Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1309160, 2024.
Article in English | MEDLINE | ID: mdl-38680913

ABSTRACT

Introduction and objective: p62 is a human multifunctional adaptor protein involved in key cellular processes such as tissue homeostasis, inflammation, and cancer. It acts as a negative regulator of inflammasome complexes. It may thus be considered a good candidate for therapeutic use in inflammatory bowel diseases (IBD), such as colitis. Probiotics, including recombinant probiotic strains producing or delivering therapeutic biomolecules to the host mucosal surfaces, could help prevent and mitigate chronic intestinal inflammation. The objective of the present study was to combine the intrinsic immunomodulatory properties of the probiotic Lactococcus lactis NCDO2118 with its ability to deliver health-promoting molecules to enhance its protective and preventive effects in the context of ulcerative colitis (UC). Material and methods: This study was realized in vivo in which mice were supplemented with the recombinant strain. The intestinal barrier function was analyzed by monitoring permeability, secretory IgA total levels, mucin expression, and tight junction genes. Its integrity was evaluated by histological analyses. Regarding inflammation, colonic cytokine levels, myeloperoxidase (MPO), and expression of key genes were monitored. The intestinal microbiota composition was investigated using 16S rRNA Gene Sequencing. Results and discussion: No protective effect of L. lactis NCDO2118 pExu:p62 was observed regarding mice clinical parameters compared to the L. lactis NCDO2118 pExu: empty. However, the recombinant strain, expressing p62, increased the goblet cell counts, upregulated Muc2 gene expression in the colon, and downregulated pro-inflammatory cytokines Tnf and Ifng when compared to L. lactis NCDO2118 pExu: empty and inflamed groups. This recombinant strain also decreased colonic MPO activity. No difference in the intestinal microbiota was observed between all treatments. Altogether, our results show that recombinant L. lactis NCDO2118 delivering p62 protein protected the intestinal mucosa and mitigated inflammatory damages caused by dextran sodium sulfate (DSS). We thus suggest that p62 may constitute part of a therapeutic approach targeting inflammation.

2.
Article in English | MEDLINE | ID: mdl-38539008

ABSTRACT

This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.

3.
ISME Commun ; 4(1): ycad019, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38415201

ABSTRACT

The human milk (HM) microbiota, a highly diverse microbial ecosystem, is thought to contribute to the health benefits associated with breast-feeding, notably through its impact on infant gut microbiota. Our objective was to further explore the role of HM bacteria on gut homeostasis through a "disassembly/reassembly" strategy. HM strains covering the diversity of HM cultivable microbiota were first characterized individually and then assembled in synthetic bacterial communities (SynComs) using two human cellular models, peripheral blood mononuclear cells and a quadricellular model mimicking intestinal epithelium. Selected HM bacteria displayed a large range of immunomodulatory properties and had variable effects on epithelial barrier, allowing their classification in functional groups. This multispecies characterization of HM bacteria showed no clear association between taxonomy and HM bacteria impacts on epithelial immune and barrier functions, revealing the entirety and complexity of HM bacteria potential. More importantly, the assembly of HM strains into two SynComs of similar taxonomic composition but with strains exhibiting distinct individual properties, resulted in contrasting impacts on the epithelium. These impacts of SynComs partially diverged from the predicted ones based on individual bacteria. Overall, our results indicate that the functional properties of the HM bacterial community rather than the taxonomic composition itself could play a crucial role in intestinal homeostasis of infants.

4.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G163-G175, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37988603

ABSTRACT

The growing incidence of human diseases involving inflammation and increased gut permeability makes the quest for protective functional foods more crucial than ever. Propionibacterium freudenreichii (P. freudenreichii) is a beneficial bacterium used in the dairy and probiotic industries. Selected strains exert anti-inflammatory effects, and the present work addresses whether the P. freudenreichii CIRM-BIA129, consumed daily in a preventive way, could protect mice from acute colitis induced by dextran sodium sulfate (DSS), and more precisely, whether it could protect from intestinal epithelial breakdown induced by inflammation. P. freudenreichii CIRM-BIA129 mitigated colitis severity and inhibited DSS-induced permeability. It limited crypt length reduction and promoted the expression of zonula occludens-1 (ZO-1), without reducing interleukin-1ß mRNA (il-1ß) expression. In vitro, P. freudenreichii CIRM-BIA129 prevented the disruption of a Caco-2 monolayer induced by proinflammatory cytokines. It increased transepithelial electrical resistance (TEER) and inhibited permeability induced by inflammation, along with an increased ZO-1 expression. Extracellular vesicles (EVs) from P. freudenreichii CIRM-BIA129, carrying the surface layer protein (SlpB), reproduced the protective effect of P. freudenreichii CIRM-BIA129. A mutant strain deleted for slpB (ΔslpB), or EVs from this mutant strain, had lost their protective effects and worsened both DSS-induced colitis and inflammation in vivo. These results shown that P. freudenreichii CIRM-BIA129 daily consumption has the potential to greatly alleviate colitis symptoms and, particularly, to counter intestinal epithelial permeability induced by inflammation by restoring ZO-1 expression through mechanisms involving S-layer protein B. They open new avenues for the use of probiotic dairy propionibacteria and/or postbiotic fractions thereof, in the context of gut permeability.NEW & NOTEWORTHY Propionibacterium freudenreichii reduces dextran sodium sulfate (DSS)-induced intestinal permeability in vivo. P. freudenreichii does not inhibit inflammation but damages linked to inflammation. P. freudenreichii inhibits intestinal epithelial breakdown through S-layer protein B. The protective effects of P. freudenreichii depend on S-layer protein B. Extracellular vesicles from P. freudenreichii CB 129 mimic the protective effect of the probiotic.


Subject(s)
Colitis , Propionibacterium freudenreichii , Receptors, Fc , Sulfates , Humans , Mice , Animals , Caco-2 Cells , Dextrans/pharmacology , Colitis/chemically induced , Colitis/prevention & control , Colitis/metabolism , Inflammation/metabolism , Dextran Sulfate/pharmacology , Mice, Inbred C57BL , Intestinal Mucosa/metabolism , Disease Models, Animal
5.
BMC Microbiol ; 23(1): 364, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38008714

ABSTRACT

BACKGROUND: Probiotics have gained attention for their potential maintaining gut and immune homeostasis. They have been found to confer protection against pathogen colonization, possess immunomodulatory effects, enhance gut barrier functionality, and mitigate inflammation. However, a thorough understanding of the unique mechanisms of effects triggered by individual strains is necessary to optimize their therapeutic efficacy. Probiogenomics, involving high-throughput techniques, can help identify uncharacterized strains and aid in the rational selection of new probiotics. This study evaluates the potential of the Escherichia coli CEC15 strain as a probiotic through in silico, in vitro, and in vivo analyses, comparing it to the well-known probiotic reference E. coli Nissle 1917. Genomic analysis was conducted to identify traits with potential beneficial activity and to assess the safety of each strain (genomic islands, bacteriocin production, antibiotic resistance, production of proteins involved in host homeostasis, and proteins with adhesive properties). In vitro studies assessed survival in gastrointestinal simulated conditions and adhesion to cultured human intestinal cells. Safety was evaluated in BALB/c mice, monitoring the impact of E. coli consumption on clinical signs, intestinal architecture, intestinal permeability, and fecal microbiota. Additionally, the protective effects of both strains were assessed in a murine model of 5-FU-induced mucositis. RESULTS: CEC15 mitigates inflammation, reinforces intestinal barrier, and modulates intestinal microbiota. In silico analysis revealed fewer pathogenicity-related traits in CEC15, when compared to Nissle 1917, with fewer toxin-associated genes and no gene suggesting the production of colibactin (a genotoxic agent). Most predicted antibiotic-resistance genes were neither associated with actual resistance, nor with transposable elements. The genome of CEC15 strain encodes proteins related to stress tolerance and to adhesion, in line with its better survival during digestion and higher adhesion to intestinal cells, when compared to Nissle 1917. Moreover, CEC15 exhibited beneficial effects on mice and their intestinal microbiota, both in healthy animals and against 5FU-induced intestinal mucositis. CONCLUSIONS: These findings suggest that the CEC15 strain holds promise as a probiotic, as it could modulate the intestinal microbiota, providing immunomodulatory and anti-inflammatory effects, and reinforcing the intestinal barrier. These findings may have implications for the treatment of gastrointestinal disorders, particularly some forms of diarrhea.


Subject(s)
Escherichia coli Proteins , Mucositis , Probiotics , Mice , Humans , Animals , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Inflammation , Probiotics/therapeutic use
6.
Anim Microbiome ; 5(1): 32, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37308970

ABSTRACT

BACKGROUND: Host-associated microbes are major determinants of the host phenotypes. In the present study, we used dairy cows with different scores of susceptibility to mastitis with the aim to explore the relationships between microbiota composition and different factors in various body sites throughout lactation as well as the intra- and inter-animal microbial sharing. RESULTS: Microbiotas from the mouth, nose, vagina and milk of 45 lactating dairy cows were characterized by metataxonomics at four time points during the first lactation, from 1-week pre-partum to 7 months post-partum. Each site harbored a specific community that changed with time, likely reflecting physiological changes in the transition period and changes in diet and housing. Importantly, we found a significant number of microbes shared among different anatomical sites within each animal. This was between nearby anatomic sites, with up to 32% of the total number of Amplicon Sequence Variants (ASVs) of the oral microbiota shared with the nasal microbiota but also between distant ones (e.g. milk with nasal and vaginal microbiotas). In contrast, the share of microbes between animals was limited (< 7% of ASVs shared by more than 50% of the herd for a given site and time point). The latter widely shared ASVs were mainly found in the oral and nasal microbiotas. These results thus indicate that despite a common environment and diet, each animal hosted a specific set of bacteria, supporting a tight interplay between each animal and its microbiota. The score of susceptibility to mastitis was slightly but significantly related to the microbiota associated to milk suggesting a link between host genetics and microbiota. CONCLUSIONS: This work highlights an important sharing of microbes between relevant microbiotas involved in health and production at the animal level, whereas the presence of common microbes was limited between animals of the herd. This suggests a host regulation of body-associated microbiotas that seems to be differently expressed depending on the body site, as suggested by changes in the milk microbiota that were associated to genotypes of susceptibility to mastitis.

7.
Front Immunol ; 14: 1138539, 2023.
Article in English | MEDLINE | ID: mdl-37325649

ABSTRACT

Introduction: The mechanisms underlying innate immune memory (trained immunity) comprise epigenetic reprogramming of transcriptional pathways associated with alterations of intracellular metabolism. While the mechanisms of innate immune memory carried out by immune cells are well characterized, such processes in non-immune cells, are poorly understood. The opportunistic pathogen, Staphylococcus aureus, is responsible for a multitude of human diseases, including pneumonia, endocarditis and osteomyelitis, as well as animal infections, including chronic cattle mastitis that are extremely difficult to treat. An induction of innate immune memory may be considered as a therapeutic alternative to fight S. aureus infection. Methods: In the current work, we demonstrated the development of innate immune memory in non-immune cells during S. aureus infection employing a combination of techniques including Enzyme-linked immunosorbent assay (ELISA), microscopic analysis, and cytometry. Results: We observed that training of human osteoblast-like MG-63 cells and lung epithelial A549 cells with ß-glucan increased IL-6 and IL-8 production upon a stimulation with S. aureus, concomitant with histones modifications. IL-6 and IL-8 production was positively correlated with an acetylation of histone 3 at lysine 27 (H3K27), thus suggesting epigenetic reprogramming in these cells. An addition of the ROS scavenger N-Acetylcysteine, NAC, prior to ß-glucan pretreatment followed by an exposure to S. aureus, resulted in decreased IL-6 and IL-8 production, thereby supporting the involvement of ROS in the induction of innate immune memory. Exposure of cells to Lactococcus lactis resulted in increased IL-6 and IL-8 production by MG-63 and A549 cells upon a stimulation with S. aureus that was correlated with H3K27 acetylation, suggesting the ability of this beneficial bacterium to induce innate immune memory. Discussion: This work improves our understanding of innate immune memory in non-immune cells in the context of S. aureus infection. In addition to known inducers, probiotics may represent good candidates for the induction of innate immune memory. Our findings may help the development of alternative therapeutic approaches for the prevention of S. aureus infection.


Subject(s)
Immunity, Innate , Staphylococcal Infections , Female , Humans , Animals , Cattle , Reactive Oxygen Species , Staphylococcus aureus , Trained Immunity , Interleukin-8 , Interleukin-6
8.
Gene ; 855: 147131, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36539044

ABSTRACT

Staphylococcus aureus is the main etiological agent of mastitis in small ruminants worldwide. This disease has a difficult cure and possible relapse, leading to significant economic losses in production, milk quality and livestock. This study performed comparative genomic analyses between 73 S. aureus genomes from different hosts (human, bovine, pig and others). This work isolated and sequenced 12 of these genomes from ovine. This study contributes to the knowledge of genomic specialization and the role of specific genes in establishing infection in ovine mastitis-associated S. aureus. The genomes of S. aureus isolated from sheep maintained a higher representation when grouped with clonal complexes 130 and 133. The genomes showed high genetic similarity, the species pan-genome consisting of 4200 genes (central = 2008, accessory = 1559 and unique = 634). Among these, 277 unique genes were related to the genomes isolated from sheep, with 39.6 % as hypothetical proteins, 6.4 % as phages, 6.4 % as toxins, 2.9 % as transporters, and 44.7 % as related to other proteins. Furthermore, at the pathogen level, they showed 80 genes associated with virulence factors and 19 with antibiotic resistance shared in almost all isolates. Although S. aureus isolated from ovine showed susceptibility to antimicrobials in vitro, ten genes were predicted to be associated with antibiotic inactivation and efflux pump, suggesting resistance to gentamicin and penicillin. This work may contribute to identifying genes acquired by horizontal transfer and their role in host adaptation, virulence, bacterial resistance, and characterization of strains affecting ovine.


Subject(s)
Mastitis, Bovine , Staphylococcal Infections , Female , Animals , Cattle , Sheep/genetics , Humans , Swine , Virulence Factors/genetics , Staphylococcus aureus/genetics , Host Adaptation , Staphylococcal Infections/genetics , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Ruminants/genetics , Genomics , Interspersed Repetitive Sequences , Mastitis, Bovine/genetics , Mastitis, Bovine/microbiology
9.
Microorganisms ; 10(9)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36144410

ABSTRACT

Staphylococcus aureus, a major opportunistic pathogen in humans, produces extracellular vesicles (EVs) that are involved in cellular communication, the delivery of virulence factors, and modulation of the host immune system response. However, to date, the impact of culture conditions on the physicochemical and functional properties of S. aureus EVs is still largely unexplored. Here, we use a proteomic approach to provide a complete protein characterization of S. aureus HG003, a NCTC8325 derivative strain and its derived EVs under four growth conditions: early- and late-stationary growth phases, and in the absence and presence of a sub-inhibitory concentration of vancomycin. The HG003 EV protein composition in terms of subcellular localization, COG and KEGG categories, as well as their relative abundance are modulated by the environment and differs from that of whole-cell (WC). Moreover, the environmental conditions that were tested had a more pronounced impact on the EV protein composition when compared to the WC, supporting the existence of mechanisms for the selective packing of EV cargo. This study provides the first general picture of the impact of different growth conditions in the proteome of S. aureus EVs and its producing-cells and paves the way for future studies to understand better S. aureus EV production, composition, and roles.

10.
Front Cell Infect Microbiol ; 12: 854242, 2022.
Article in English | MEDLINE | ID: mdl-35531332

ABSTRACT

Staphylococcus aureus is an opportunistic pathogen that causes a range of devastating diseases including chronic osteomyelitis, which partially relies on the internalization and persistence of S. aureus in osteoblasts. The identification of the mechanisms of the osteoblast response to intracellular S. aureus is thus crucial to improve the knowledge of this infectious pathology. Since the signal from specifically infected bacteria-bearing cells is diluted and the results are confounded by bystander effects of uninfected cells, we developed a novel model of long-term infection. Using a flow cytometric approach we isolated only S. aureus-bearing cells from mixed populations that allows to identify signals specific to intracellular infection. Here we present an in-depth analysis of the effect of long-term S. aureus infection on the transcriptional program of human osteoblast-like cells. After RNA-seq and KEGG and Reactome pathway enrichment analysis, the remodeled transcriptomic profile of infected cells revealed exacerbated immune and inflammatory responses, as well as metabolic dysregulations that likely influence the intracellular life of bacteria. Numerous genes encoding epigenetic regulators were downregulated. The later included genes coding for components of chromatin-repressive complexes (e.g., NuRD, BAHD1 and PRC1) and epifactors involved in DNA methylation. Sets of genes encoding proteins of cell adhesion or neurotransmission were also deregulated. Our results suggest that intracellular S. aureus infection has a long-term impact on the genome and epigenome of host cells, which may exert patho-physiological dysfunctions additionally to the defense response during the infection process. Overall, these results not only improve our conceptual understanding of biological processes involved in the long-term S. aureus infections of osteoblast-like cells, but also provide an atlas of deregulated host genes and biological pathways and identify novel markers and potential candidates for prophylactic and therapeutic approaches.


Subject(s)
Osteomyelitis , Staphylococcal Infections , Epigenesis, Genetic , Humans , Osteomyelitis/microbiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/physiology , Transcriptome
11.
BMC Genomics ; 23(1): 210, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35291951

ABSTRACT

BACKGROUND: Streptococcus thermophilus is a Gram-positive bacterium widely used as starter in the dairy industry as well as in many traditional fermented products. In addition to its technological importance, it has also gained interest in recent years as beneficial bacterium due to human health-promoting functionalities. The objective of this study was to inventory the main health-promoting properties of S. thermophilus and to study their intra-species diversity at the genomic and genetic level within a collection of representative strains. RESULTS: In this study various health-related functions were analyzed at the genome level from 79 genome sequences of strains isolated over a long time period from diverse products and different geographic locations. While some functions are widely conserved among isolates (e.g., degradation of lactose, folate production) suggesting their central physiological and ecological role for the species, others including the tagatose-6-phosphate pathway involved in the catabolism of galactose, and the production of bioactive peptides and gamma-aminobutyric acid are strain-specific. Most of these strain-specific health-promoting properties seems to have been acquired via horizontal gene transfer events. The genetic basis for the phenotypic diversity between strains for some health related traits have also been investigated. For instance, substitutions in the galK promoter region correlate with the ability of some strains to catabolize galactose via the Leloir pathway. Finally, the low occurrence in S. thermophilus genomes of genes coding for biogenic amine production and antibiotic resistance is also a contributing factor to its safety status. CONCLUSIONS: The natural intra-species diversity of S. thermophilus, therefore, represents an interesting source for innovation in the field of fermented products enriched for healthy components that can be exploited to improve human health. A better knowledge of the health-promoting properties and their genomic and genetic diversity within the species may facilitate the selection and application of strains for specific biotechnological and human health-promoting purpose. Moreover, by pointing out that a substantial part of its functional potential still defies us, our work opens the way to uncover additional health-related functions through the intra-species diversity exploration of S. thermophilus by comparative genomics approaches.


Subject(s)
Genomics , Streptococcus thermophilus , Humans , Lactose/metabolism , Phenotype , Streptococcus thermophilus/genetics , Streptococcus thermophilus/metabolism
12.
Front Pharmacol ; 12: 755871, 2021.
Article in English | MEDLINE | ID: mdl-34955828

ABSTRACT

Mucositis is an adverse effect of cancer chemotherapies using 5-Fluorouracil (5-FU). It is characterized by mucosal inflammation, pain, diarrhea, and weight loss. Some studies reported promising healing effects of probiotic strains, when associated with prebiotics, as adjuvant treatment of mucositis. We developed a lyophilized symbiotic product, containing skimmed milk, supplemented with whey protein isolate (WPI) and with fructooligosaccharides (FOS), and fermented by Lactobacillus casei BL23, Lactiplantibacillus plantarum B7, and Lacticaseibacillus rhamnosus B1. In a mice 5-FU mucositis model, this symbiotic lyophilized formulation was able to reduce weight loss and intestinal permeability. This last was determined in vivo by quantifying blood radioactivity after oral administration of 99mTc-DTPA. Finally, histological damages caused by 5-FU-induced mucositis were monitored. Consumption of the symbiotic formulation caused a reduced score of inflammation in the duodenum, ileum, and colon. In addition, it decreased levels of pro-inflammatory cytokines IL-1ß, IL-6, IL-17, and TNF-α in the mice ileum. The symbiotic product developed in this work thus represents a promising adjuvant treatment of mucositis.

13.
Front Microbiol ; 12: 634226, 2021.
Article in English | MEDLINE | ID: mdl-33776967

ABSTRACT

The roles of bacterial extracellular vesicles (EVs) in cell-to-cell signaling are progressively being unraveled. These membranous spheres released by many living cells carry various macromolecules, some of which influence host-pathogen interactions. Bacterial EVs contain RNA, which may serve in communicating with their infected hosts. Staphylococcus aureus, an opportunistic human and animal pathogen, produces EVs whose RNA content is still poorly characterized. Here, we investigated in depth the RNA content of S. aureus EVs. A high-throughput RNA sequencing approach identified RNAs in EVs produced by the clinical S. aureus strain HG003 under different environmental conditions: early- and late-stationary growth phases, and presence or absence of a sublethal vancomycin concentration. On average, sequences corresponding to 78.0% of the annotated transcripts in HG003 genome were identified in HG003 EVs. However, only ~5% of them were highly covered by reads (≥90% coverage) indicating that a large fraction of EV RNAs, notably mRNAs and sRNAs, were fragmented in EVs. According to growth conditions, from 86 to 273 highly covered RNAs were identified into the EVs. They corresponded to 286 unique RNAs, including 220 mRNAs. They coded for numerous virulence-associated factors (hld encoded by the multifunctional sRNA RNAIII, agrBCD, psmß1, sbi, spa, and isaB), ribosomal proteins, transcriptional regulators, and metabolic enzymes. Twenty-eight sRNAs were also detected, including bona fide RsaC. The presence of 22 RNAs within HG003 EVs was confirmed by reverse transcription quantitative PCR (RT-qPCR) experiments. Several of these 286 RNAs were shown to belong to the same transcriptional units in S. aureus. Both nature and abundance of the EV RNAs were dramatically affected depending on the growth phase and the presence of vancomycin, whereas much less variations were found in the pool of cellular RNAs of the parent cells. Moreover, the RNA abundance pattern differed between EVs and EV-producing cells according to the growth conditions. Altogether, our findings show that the environment shapes the RNA cargo of the S. aureus EVs. Although the composition of EVs is impacted by the physiological state of the producing cells, our findings suggest a selective packaging of RNAs into EVs, as proposed for EV protein cargo. Our study shedds light to the possible roles of potentially functional RNAs in S. aureus EVs, notably in host-pathogen interactions.

14.
Front Microbiol ; 12: 623920, 2021.
Article in English | MEDLINE | ID: mdl-33737918

ABSTRACT

Inflammatory bowel diseases (IBDs) constitute disturbances of gastrointestinal tract that cause irreversible changes in the structure and function of tissues. Ulcerative colitis (UC), the most frequent IBD in the population, is characterized by prominent inflammation of the human colon. Functional foods containing probiotic bacteria have been studied as adjuvants to the treatment or prevention of IBDs. The selected probiotic strain Lactococcus lactis NCDO 2118 (L. lactis NCDO 2118) exhibits immunomodulatory effects, with promising results in UC mouse model induced by dextran sodium sulfate (DSS). Additionally, cheese is a dairy food that presents high nutritional value, besides being a good delivery system that can be used to improve survival and enhance the therapeutic effects of probiotic bacteria in the host. Therefore, this work investigated the probiotic therapeutic effects of an experimental Minas Frescal cheese containing L. lactis NCDO 2118 in DSS-induced colitis in mice. During colitis induction, mice that consumed the probiotic cheese exhibited reduced in the severity of colitis, with attenuated weight loss, lower disease activity index, limited shortening of the colon length, and reduced histopathological score. Moreover, probiotic cheese administration increased gene expression of tight junctions' proteins zo-1, zo-2, ocln, and cln-1 in the colon and increase IL-10 release in the spleen and lymph nodes. In this way, this work demonstrates that consumption of probiotic Minas Frescal cheese, containing L. lactis NCDO 2118, prevents the inflammatory process during DSS-induced colitis in mice, opening perspectives for the development of new probiotic functional foods for personalized nutrition in the context of IBD.

15.
Appl Environ Microbiol ; 87(4)2021 03 01.
Article in English | MEDLINE | ID: mdl-33310709

ABSTRACT

Propionibacterium freudenreichii is a probiotic Gram-positive bacterium with promising immunomodulatory properties. It modulates regulatory cytokines, mitigates the inflammatory response in vitro and in vivo These properties were initially attributed to specific bacterial surface proteins. Recently, we showed that extracellular vesicles (EVs) produced by P. freudenreichii CIRM-BIA129 mimic the immunomodulatory features of parent cells in vitro (i.e. modulating NF-κB transcription factor activity and IL-8 release) which underlies the role of EVs as mediators of the probiotic effects of the bacterium. The modulation of EV properties, and particularly of those with potential therapeutic applications such as the EVs produced by the probiotic P. freudenreichii, is one of the challenges in the field to achieve efficient yields with the desired optimal functionality. Here we evaluated whether the culture medium in which the bacteria are grown could be used as a lever to modulate the protein content and hence the properties of P. freudenreichii CIRM-BIA129 EVs. The physical, biochemical and functional properties of EVs produced from cells cultivated on laboratory Yeast Extract Lactate (YEL) medium and cow milk ultrafiltrate (UF) medium were compared. UF-derived EVs were more abundant, smaller in diameter and displayed more intense anti-inflammatory activity than YEL-derived EVs. Furthermore, the growth media modulated EV content in terms of both the identities and abundances of their protein cargos, suggesting different patterns of interaction with the host. Proteins involved in amino acid metabolism and central carbon metabolism were modulated, as were the key surface proteins mediating host-propionibacteria interactions.Importance Extracellular vesicles (EVs) are cellular membrane-derived nanosized particles that are produced by most cells in all three kingdoms of life. They play a pivotal role in cell-cell communication through their ability to transport bioactive molecules from donor to recipient cells. Bacterial EVs are important factors in host-microbe interactions. Recently we have shown that EVs produced by the probiotic P. freudenreichii exhibited immunomodulatory properties. We evaluate here the impact of environmental conditions, notably culture media, on P. freudenreichii EV production and function. We show that EVs display considerable differences in protein cargo and immunomodulation depending on the culture medium used. This work offers new perspectives for the development of probiotic EV-based molecular delivery systems, and reinforces the optimization of growth conditions as a tool to modulate the potential therapeutic applications of EVs.

16.
Front Pharmacol ; 12: 755825, 2021.
Article in English | MEDLINE | ID: mdl-34987390

ABSTRACT

Bacteria used in the production of fermented food products have been investigated for their potential role as modulators of inflammation in gastrointestinal tract disorders such as inflammatory bowel diseases (IBD) that cause irreversible changes in the structure and function of gut tissues. Ulcerative colitis (UC) is the most prevalent IBD in the population of Western countries, and it is marked by symptoms such as weight loss, rectal bleeding, diarrhea, shortening of the colon, and destruction of the epithelial layer. The strain Propionibacterium freudenreichii CIRM-BIA 129 recently revealed promising immunomodulatory properties that greatly rely on surface-layer proteins (Slp), notably SlpB. We, thus, cloned the sequence encoding the SlpB protein into the pXIES-SEC expression and secretion vector, and expressed the propionibacterial protein in the lactic acid bacterium Lactococcus lactis NCDO 2118. The probiotic potential of L. lactis NCDO 2118 harboring pXIES-SEC:slpB (L. lactis-SlpB) was evaluated in a UC-mice model induced by Dextran Sulfate Sodium (DSS). During colitis induction, mice receiving L. lactis-SlpB exhibited reduced severity of colitis, with lower weight loss, lower disease activity index, limited shortening of the colon length, and reduced histopathological score, with significant differences, compared with the DSS group and the group treated with L. lactis NCDO 2118 wild-type strain. Moreover, L. lactis-SlpB administration increased the expression of genes encoding tight junction proteins zo-1, cln-1, cln-5, ocln, and muc-2 in the colon, increased IL-10 and TGF-ß, and decreased IL-17, TNF-α, and IL-12 cytokines in the colon. Therefore, this work demonstrates that SlpB recombinant protein is able to increase the probiotic potential of the L. lactis strain to alleviate DSS-induced colitis in mice. This opens perspectives for the development of new approaches to enhance the probiotic potential of strains by the addition of SlpB protein.

17.
Microorganisms ; 8(11)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212972

ABSTRACT

Staphylococcus xylosus is found in the microbiota of traditional cheeses, particularly in the rind of soft smeared cheeses. Despite its frequency, the molecular mechanisms allowing the growth and adaptation of S. xylosus in dairy products are still poorly understood. A transcriptomic approach was used to determine how the gene expression profile is modified during the fermentation step in a solid dairy matrix. S. xylosus developed an aerobic metabolism perfectly suited to the cheese rind. It overexpressed genes involved in the aerobic catabolism of two carbon sources in the dairy matrix, lactose and citrate. Interestingly, S. xylosus must cope with nutritional shortage such as amino acids, peptides, and nucleotides, consequently, an extensive up-regulation of genes involved in their biosynthesis was observed. As expected, the gene sigB was overexpressed in relation with general stress and entry into the stationary phase and several genes under its regulation, such as those involved in transport of anions, cations and in pigmentation were up-regulated. Up-regulation of genes encoding antioxidant enzymes and glycine betaine transport and synthesis systems showed that S. xylosus has to cope with oxidative and osmotic stresses. S. xylosus expressed an original system potentially involved in iron acquisition from lactoferrin.

18.
Front Microbiol ; 11: 1544, 2020.
Article in English | MEDLINE | ID: mdl-32733422

ABSTRACT

Extracellular vesicles (EVs) are nanometric spherical structures involved in intercellular communication, whose production is considered to be a widespread phenomenon in living organisms. Bacterial EVs are associated with several processes that include survival, competition, pathogenesis, and immunomodulation. Among probiotic Gram-positive bacteria, some Propionibacterium freudenreichii strains exhibit anti-inflammatory activity, notably via surface proteins such as the surface-layer protein B (SlpB). We have hypothesized that, in addition to surface exposure and secretion of proteins, P. freudenreichii may produce EVs and thus export immunomodulatory proteins to interact with the host. In order to demonstrate their production in this species, EVs were purified from cell-free culture supernatants of the probiotic strain P. freudenreichii CIRM-BIA 129, and their physicochemical characterization, using transmission electron microscopy and nanoparticle tracking analysis (NTA), revealed shapes and sizes typical of EVs. Proteomic characterization showed that EVs contain a broad range of proteins, including immunomodulatory proteins such as SlpB. In silico protein-protein interaction predictions indicated that EV proteins could interact with host proteins, including the immunomodulatory transcription factor NF-κB. This potential interaction has a functional significance because EVs modulate inflammatory responses, as shown by IL-8 release and NF-κB activity, in HT-29 human intestinal epithelial cells. Indeed, EVs displayed an anti-inflammatory effect by modulating the NF-κB pathway; this was dependent on their concentration and on the proinflammatory inducer (LPS-specific). Moreover, while this anti-inflammatory effect partly depended on SlpB, it was not abolished by EV surface proteolysis, suggesting possible intracellular sites of action for EVs. This is the first report on identification of P. freudenreichii-derived EVs, alongside their physicochemical, biochemical and functional characterization. This study has enhanced our understanding of the mechanisms associated with the probiotic activity of P. freudenreichii and identified opportunities to employ bacterial-derived EVs for the development of bioactive products with therapeutic effects.

19.
Sci Rep ; 10(1): 8467, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32439871

ABSTRACT

Staphylococcus aureus is an important opportunistic pathogen of humans and animals. It produces extracellular vesicles (EVs) that are involved in cellular communication and enable inter-kingdom crosstalk, the delivery of virulence factors and modulation of the host immune response. The protein content of EVs determines their biological functions. Clarifying which proteins are selected, and how, is of crucial value to understanding the role of EVs in pathogenesis and the development of molecular delivery systems. Here, we postulated that S. aureus EVs share a common proteome containing components involved in cargo sorting. The EV proteomes of five S. aureus strains originating from human, bovine, and ovine hosts were characterised. The clustering of EV proteomes reflected the diversity of the producing strains. A total of 253 proteins were identified, 119 of which composed a core EV proteome with functions in bacterial survival, pathogenesis, and putatively in EV biology. We also identified features in the sequences of EV proteins and the corresponding genes that could account for their packaging into EVs. Our findings corroborate the hypothesis of a selective sorting of proteins into EVs and offer new perspectives concerning the roles of EVs in S. aureus pathogenesis in specific host niches.


Subject(s)
Bacterial Proteins/metabolism , Biomarkers/metabolism , Extracellular Vesicles/metabolism , Proteome/analysis , Proteome/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/metabolism , Animals , Cattle , Humans , Sheep , Staphylococcus aureus/growth & development , Staphylococcus aureus/isolation & purification
20.
Front Microbiol ; 11: 60, 2020.
Article in English | MEDLINE | ID: mdl-32117107

ABSTRACT

The development of powerful sequencing techniques has allowed, albeit with some biases, the identification and inventory of complex microbial communities that inhabit different body sites or body fluids, some of which were previously considered sterile. Notably, milk is now considered to host a complex microbial community with great diversity. Milk microbiota is now well documented in various hosts. Based on the growing literature on this microbial community, we address here the question of what milk microbiota is. We summarize and compare the microbial composition of milk in humans and in ruminants and address the existence of a putative core milk microbiota. We discuss the factors that contribute to shape the milk microbiota or affect its composition, including host and environmental factors as well as methodological factors, such as the sampling and sequencing techniques, which likely introduce distortion in milk microbiota analysis. The roles that milk microbiota are likely to play in the mother and offspring physiology and health are presented together with recent data on the hypothesis of an enteromammary pathway. At last, this fascinating field raises a series of questions, which are listed and commented here and which open new research avenues.

SELECTION OF CITATIONS
SEARCH DETAIL
...