Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 11(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36079643

ABSTRACT

A viral chimera in which the P1-HCPro bi-cistron of a plum pox virus construct (PPV-GFP) was replaced by that of potato virus Y (PVY) spread slowly systemically in Nicotiana benthamiana plants and accumulated to levels that were 5-10% those of parental PPV-GFP. We tested whether consecutive mechanical passages could increase its virulence, and found that after several passages, chimera titers rose and symptoms increased. We sequenced over half the genome of passaged chimera lineages infecting two plants. The regions sequenced were 5'NCR-P1-HCPro-P3; Vpg/NIa; GFP-CP, because of being potential sites for mutations/deletions leading to adaptation. We found few substitutions, all non-synonymous: two in one chimera (nt 2053 HCPro, and 5733 Vpg/NIa), and three in the other (2359 HCPro, 5729 Vpg/NIa, 9466 CP). HCPro substitutions 2053 AUU(Ile)→ACU(Thr), and 2359 CUG(Leu)→CGG(Arg) occurred at positions where single nucleotide polymorphisms were observed in NGS libraries of sRNA reads from agroinfiltrated plants (generation 1). Remarkably, position 2053 was the only one in the sequenced protein-encoding genome in which polymorphisms were common to the four libraries, suggesting that selective pressure existed to alter that specific nucleotide, previous to any passage. Mutations 5729 and 5733 in the Vpg by contrast did not correlate with polymorphisms in generation 1 libraries. Reverse genetics showed that substitution 2053 alone increased several-fold viral local accumulation, speed of systemic spread, and systemic titers.

2.
New Phytol ; 233(5): 2266-2281, 2022 03.
Article in English | MEDLINE | ID: mdl-34942019

ABSTRACT

Previous studies have found a correlation between the abilities of PVX vector-expressed HCPro variants to bind small RNAs (sRNAs), and to suppress silencing. Moreover, HCPro preferred to bind viral sRNAs of 21-22 nucleotides (nt) containing 5'-terminal adenines. This would require such viral sRNAs to have either different access to the suppressor than those of plant sequences, or different molecular properties. To investigate this preference further, we have used suppressor-competent or suppressor-deficient HCPro variants, expressed from either T-DNAs or potyvirus constructs. Then, the sRNAs generated in plants and associated with the purified HCPro variants were characterized. Marked differences were observed in the ratios of sRNAs of plant vs nonplant origin that bound to suppressor-competent HCPro, depending on the mode of its expression. Regardless of the means of expression, HCPro retained the same preference among the nonplant sRNAs of 21-22 nt for those with 5'-terminal adenines. Relative methylation levels of individual sRNAs were assessed, and the nonplant sRNAs were found to be significantly less methylated in the presence of the suppressor. Targeted binding of sRNAs based on size, 5'-terminal sequence and origin, together with affecting their methylation, could explain how HCPro counteracts silencing.


Subject(s)
Nicotiana , Nucleotides , Adenine , Methylation , Nucleotides/metabolism , Plant Diseases , RNA Interference , RNA, Viral/genetics , RNA, Viral/metabolism , Nicotiana/metabolism , Viral Proteins/metabolism
3.
Plants (Basel) ; 10(6)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071353

ABSTRACT

The contribution of the HCPro factors expressed by several PVY isolates of different geographical origins (one from Scotland, one from Spain, and several from Tunisia) to differences in their virulence in Nicotiana benthamiana plants was investigated under two growing conditions: standard (st; 26 °C and current ambient levels of CO2), and climate change-associated (cc; 31 °C and elevated levels of CO2). In all cases, relative infection symptoms and viral titers were determined. The viral HCPro cistrons were also sequenced and amino-acid features of the encoded proteins were established, as well as phylogenetic distances. Additionally, the abilities of the HCPros of several isolates to suppress silencing were assessed under either growing condition. Overall, viral titers and infection symptoms decreased under cc vs. st conditions. However, within each growing condition, relative titers and symptoms were found to be isolate-specific, with titers and symptom severities not always correlating. Crucially, isolates expressing identical HCPros displayed different symptoms. In addition, all HCPro variants tested displayed comparable silencing suppression strengths. Therefore, HCPro alone could not be the main determinant of the relative differences in pathogenicity observed among the PVY isolates tested in this host, under the environments considered.

4.
J Gen Virol ; 102(6)2021 06.
Article in English | MEDLINE | ID: mdl-34097597

ABSTRACT

Potato yellow vein virus (PYVV) was detected in potatoes grown in the Central highlands, north of Bogotá (~3000 m altitude), Colombia. At this altitude viral whitefly vectors are largely absent, but infection persists because of the use of uncertified tubers. Plants with typical PYVV-induced yellowing symptoms, as well as with atypical yellowing or non-symptomatic symptoms were sampled at three separate geographical locations. PYVV presence was assessed by RT-PCR, and several plants were subjected to high-throughput sequencing (HTS) of their small RNA (sRNA) populations. Complete or almost complete sequences of four PYVV isolates were thus reconstructed, all from symptomatic plants. Three viral isolates infected plants singly, while the fourth co-infected the plant together with a potyvirus. Relative proportions of sRNAs to each of the three crinivirus genomic RNAs were found to remain comparable among the four infections. Genomic regions were identified as hotspots of sRNA formation, or as regions that poorly induced sRNAs. Furthermore, PYVV titres in the mixed versus single infections remained comparable, indicating an absence of synergistic/antagonistic effects of the potyvirus on the accumulation of PYVV. Daughter plants raised in the greenhouse from tubers of the infected, field-sampled plants displayed mild PYVV infection symptoms that disappeared with time, demonstrating the occurrence of recovery and asymptomatic infection phenotypes in this pathosystem.


Subject(s)
Crinivirus/genetics , Crinivirus/isolation & purification , Genome, Viral , Plant Diseases/virology , Solanum tuberosum/virology , Colombia , Plant Leaves/virology , Plant Tubers/virology , Potyvirus , RNA, Viral/analysis , RNA, Viral/genetics
5.
J Gen Virol ; 101(1): 122-135, 2020 01.
Article in English | MEDLINE | ID: mdl-31730035

ABSTRACT

Plants are simultaneously exposed to a variety of biotic and abiotic stresses, such as infections by viruses and bacteria, or drought. This study aimed to improve our understanding of interactions between viral and bacterial pathogens and the environment in the incompatible host Nicotiana benthamiana and the susceptible host Arabidopsis thaliana, and the contribution of viral virulence proteins to these responses. Infection by the Potato virus X (PVX)/Plum pox virus (PPV) pathosystem induced resistance to Pseudomonas syringae (Pst) and to drought in both compatible and incompatible bacteria-host interactions, once a threshold level of defence responses was triggered by the virulence proteins P25 of PVX and the helper component proteinase of PPV. Virus-induced resistance to Pst was compromised in salicylic acid and jasmonic acid signalling-deficient Arabidopsis but not in N. benthamiana lines. Elevated temperature and CO2 levels, parameters associated with climate change, negatively affected resistance to Pst and to drought induced by virus infection, and this correlated with diminished H2O2 production, decreased expression of defence genes and a drop in virus titres. Thus, diminished virulence should be considered as a potential factor limiting the outcome of beneficial trade-offs in the response of virus-infected plants to drought or bacterial pathogens under a climate change scenario.


Subject(s)
Carbon Dioxide/metabolism , Host Microbial Interactions/physiology , Plant Diseases/microbiology , Plant Diseases/virology , Pseudomonas syringae/physiology , Pseudomonas syringae/virology , Arabidopsis/microbiology , Arabidopsis/virology , Cyclopentanes/metabolism , Droughts , Gene Expression Regulation, Plant/physiology , Hydrogen Peroxide/metabolism , Oxylipins/metabolism , Salicylic Acid/metabolism , Temperature , Virulence/physiology
6.
Mol Plant Pathol ; 20(2): 194-210, 2019 02.
Article in English | MEDLINE | ID: mdl-30192053

ABSTRACT

The synergistic interaction of Potato virus X (PVX) with a number of potyviruses results in systemic necrosis in Nicotiana spp. Previous investigations have indicated that the viral suppressor of RNA silencing (VSR) protein P25 of PVX triggers systemic necrosis in PVX-associated synergisms in a threshold-dependent manner. However, little is still known about the cellular processes that lead to this necrosis, and whether the VSR activity of P25 is involved in its elicitation. Here, we show that transient expression of P25 in the presence of VSRs from different viruses, including the helper component-proteinase (HC-Pro) of potyviruses, induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), which ultimately lead to ER collapse. However, the host RNA silencing pathway was dispensable for the elicitation of cell death by P25. Confocal microscopy studies in leaf patches co-expressing P25 and HC-Pro showed dramatic alterations in ER membrane structures, which correlated with the up-regulation of bZIP60 and several ER-resident chaperones, including the ER luminal binding protein (BiP). Overexpression of BiP alleviated the cell death induced by the potexviral P25 protein when expressed together with VSRs derived from different viruses. Conversely, silencing of the UPR master regulator, bZIP60, led to an increase in cell death elicited by the P25/HC-Pro combination as well as by PVX-associated synergism. In addition to its role as a negative regulator of P25-induced cell death, UPR partially restricted PVX infection. Thus, systemic necrosis caused by PVX-associated synergistic infections is probably the effect of an unmitigated ER stress following the overaccumulation of a viral protein, P25, with ER remodelling activity.


Subject(s)
Nicotiana/virology , Potexvirus/metabolism , Potexvirus/pathogenicity , Cell Death , Endoplasmic Reticulum Stress/physiology , Microscopy, Confocal , Plant Diseases/virology , Transcriptional Activation , Unfolded Protein Response/physiology , Viral Proteins/genetics , Viral Proteins/metabolism
7.
Virology ; 525: 10-18, 2018 12.
Article in English | MEDLINE | ID: mdl-30212731

ABSTRACT

Native and amino acid (aa) substitution mutants of HCPro from potato virus Y (PVY) were transiently expressed in Nicotiana benthamiana leaves. Properties of those HCPro variants with regard to silencing suppression activities, mediation of viral transmission by aphids, and subcellular localization dynamics, were determined. One mutant failed to suppress silencing in agropatch assays, but could efficiently mediate the transmission by aphids of purified virions. This mutant also retained the ability to translocate to microtubules (MTs) in stressed cells. By contrast, another single aa substitution mutant displayed native-like silencing suppression activity in agropatch assays, but could not mediate transmission of PVY virions by aphids, and could not relocate to MTs. Our data show that silencing suppression by HCPro is not required in the aphid-mediated transmission of purified virions. In addition, since the same single aa alteration compromised both, viral transmission and coating of MTs, those two properties could be functionally related.


Subject(s)
Aphids/virology , Gene Silencing , Microtubules , Nicotiana/cytology , Potyvirus/metabolism , Viral Proteins/metabolism , Animals , Gene Expression Regulation, Viral , Mutation , Plant Diseases/virology
9.
Virology ; 511: 184-192, 2017 11.
Article in English | MEDLINE | ID: mdl-28866237

ABSTRACT

We have studied how simultaneously elevated temperature and CO2 levels [climate change-related conditions (CCC) of 30°C, 970 parts-per-million (ppm) of CO2 vs. standard conditions (SC) of 25°C, ~ 405ppm CO2] affect physiochemical properties of Nicotiana benthamiana leaves, and also its infection by several positive-sense RNA viruses. In previous works we had studied effects of elevated temperature, CO2 levels separately. Under CCC, leaves of healthy plants almost doubled their area relative to SC but contained less protein/unit-of-area, similarly to what we had found under conditions of elevated CO2 alone. CCC also affected the sizes/numbers of different foliar cell types differently. Under CCC, infection outcomes in titers and symptoms were virus type-specific, broadly similar to those observed under elevated temperature alone. Under either condition, infections did not significantly alter the protein content of leaf discs. Therefore, effects of elevated temperature and CO2 combined on properties of the pathosystems studied were overall cumulative.


Subject(s)
Carbon Dioxide , Nicotiana/drug effects , Nicotiana/radiation effects , Plant Diseases/virology , Plant Viruses/growth & development , RNA Viruses/growth & development , Chemical Phenomena/drug effects , Chemical Phenomena/radiation effects , Plant Leaves/drug effects , Plant Leaves/radiation effects , Plant Leaves/virology , Temperature , Nicotiana/virology
10.
Plant Cell Environ ; 40(12): 2909-2930, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28718885

ABSTRACT

It has been hypothesized that plants can get beneficial trade-offs from viral infections when grown under drought conditions. However, experimental support for a positive correlation between virus-induced drought tolerance and increased host fitness is scarce. We investigated whether increased virulence exhibited by the synergistic interaction involving Potato virus X (PVX) and Plum pox virus (PPV) improves tolerance to drought and host fitness in Nicotiana benthamiana and Arabidopsis thaliana. Infection by the pair PPV/PVX and by PPV expressing the virulence protein P25 of PVX conferred an enhanced drought-tolerant phenotype compared with single infections with either PPV or PVX. Decreased transpiration rates in virus-infected plants were correlated with drought tolerance in N. benthamiana but not in Arabidopsis. Metabolite and hormonal profiles of Arabidopsis plants infected with the different viruses showed a range of changes that positively correlated with a greater impact on drought tolerance. Virus infection enhanced drought tolerance in both species by increasing salicylic acid accumulation in an abscisic acid-independent manner. Viable offspring derived from Arabidopsis plants infected with PPV increased relative to non-infected plants, when exposed to drought. By contrast, the detrimental effect caused by the more virulent viruses overcame potential benefits associated with increased drought tolerance on host fitness.


Subject(s)
Arabidopsis/physiology , Nicotiana/physiology , Plant Diseases/virology , Plum Pox Virus/physiology , Potexvirus/physiology , Salicylic Acid/metabolism , Abscisic Acid/metabolism , Arabidopsis/virology , Mutation , Plant Growth Regulators/metabolism , Plant Transpiration/physiology , Plum Pox Virus/pathogenicity , Potexvirus/pathogenicity , Seeds/physiology , Seeds/virology , Stress, Physiological , Nicotiana/virology , Virulence
11.
Virology ; 509: 178-184, 2017 09.
Article in English | MEDLINE | ID: mdl-28647505

ABSTRACT

Systemic necrosis is one of the most severe symptoms caused in compatible plant-virus interactions and shares common features with the hypersensitive response (HR). Mitogen-activated protein kinase (MAPK) cascades are associated with responses to compatible and incompatible host-virus interactions. Here, we show that virus-induced gene silencing of the Nicotiana benthamiana MAPK genes salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK), and the MAPK kinase (MAPKK) genes MEK1 and MKK1, partially compromised the HR-like response induced by the synergistic interaction of Potato virus X with Potato virus Y (PVX-PVY). Nevertheless, ameliorated cell death induced by PVX-PVY in the MAPK(K)-silenced plants did not facilitate virus accumulation in systemically infected leaves. Dual silencing of SIPK and of the oxylipin biosynthetic gene 9-Lipoxygenase showed that the latter was epistatic to SIPK in response to PVX-PVY infection. These findings demonstrate that SIPK, WIPK, MEK1 and MKK1 function as positive regulators of PVX-PVY-induced cell death.


Subject(s)
Cell Death , Host-Pathogen Interactions , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases/metabolism , Plant Diseases/virology , Potexvirus/physiology , Potyvirus/physiology , Nicotiana
12.
J Virol ; 91(12)2017 06 15.
Article in English | MEDLINE | ID: mdl-28381573

ABSTRACT

We have investigated short and small RNAs (sRNAs) that were bound to a biologically active hexahistidine-tagged Potato virus Y (PVY) HCPro suppressor of silencing, expressed from a heterologous virus vector in Nicotiana benthamiana plants, and purified under nondenaturing conditions. We found that RNAs in purified preparations were differentially enriched in 21-nucleotide (nt) and, to a much lesser extent, 22-nt sRNAs of viral sequences (viral sRNAs [vsRNAs]) compared to those found in a control plant protein background bound to nickel resin in the absence of HCPro or in a purified HCPro alanine substitution mutant (HCPro mutB) control that lacked suppressor-of-silencing activity. In both controls, sRNAs were composed almost entirely of molecules of plant sequence, indicating that the resin-bound protein background had no affinity for vsRNAs and also that HCPro mutB failed to bind to vsRNAs. Therefore, PVY HCPro suppressor activity correlated with its ability to bind to 21- and 22-nt vsRNAs. HCPro constituted at least 54% of the total protein content in purified preparations, and we were able to calculate its contribution to the 21- and the 22-nt pools of sRNAs present in the purified samples and its binding strength relative to the background. We also found that in the 21-nt vsRNAs of the HCPro preparation, 5'-terminal adenines were overrepresented relative to the controls, but this was not observed in vsRNAs of other sizes or of plant sequences.IMPORTANCE It was previously shown that HCPro can bind to long RNAs and small RNAs (sRNAs) in vitro and, in the case of Turnip mosaic virus HCPro, also in vivo in arabidopsis AGO2-deficient plants. Our data show that PVY HCPro binds in vivo to sRNAs during infection in wild-type Nicotiana benthamiana plants when expressed from a heterologous virus vector. Using a suppression-of-silencing-deficient HCPro mutant that can accumulate in this host when expressed from a virus vector, we also show that sRNA binding correlates with silencing suppression activity. We demonstrate that HCPro binds at least to sRNAs with viral sequences of 21 nucleotides (nt) and, to a much lesser extent, of 22 nt, which were are also differentially enriched in 5'-end adenines relative to the purified controls. Together, our results support the physical binding of HCPro to vsRNAs of 21 and 22 nt as a means to interfere with antiviral silencing.


Subject(s)
Nicotiana/virology , RNA, Viral/metabolism , Viral Proteins/metabolism , Gene Silencing , Genetic Vectors , Nucleotides , Plant Diseases/virology , Potyvirus/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/isolation & purification , Viral Proteins/genetics , Viral Proteins/isolation & purification
13.
Plant Pathol J ; 33(2): 206-211, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28381967

ABSTRACT

The effect of temperature on the rate of systemic infection of potatoes (Solanum tuberosum L. cv. Chu-Baek) by Potato virus Y (PVY) was studied in growth chambers. Systemic infection of PVY was observed only within the temperature range of 16°C to 32°C. Within this temperature range, the time required for a plant to become infected systemically decreased from 14 days at 20°C to 5.7 days at 28°C. The estimated lower thermal threshold was 15.6°C and the thermal constant was 65.6 degree days. A systemic infection model was constructed based on experimental data, using the infection rate (Lactin-2 model) and the infection distribution (three-parameter Weibull function) models, which accurately described the completion rate curves to systemic infection and the cumulative distributions obtained in the PVY-potato system, respectively. Therefore, this model was useful to predict the progress of systemic infections by PVY in potato plants, and to construct the epidemic models.

14.
Mol Plant Pathol ; 17(1): 3-15, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25787925

ABSTRACT

Virus infections in plants cause changes in host gene expression that are common to other environmental stresses. In this work, we found extensive overlap in the transcriptional responses between Arabidopsis thaliana plants infected with Tobacco rattle virus (TRV) and plants undergoing senescence. This is exemplified by the up-regulation during infection of several senescence-associated Dark-inducible (DIN) genes, including AtDIN1 (Senescence 1, SEN1), AtDIN6 (Asparagine synthetase 1, AtASN1) and AtDIN11. DIN1, DIN6 and DIN11 homologues were also activated in Nicotiana benthamiana in response to TRV and Potato virus X (PVX) infection. Reduced TRV levels in RNA interference (RNAi) lines targeting AtDIN11 indicate that DIN11 is an important modulator of susceptibility to TRV in Arabidopsis. Furthermore, low accumulation of TRV in Arabidopsis protoplasts from RNAi lines suggests that AtDIN11 supports virus multiplication in this species. The effect of DIN6 on virus accumulation was negligible in Arabidopsis, perhaps as a result of gene or functional redundancy. However, TRV-induced silencing of NbASN, the DIN6 homologue in N. benthamiana, compromises TRV and PVX accumulation in systemically infected leaves. Interestingly, NbASN inactivation correlates with the appearance of morphological defects in infected leaves. We found that DIN6 and DIN11 regulate virus multiplication in a step prior to the activation of plant defence responses. We hypothesize on the possible roles of DIN6 and DIN11 during virus infection.


Subject(s)
Gene Expression Regulation, Plant , Genes, Plant , Plant Diseases/genetics , Plant Diseases/virology , Plant Viruses/physiology , Arabidopsis/genetics , Arabidopsis/virology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Darkness , Disease Susceptibility , Gene Expression Profiling , Gene Silencing , Oligonucleotide Array Sequence Analysis , Potexvirus/physiology , Nicotiana/genetics , Nicotiana/virology
15.
Mol Plant Microbe Interact ; 28(12): 1364-73, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26422405

ABSTRACT

Infections of plants by multiple viruses are common in nature and may result in synergisms in pathologies. Several environmental factors influence plant-virus interactions and act on virulence and host defense responses. Mixed viral infections may be more frequent under environmental conditions associated with global warming. Here, we address how changes in the two main parameters behind global warming, carbon dioxide concentrations ([CO2]) and temperature, may affect virulence of Potato virus X (PVX)/potyvirus-associated synergism compared with single infections in Nicotiana benthamiana. Elevated [CO2] resulted in attenuated virulence of single infection by PVX, which correlated with a lower accumulation of virus. In contrast, virulence of PVX/potyvirus-associated synergism was maintained at elevated [CO2]. On the other hand, elevated temperature decreased markedly both virulence and virus titers in the synergistic infection. We also show that the HR-like response elicited by transient coexpression of PVX P25 together with the potyviral helper component-proteinase protein was significantly enhanced by elevated temperature, whereas it was reduced by elevated [CO2]. Both proteins are main pathogenicity determinants in PVX-associated synergisms. These findings indicate that, under environmental conditions associated with global warming, virulence of PVX/potyvirus-associated synergisms is expected to vary relative to single infections and, thus, may have pathological consequences in the future.


Subject(s)
Carbon Dioxide/metabolism , Potexvirus/pathogenicity , Temperature , Virulence
16.
PLoS One ; 10(8): e0136062, 2015.
Article in English | MEDLINE | ID: mdl-26313753

ABSTRACT

We compared infection of Nicotiana benthamiana plants by the positive-sense RNA viruses Cucumber mosaic virus (CMV), Potato virus Y (PVY), and by a Potato virus X (PVX) vector, the latter either unaltered or expressing the CMV 2b protein or the PVY HCPro suppressors of silencing, at 25°C vs. 30°C, or at standard (~401 parts per million, ppm) vs. elevated (970 ppm) CO2 levels. We also assessed the activities of their suppressors of silencing under those conditions. We found that at 30°C, accumulation of the CMV isolate and infection symptoms remained comparable to those at 25°C, whereas accumulation of the PVY isolate and those of the three PVX constructs decreased markedly, even when expressing the heterologous suppressors 2b or HCPro, and plants had either very attenuated or no symptoms. Under elevated CO2 plants grew larger, but contained less total protein/unit of leaf area. In contrast to temperature, infection symptoms remained unaltered for the five viruses at elevated CO2 levels, but viral titers in leaf disks as a proportion of the total protein content increased in all cases, markedly for CMV, and less so for PVY and the PVX constructs. Despite these differences, we found that neither high temperature nor elevated CO2 prevented efficient suppression of silencing by their viral suppressors in agropatch assays. Our results suggest that the strength of antiviral silencing at high temperature or CO2 levels, or those of the viral suppressors that counteract it, may not be the main determinants of the observed infection outcomes.


Subject(s)
Carbon Dioxide/metabolism , Cucumovirus/pathogenicity , Genes, Suppressor , Host-Pathogen Interactions , Nicotiana/genetics , Potexvirus/pathogenicity , Potyvirus/pathogenicity , Blotting, Western , Cells, Cultured , Cucumovirus/genetics , Plant Diseases/genetics , Plant Diseases/virology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/virology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/virology , Potexvirus/genetics , Potyvirus/genetics , RNA, Messenger/genetics , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Temperature , Nicotiana/metabolism , Nicotiana/virology
17.
Mol Plant Microbe Interact ; 27(12): 1331-43, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25387134

ABSTRACT

Potyvirus HCPro is a multifunctional protein that, among other functions, interferes with antiviral defenses in plants and mediates viral transmission by aphid vectors. We have visualized in vivo the subcellular distribution and dynamics of HCPro from Potato virus Y and its homodimers, using green, yellow, and red fluorescent protein tags or their split parts, while assessing their biological activities. Confocal microscopy revealed a pattern of even distribution of fluorescence throughout the cytoplasm, common to all these modified HCPros, when transiently expressed in Nicotiana benthamiana epidermal cells in virus-free systems. However, in some cells, distinct additional patterns, specific to some constructs and influenced by environmental conditions, were observed: i) a small number of large, amorphous cytoplasm inclusions that contained α-tubulin; ii) a pattern of numerous small, similarly sized, dot-like inclusions distributing regularly throughout the cytoplasm and associated or anchored to the cortical endoplasmic reticulum and the microtubule (MT) cytoskeleton; and iii) a pattern that smoothly coated the MT. Furthermore, mixed and intermediate forms from the last two patterns were observed, suggesting dynamic transports between them. HCPro did not colocalize with actin filaments or the Golgi apparatus. Despite its association with MT, this network integrity was required neither for HCPro suppression of silencing in agropatch assays nor for its mediation of virus transmission by aphids.


Subject(s)
Aphids/virology , Cysteine Endopeptidases/metabolism , Nicotiana/virology , Plant Diseases/virology , Potyvirus/metabolism , Viral Proteins/metabolism , Animals , Biological Transport , Cysteine Endopeptidases/genetics , Cytoplasm/metabolism , Cytoplasm/ultrastructure , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Environment , Gene Expression , Genes, Reporter , Inclusion Bodies, Viral/metabolism , Inclusion Bodies, Viral/ultrastructure , Microtubules/metabolism , Microtubules/ultrastructure , Plant Epidermis/ultrastructure , Plant Epidermis/virology , Plant Leaves/ultrastructure , Plant Leaves/virology , Potyvirus/genetics , Potyvirus/ultrastructure , Recombinant Fusion Proteins , Nicotiana/ultrastructure , Viral Proteins/genetics
18.
Plant Physiol ; 166(4): 1821-38, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25358898

ABSTRACT

During compatible virus infections, plants respond by reprogramming gene expression and metabolite content. While gene expression studies are profuse, our knowledge of the metabolic changes that occur in the presence of the virus is limited. Here, we combine gene expression and metabolite profiling in Arabidopsis (Arabidopsis thaliana) infected with Tobacco rattle virus (TRV) in order to investigate the influence of primary metabolism on virus infection. Our results revealed that primary metabolism is reconfigured in many ways during TRV infection, as reflected by significant changes in the levels of sugars and amino acids. Multivariate data analysis revealed that these alterations were particularly conspicuous at the time points of maximal accumulation of TRV, although infection time was the dominant source of variance during the process. Furthermore, TRV caused changes in lipid and fatty acid composition in infected leaves. We found that several Arabidopsis mutants deficient in branched-chain amino acid catabolism or fatty acid metabolism possessed altered susceptibility to TRV. Finally, we showed that increments in the putrescine content in TRV-infected plants correlated with enhanced tolerance to freezing stress in TRV-infected plants and that impairment of putrescine biosynthesis promoted virus multiplication. Our results thus provide an interesting overview for a better understanding of the relationship between primary metabolism and virus infection.


Subject(s)
Arabidopsis/immunology , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Plant Diseases/immunology , Amino Acids/metabolism , Amino Acids, Branched-Chain/metabolism , Arabidopsis/genetics , Arabidopsis/virology , Disease Susceptibility , Fatty Acids/metabolism , Gene Expression Profiling , Lipid Metabolism , Lipids , Oligonucleotide Array Sequence Analysis , Plant Diseases/virology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/metabolism , Plant Leaves/virology , Plant Viruses/physiology , Putrescine/metabolism , RNA Viruses/physiology , Virus Replication
19.
Mol Plant Pathol ; 15(8): 848-57, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24581046

ABSTRACT

Localized expression of genes in plants from T-DNAs delivered into plant cells by Agrobacterium tumefaciens is an important tool in plant research. The technique, known as agroinfiltration, provides fast, efficient ways to transiently express or silence a desired gene without resorting to the time-consuming, challenging stable transformation of the host, the use of less efficient means of delivery, such as bombardment, or the use of viral vectors, which multiply and spread within the host causing physiological alterations themselves. A drawback of the agroinfiltration technique is its temperature dependence: early studies have shown that temperatures above 29 °C are nonpermissive to tumour induction by the bacterium as a result of failure in pilus formation. However, research in plant sciences is interested in studying processes at these temperatures, above the 25 °C experimental standard, common to many host-environment and host-pathogen interactions in nature, and agroinfiltration is an excellent tool for this purpose. Here, we measured the efficiency of agroinfiltration for the expression of reporter genes in plants from T-DNAs at the nonpermissive temperature of 30 °C, either transiently or as part of viral amplicons, and envisaged procedures that allow and optimize its use for gene expression at this temperature. We applied this technical advance to assess the performance at 30 °C of two viral suppressors of silencing in agropatch assays [Potato virus Y helper component proteinase (HCPro) and Cucumber mosaic virus 2b protein] and, within the context of infection by a Potato virus X (PVX) vector, also assessed indirectly their effect on the overall response of the host Nicotiana benthamiana to the virus.


Subject(s)
Agrobacterium/metabolism , Gene Expression , Genetic Techniques , Host-Pathogen Interactions , Temperature , DNA, Bacterial/genetics , Genes, Reporter , Green Fluorescent Proteins/metabolism , Potyvirus/physiology , Time Factors
20.
PLoS One ; 7(7): e40526, 2012.
Article in English | MEDLINE | ID: mdl-22808182

ABSTRACT

Understanding the mechanisms by which plants trigger host defenses in response to viruses has been a challenging problem owing to the multiplicity of factors and complexity of interactions involved. The advent of genomic techniques, however, has opened the possibility to grasp a global picture of the interaction. Here, we used Arabidopsis thaliana to identify and compare genes that are differentially regulated upon infection with seven distinct (+)ssRNA and one ssDNA plant viruses. In the first approach, we established lists of genes differentially affected by each virus and compared their involvement in biological functions and metabolic processes. We found that phylogenetically related viruses significantly alter the expression of similar genes and that viruses naturally infecting Brassicaceae display a greater overlap in the plant response. In the second approach, virus-regulated genes were contextualized using models of transcriptional and protein-protein interaction networks of A. thaliana. Our results confirm that host cells undergo significant reprogramming of their transcriptome during infection, which is possibly a central requirement for the mounting of host defenses. We uncovered a general mode of action in which perturbations preferentially affect genes that are highly connected, central and organized in modules.


Subject(s)
Arabidopsis/genetics , Arabidopsis/virology , Plant Viruses/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Regulatory Networks/genetics , Genes, Plant/genetics , Metabolic Networks and Pathways/genetics , Phylogeny , Plant Diseases/genetics , Plant Diseases/virology , Protein Interaction Maps , Systems Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...