single Nucleotide
9.
J Clin Endocrinol Metab ; 105(9)2020 09 01.
Article in English | MEDLINE | ID: mdl-32403133

ABSTRACT

CONTEXT: In human, Sonic hedgehog (SHH) haploinsufficiency is the predominant cause of holoprosencephaly, a structural malformation of the forebrain midline characterized by phenotypic heterogeneity and incomplete penetrance. The NOTCH signaling pathway has recently been associated with holoprosencephaly in humans, but the precise mechanism involving NOTCH signaling during early brain development remains unknown. OBJECTIVE: The aim of this study was to evaluate the relationship between SHH and NOTCH signaling to determine the mechanism by which NOTCH dysfunction could cause midline malformations of the forebrain. DESIGN: In this study, we have used a chemical inhibition approach in the chick model and a genetic approach in the mouse model. We also reported results obtained from the clinical diagnosis of a cohort composed of 141 holoprosencephaly patients. RESULTS: We demonstrated that inhibition of NOTCH signaling in chick embryos as well as in mouse embryos induced a specific downregulation of SHH in the anterior hypothalamus. Our data in the mouse also revealed that the pituitary gland was the most sensitive tissue to Shh insufficiency and that haploinsufficiency of the SHH and NOTCH signaling pathways synergized to produce a malformed pituitary gland. Analysis of a large holoprosencephaly cohort revealed that some patients possessed multiple heterozygous mutations in several regulators of both pathways. CONCLUSIONS: These results provided new insights into molecular mechanisms underlying the extreme phenotypic variability observed in human holoprosencephaly. They showed how haploinsufficiency of the SHH and NOTCH activity could contribute to specific congenital hypopituitarism that was associated with a sella turcica defect.


Subject(s)
Hedgehog Proteins/genetics , Holoprosencephaly/genetics , Hypothalamo-Hypophyseal System/metabolism , Receptors, Notch/genetics , Animals , Cells, Cultured , Chick Embryo , Cohort Studies , Disease Models, Animal , Embryo, Mammalian , Female , Haploinsufficiency/genetics , Hedgehog Proteins/metabolism , Holoprosencephaly/metabolism , Holoprosencephaly/pathology , Holoprosencephaly/physiopathology , Humans , Hypothalamo-Hypophyseal System/pathology , Male , Mice , Mice, Transgenic , Pregnancy , Receptors, Notch/deficiency , Retrospective Studies , Signal Transduction/genetics
10.
Int J Clin Oncol ; 25(7): 1234-1241, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32215806

ABSTRACT

BACKGROUND: With the development of precision oncology, Molecular Tumor Boards (MTB) are developing in many institutions. However, the implementation of MTB in routine clinical practice has still not been thoroughly studied. MATERIAL AND METHODS: Since the first drugs approved for targeted therapies, patient tumor samples were centralized to genomic testing platforms. In our institution, all tumor samples have been analyzed since 2014 by Next Generation Sequencing (NGS). In 2015, we established a regional MTB to discuss patient cases with 1 or more alterations identified by NGS, in genes different from those related to drug approval. We conducted a retrospective comparative analysis to study whether our MTB increased the prescriptions of Molecular Targeted Therapies (MTT) and the inclusions of patients in clinical trials with MTT, in comparison with patients with available NGS data but no MTB discussion. RESULTS: In 2014, 86 patients had UGA, but the results were not available to clinicians and not discussed in MTB. During the years 2015 and 2016, 113 patients with an UGA (unreferenced genomic alteration) were discussed in MTB. No patients with an UGA were included in 2014 in a clinical trial, versus 2 (2%) in 2015-2016. 13 patients with an UGA (12%) were treated in 2015-2016 with a MTT whereas in 2014, no patient (p = 0.001). CONCLUSIONS: In this retrospective analysis, we showed that the association of large-scale genomic testing and MTB was feasible, and could increase the prescription of MTT. However, in routine clinical practice, the majority of patients with UGA still do not have access to MTT.


Subject(s)
Molecular Targeted Therapy , Neoplasms/genetics , Neoplasms/therapy , Adolescent , Adult , Aged , Aged, 80 and over , Child , Drug Resistance, Neoplasm/genetics , Female , Health Services Accessibility , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Medical Oncology , Middle Aged , Neoplasms/drug therapy , Precision Medicine/methods , Retrospective Studies , Treatment Outcome , Young Adult
11.
Sci Rep ; 10(1): 1224, 2020 01 27.
Article in English | MEDLINE | ID: mdl-31988326

ABSTRACT

The genetic etiology of childhood cancers still remains largely unknown. It is therefore essential to develop novel strategies to unravel the spectrum of pediatric cancer genes. Statistical network modeling techniques have emerged as powerful methodologies for enabling the inference of gene-disease relationship and have been performed on adult but not pediatric cancers. We performed a deep multi-layer understanding of pan-cancer transcriptome data selected from the Treehouse Childhood Cancer Initiative through a co-expression network analysis. We identified six modules strongly associated with pediatric tumor histotypes that were functionally linked to developmental processes. Topological analyses highlighted that pediatric cancer predisposition genes and potential therapeutic targets were central regulators of cancer-histotype specific modules. A module was related to multiple pediatric malignancies with functions involved in DNA repair and cell cycle regulation. This canonical oncogenic module gathered most of the childhood cancer predisposition genes and clinically actionable genes. In pediatric acute leukemias, the driver genes were co-expressed in a module related to epigenetic and post-transcriptional processes, suggesting a critical role of these pathways in the progression of hematologic malignancies. This integrative pan-cancer study provides a thorough characterization of pediatric tumor-associated modules and paves the way for investigating novel candidate genes involved in childhood tumorigenesis.


Subject(s)
Gene Expression Profiling/methods , Gene Regulatory Networks/genetics , Neoplasms/genetics , Biomarkers, Tumor/genetics , Child , Child, Preschool , Computational Biology/methods , Computer Simulation , Databases, Genetic , Female , Gene Expression/genetics , Gene Expression Regulation/genetics , Gene Expression Regulation, Neoplastic/genetics , Genetic Predisposition to Disease/genetics , Genomics/methods , Humans , Male , Models, Statistical , Neoplasms/etiology , Protein Interaction Mapping/methods , Protein Interaction Maps/genetics , Protein Interaction Maps/physiology , Systems Integration , Transcriptome/genetics
12.
Brain ; 142(1): 35-49, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30508070

ABSTRACT

Holoprosencephaly is a pathology of forebrain development characterized by high phenotypic heterogeneity. The disease presents with various clinical manifestations at the cerebral or facial levels. Several genes have been implicated in holoprosencephaly but its genetic basis remains unclear: different transmission patterns have been described including autosomal dominant, recessive and digenic inheritance. Conventional molecular testing approaches result in a very low diagnostic yield and most cases remain unsolved. In our study, we address the possibility that genetically unsolved cases of holoprosencephaly present an oligogenic origin and result from combined inherited mutations in several genes. Twenty-six unrelated families, for whom no genetic cause of holoprosencephaly could be identified in clinical settings [whole exome sequencing and comparative genomic hybridization (CGH)-array analyses], were reanalysed under the hypothesis of oligogenic inheritance. Standard variant analysis was improved with a gene prioritization strategy based on clinical ontologies and gene co-expression networks. Clinical phenotyping and exploration of cross-species similarities were further performed on a family-by-family basis. Statistical validation was performed on 248 ancestrally similar control trios provided by the Genome of the Netherlands project and on 574 ancestrally matched controls provided by the French Exome Project. Variants of clinical interest were identified in 180 genes significantly associated with key pathways of forebrain development including sonic hedgehog (SHH) and primary cilia. Oligogenic events were observed in 10 families and involved both known and novel holoprosencephaly genes including recurrently mutated FAT1, NDST1, COL2A1 and SCUBE2. The incidence of oligogenic combinations was significantly higher in holoprosencephaly patients compared to two control populations (P < 10-9). We also show that depending on the affected genes, patients present with particular clinical features. This study reports novel disease genes and supports oligogenicity as clinically relevant model in holoprosencephaly. It also highlights key roles of SHH signalling and primary cilia in forebrain development. We hypothesize that distinction between different clinical manifestations of holoprosencephaly lies in the degree of overall functional impact on SHH signalling. Finally, we underline that integrating clinical phenotyping in genetic studies is a powerful tool to specify the clinical relevance of certain mutations.


Subject(s)
Holoprosencephaly/genetics , Multifactorial Inheritance/genetics , Rare Diseases/genetics , Case-Control Studies , Comparative Genomic Hybridization , Exome/genetics , Female , Humans , Male , Mutation , Pedigree , Phenotype
13.
BMC Mol Biol ; 19(1): 13, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30463513

ABSTRACT

BACKGROUND: Glioblastoma (GB) is the most common and aggressive tumor of the brain. Genotype-based approaches and independent analyses of the transcriptome or the proteome have led to progress in understanding the underlying biology of GB. Joint transcriptome and proteome profiling may reveal new biological insights, and identify pathogenic mechanisms or therapeutic targets for GB therapy. We present a comparison of transcriptome and proteome data from five GB biopsies (TZ) vs their corresponding peritumoral brain zone (PBZ). Omic analyses were performed using RNA microarray chips and the isotope-coded protein label method (ICPL). RESULTS: As described in other cancers, we found a poor correlation between transcriptome and proteome data in GB. We observed only two commonly deregulated mRNAs/proteins (neurofilament light polypeptide and synapsin 1) and 12 altered biological processes; they are related to cell communication, synaptic transmission and nervous system processes. This poor correlation may be a consequence of the techniques used to produce the omic profiles, the intrinsic properties of mRNA and proteins and/or of cancer- or GB-specific phenomena. Of interest, the analysis of the transcription factor binding sites present upstream from the open reading frames of all altered proteins identified by ICPL method shows a common binding site for the topoisomerase I and p53-binding protein TOPORS. Its expression was observed in 7/11 TZ samples and not in PBZ. Some findings suggest that TOPORS may function as a tumor suppressor; its implication in gliomagenesis should be examined in future studies. CONCLUSIONS: In this study, we showed a low correlation between transcriptome and proteome data for GB samples as described in other cancer tissues. We observed that NEFL, SYN1 and 12 biological processes were deregulated in both the transcriptome and proteome data. It will be important to analyze more specifically these processes and these two proteins to allow the identification of new theranostic markers or potential therapeutic targets for GB.


Subject(s)
Glioblastoma/genetics , Glioblastoma/metabolism , Proteome , Transcriptome , Aged , Case-Control Studies , Computational Biology/methods , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Humans , Male , Middle Aged , Models, Biological , Molecular Sequence Annotation , Organ Specificity , Proteomics
14.
Am J Med Genet C Semin Med Genet ; 178(2): 258-269, 2018 06.
Article in English | MEDLINE | ID: mdl-29785796

ABSTRACT

Holoprosencephaly (HPE) is a complex genetic disorder of the developing forebrain characterized by high phenotypic and genetic heterogeneity. HPE was initially defined as an autosomal dominant disease, but recent research has shown that its mode of transmission is more complex. The past decade has witnessed rapid development of novel genetic technologies and significant progresses in clinical studies of HPE. In this review, we recapitulate genetic epidemiological studies of the largest European HPE cohort and summarize the novel genetic discoveries of HPE based on recently developed diagnostic methods. Our main purpose is to present different inheritance patterns that exist for HPE with a particular emphasis on oligogenic inheritance and its implications in genetic counseling.


Subject(s)
Brain/diagnostic imaging , Holoprosencephaly/genetics , Brain/abnormalities , Brain/embryology , Chromosome Aberrations , Female , Genes, Recessive , Genetic Counseling , Genetic Testing/methods , Hedgehog Proteins/genetics , Holoprosencephaly/etiology , Humans , Inheritance Patterns , Male , Pedigree , Pregnancy , Prenatal Diagnosis
15.
PLoS One ; 13(2): e0193213, 2018.
Article in English | MEDLINE | ID: mdl-29489901

ABSTRACT

OBJECTIVE: To study the presence of 9p deletion and p16, cyclin D1 and Myc expression and their respective diagnostic and prognostic interest in oligodendrogliomas. METHODS: We analyzed a retrospective series of 40 consecutive anaplastic oligodendrogliomas (OIII) from a single institution and compared them to a control series of 10 low grade oligodendrogliomas (OII). Automated FISH analysis of chromosome 9p status and immunohistochemistry for p16, cyclin D1 and Myc was performed for all cases and correlated with clinical and histological data, event free survival (EFS) and overall survival (OS). RESULTS: Chromosome 9p deletion was observed in 55% of OIII (22/40) but not in OII. Deletion was highly correlated to EFS (median = 29 versus 53 months, p<0.0001) and OS (median = 48 versus 83 months, p<0.0001) in both the total cohort and the OIII population. In 9p non-deleted oligodendrogliomas, p16 hyperexpression correlated with a shorter OS (p = 0.02 in OII and p = 0.0001 in OIII) whereas lack of p16 expression was correlated to a shorter EFS and OS in 9p deleted OIII (p = 0.001 and p = 0.0002 respectively). Expression of Cyclin D1 was significantly higher in OIII (median expression 45% versus 14% for OII, p = 0.0006) and was correlated with MIB-1 expression (p<0.0001), vascular proliferation (p = 0.002), tumor necrosis (p = 0.04) and a shorter EFS in the total cohort (p = 0.05). Hyperexpression of Myc was correlated to grade (median expression 27% in OII versus 35% in OIII, p = 0.03), and to a shorter EFS in 9p non-deleted OIII (p = 0.01). CONCLUSION: Chromosome 9p deletion identifies a subset of OIII with significantly worse prognosis. The combination of 9p status and p16 expression level identifies two distinct OIII populations with divergent prognosis. Hyperexpression of Bcl1 and Myc appears highly linked to anaplasia but the prognostic value is unclear and should be investigated further.


Subject(s)
Brain Neoplasms , Chromosome Deletion , Cyclin D1 , Cyclin-Dependent Kinase Inhibitor p16 , Gene Expression Regulation, Neoplastic , Oligodendroglioma , Proto-Oncogene Proteins c-myc , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Chromosomes, Human, Pair 9/genetics , Chromosomes, Human, Pair 9/metabolism , Cyclin D1/biosynthesis , Cyclin D1/genetics , Cyclin-Dependent Kinase Inhibitor p16/biosynthesis , Cyclin-Dependent Kinase Inhibitor p16/genetics , Disease-Free Survival , Female , Humans , Male , Middle Aged , Oligodendroglioma/genetics , Oligodendroglioma/metabolism , Oligodendroglioma/mortality , Oligodendroglioma/pathology , Proto-Oncogene Proteins c-myc/biosynthesis , Proto-Oncogene Proteins c-myc/genetics , Survival Rate
17.
Clin Lung Cancer ; 19(2): 163-169.e4, 2018 03.
Article in English | MEDLINE | ID: mdl-29129434

ABSTRACT

BACKGROUND: Lung cancer represents the leading cause of cancer-related death worldwide. Despite great advances in lung cancer management with the recent emergence of molecular targeted therapies for non-squamous non-small-cell lung cancer, no dramatic improvements have been achieved in lung squamous cell carcinoma (SCC). Mutations in discoidin domain receptor 2 (DDR2) gene were recently identified as promising molecular targets in this histology. The aim of this study is to describe the DDR2 mutational landscape of lung SCC and investigate the associated clinical factors. METHODS: Next-generation sequencing of the DDR2 gene was performed on 271 samples of lung SCC. Patients followed in our institution from January 2011 to August 2014 were retrospectively selected for data collection. Other driver gene alterations (EGFR, KRAS, BRAF, HER2, and PI3KCA) were analyzed using pyrosequencing. RESULTS: A total of 11 patients harboring a DDR2 mutation was detected among the 271 sequenced lung SCC samples (4%). We describe 10 unreported mutations, comprising a novel DDR2 exon 7 splice mutant. DDR2 mutations were not mutually exclusive with other driver gene alterations. One hundred thirty-six patients were included for clinical comparison and logistic regression analysis. No difference was detected between DDR2-mutant and DDR2 wild-type lung SCC regarding clinical characteristics or survival. CONCLUSION: DDR2 mutations were observed in 4% of cases of lung SCC of European descent. DDR2-mutated tumors can exhibit other driver gene alterations. No clinical characteristics were significantly associated with DDR2 mutation.


Subject(s)
Carcinoma, Squamous Cell/genetics , Discoidin Domain Receptor 2/genetics , Exons/genetics , Lung Neoplasms/genetics , Mutation/genetics , Adult , Aged , Aged, 80 and over , Biopsy , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/pathology , Cohort Studies , DNA Mutational Analysis , Female , Follow-Up Studies , High-Throughput Nucleotide Sequencing , Humans , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Male , Middle Aged , Retrospective Studies , Survival Analysis , White People
19.
PLoS One ; 11(12): e0168728, 2016.
Article in English | MEDLINE | ID: mdl-28030632

ABSTRACT

OBJECTIVE: To study the feasibility and the diagnostic and prognostic interest of automated analysis of 1p, 19q, 9p and 10q status by FISH technique in oligodendroglial tumors. METHODS: We analyzed a retrospective series of 33 consecutive gliomas with oligodendroglial histology (originally diagnosed as 24 oligodendrogliomas and 9 oligoastrocytomas). For all cases, automated FISH analysis of 1p, 19q, 9p and 10q status were performed and compared to clinical and histological data, ATRX, IDH1R132H and alpha-internexin status (studied by immunohistochemistry) and overall survival (OS). Manual analysis of 9p and 10q status were also performed and compared to automated analysis to verify the concordance of the two methods. RESULTS: The 33 gliomas were reclassified into 13 low-grade oligodendrogliomas (OII), 10 anaplastic oligodendrogliomas (OIII), 3 diffuse astrocytomas (AII), 3 anaplastic astrocytomas (AIII) and 4 glioblastomas (GBM) according to the WHO 2016 histological criteria. The 1p and/or 19q imbalanced status were restricted to astrocytomas with no correlation to their grade or their OS. Chromosome 9p deletion was restricted to OIII (70%) and GBM (100%) and was correlated with a shorter OS in the total cohort (p = 0.0007), the oligodendroglioma cohort (p = 0.03) and the astrocytoma cohort (p = 0.001). Concordance between 9p manual and automated analysis was satisfactory (81%, κ = 0.69). Chromosome 10q deletion was restricted to GBMs (50%) and was correlated with a poor OS in both the total cohort (p = 0.003) and the astrocytoma (AS) cohort (p = 0.04). Concordance between manual and automated analysis was satisfactory (79%, κ = 0.62). CONCLUSION: Automated analysis of 1p, 19q, 9p and 10q status by FISH is a reliable technique which allows for refined classification of oligodendroglial tumors. 1p and/or 19q imbalanced status is evidence of astrocytic differentiation. 9p deletion is found in high grade oligodendrogliomas and astrocytomas with a poor OS. 10q is related to GBM status and a poor OS.


Subject(s)
Chromosomes, Human/genetics , Molecular Diagnostic Techniques , Oligodendroglioma/diagnosis , Oligodendroglioma/genetics , Practice Guidelines as Topic , World Health Organization , Adult , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 10/genetics , Chromosomes, Human, Pair 19/genetics , Chromosomes, Human, Pair 9/genetics , Female , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Survival Analysis
20.
Hum Mutat ; 37(12): 1329-1339, 2016 12.
Article in English | MEDLINE | ID: mdl-27363716

ABSTRACT

Holoprosencephaly (HPE) is the most common congenital cerebral malformation in humans, characterized by impaired forebrain cleavage and midline facial anomalies. It presents a high heterogeneity, both in clinics and genetics. We have developed a novel targeted next-generation sequencing (NGS) assay and screened a cohort of 257 HPE patients. Mutations with high confidence in their deleterious effect were identified in approximately 24% of the cases and were held for diagnosis, whereas variants of uncertain significance were identified in 10% of cases. This study provides a new classification of genes that are involved in HPE. SHH, ZIC2, and SIX3 remain the top genes in term of frequency with GLI2, and are followed by FGF8 and FGFR1. The three minor HPE genes identified by our study are DLL1, DISP1, and SUFU. Here, we demonstrate that fibroblast growth factor signaling must now be considered a major pathway involved in HPE. Interestingly, several cases of double mutations were found and argue for a polygenic inheritance of HPE. Altogether, it supports that the implementation of NGS in HPE diagnosis is required to improve genetic counseling.


Subject(s)
Fibroblast Growth Factors/genetics , Holoprosencephaly/genetics , Mutation , Female , Genetic Predisposition to Disease , Hedgehog Proteins/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Receptor, Fibroblast Growth Factor, Type 1 , Sequence Analysis, DNA/methods , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...