Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(8): e0308214, 2024.
Article in English | MEDLINE | ID: mdl-39088510

ABSTRACT

The main objective of the study was to investigate the effects of prenatal exercise interventions on maternal body composition at 28 weeks gestation and 7-14 days after delivery. We also explored associations between physical activity (PA) per se and body composition. This study presents secondary outcomes of the FitMum randomized controlled trial, which included healthy inactive pregnant women at gestational age ≤ 15+0 weeks. They were randomized to structured supervised exercise training, motivational counselling on PA, or standard care. Maternal body composition was measured by doubly labeled water at 28 weeks gestation (n = 134) and by dual-energy X-ray absorptiometry scan 7-14 days after delivery (n = 117). PA, including moderate-to-vigorous-intensity PA (MVPA), active kilocalories, and steps, were measured continuously from inclusion to delivery by a wrist-worn activity tracker. One hundred fifty pregnant women were included with a median pre-pregnancy body mass index (BMI) of 24.1 (21.6-27.9) kg/m2. We found no differences between groups in fat mass, fat percentage or fat-free mass at 28 weeks gestation or 7-14 days after delivery. Visceral adipose tissue mass and bone mineral density measured 7-14 days after delivery did not differ between groups either. Linear regression analyses adjusted for pre-pregnancy BMI showed that a higher number of daily steps was associated with lower fat mass, fat percentage, and visceral adipose tissue mass at 28 weeks gestation and 7-14 days after delivery. Active kilocalories during pregnancy was positively associated with fat-free mass 7-14 days after delivery. Neither structured supervised exercise training nor motivational counselling on PA during pregnancy affected maternal body composition at 28 weeks gestation or 7-14 days after delivery compared to standard care. Interestingly, when adjusted for pre-pregnancy BMI, higher number of daily steps was associated with lower fat content during pregnancy and after delivery, whereas MVPA and active kilocalories were not. Trial registration: ClinicalTrials.gov; NCT03679130; 20/09/2018.


Subject(s)
Body Composition , Exercise , Humans , Female , Pregnancy , Body Composition/physiology , Adult , Exercise/physiology , Body Mass Index , Prenatal Care/methods , Absorptiometry, Photon , Exercise Therapy/methods , Bone Density/physiology
2.
Diabetes ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052774

ABSTRACT

It is not completely clear which organs are responsible for glucagon elimination in humans, and disturbances in the elimination of glucagon could contribute to the hyperglucagonemia observed in chronic liver disease and chronic kidney disease (CKD). Here, we evaluated kinetics and metabolic effects of exogenous glucagon in individuals with stage 4 CKD (n =16), individuals with Child-Pugh A-C cirrhosis (n = 16) and matched control individuals (n = 16), before, during and after a 60-minute glucagon infusion (4 ng/kg/min). Individuals with CKD exhibited a significantly lower mean metabolic clearance rate of glucagon (14.0 [95% CI 12.2;15.7] mL/kg/min) both compared to individuals with cirrhosis (19.7 [18.1;21.3] mL/kg/min, P < 0.001) and to control individuals (20.4 [18.1;22.7] mL/kg/min, P < 0.001). Glucagon half-life was significantly prolonged in the CKD group (7.5 [6.9;8.2] minutes) compared to individuals with cirrhosis (5.7 [5.2;6.3] minutes, P = 0.002) and control individuals (5.7 [5.2;6.3] minutes, P < 0.001). No difference in the effects of exogenous glucagon on plasma glucose, amino acids, or triglycerides was observed between groups. In conclusion, chronic kidney disease, but not liver cirrhosis leads to a significant reduction in glucagon clearance, supporting the kidneys as a primary site for human glucagon elimination.

3.
Am J Clin Nutr ; 120(2): 283-293, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914224

ABSTRACT

BACKGROUND: Intrahepatic triacylglycerol (liver TG) content is associated with hepatic insulin resistance and dyslipidemia. Liver TG content can be modulated within days under hypocaloric conditions. OBJECTIVES: We hypothesized that 4 d of eucaloric low-carbohydrate/high-fat (LC) intake would decrease liver TG content, whereas a high-carbohydrate/low-fat (HC) intake would increase liver TG content, and further that alterations in liver TG would be linked to dynamic changes in hepatic glucose and lipid metabolism. METHODS: A randomized crossover trial in males with 4 d + 4 d of LC and HC, respectively, with ≥2 wk of washout. 1H-magnetic resonance spectroscopy (1H-MRS) was used to measure liver TG content, with metabolic testing before and after intake of an LC diet (11E% carbohydrate corresponding to 102 ± 12 {mean ± standard deviation [SD]) g/d, 70E% fat} and an HC diet (65E% carbohydrate corresponding to 537 ± 56 g/d, 16E% fat). Stable [6,6-2H2]-glucose and [1,1,2,3,3-D5]-glycerol tracer infusions combined with hyperinsulinemic-euglycemic clamps and indirect calorimetry were used to measure rates of hepatic glucose production and lipolysis, whole-body insulin sensitivity and substrate oxidation. RESULTS: Eleven normoglycemic males with overweight or obesity (BMI 31.6 ± 3.7 kg/m2) completed both diets. The LC diet reduced liver TG content by 35.3% (95% confidence interval: -46.6, -24.1) from 4.9% [2.4-11.0] (median interquartile range) to 2.9% [1.4-6.9], whereas there was no change after the HC diet. After the LC diet, fasting whole-body fat oxidation and plasma beta-hydroxybutyrate concentration increased, whereas markers of de novo lipogenesis (DNL) diminished. Fasting plasma TG and insulin concentrations were lowered and the hepatic insulin sensitivity index increased after LC. Peripheral glucose disposal was unchanged. CONCLUSIONS: Reduced carbohydrate and increased fat intake for 4 d induced a marked reduction in liver TG content and increased hepatic insulin sensitivity. Increased rates of fat oxidation and ketogenesis combined with lower rates of DNL are suggested to be responsible for lowering liver TG. This trial was registered at clinicaltrials.gov as NCT04581421.


Subject(s)
Cross-Over Studies , Liver , Obesity , Overweight , Triglycerides , Humans , Male , Triglycerides/metabolism , Liver/metabolism , Adult , Overweight/metabolism , Overweight/diet therapy , Obesity/metabolism , Obesity/diet therapy , Diet, Carbohydrate-Restricted , Dietary Carbohydrates/administration & dosage , Dietary Carbohydrates/metabolism , Young Adult , Middle Aged , Insulin Resistance
4.
Eur J Endocrinol ; 190(6): 446-457, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38781444

ABSTRACT

OBJECTIVE: The metabolic phenotype of totally pancreatectomised patients includes hyperaminoacidaemia and predisposition to hypoglycaemia and hepatic lipid accumulation. We aimed to investigate whether the loss of pancreatic glucagon may be responsible for these changes. METHODS: Nine middle-aged, normal-weight totally pancreatectomised patients, nine patients with type 1 diabetes (C-peptide negative), and nine matched controls underwent two separate experimental days, each involving a 150-min intravenous infusion of glucagon (4 ng/kg/min) or placebo (saline) under fasting conditions while any basal insulin treatment was continued. RESULTS: Glucagon infusion increased plasma glucagon to similar high physiological levels in all groups. The infusion increased hepatic glucose production and decreased plasma concentration of most amino acids in all groups, with more pronounced effects in the totally pancreatectomised patients compared with the other groups. Glucagon infusion diminished fatty acid re-esterification and tended to decrease plasma concentrations of fatty acids in the totally pancreatectomised patients but not in the type 1 diabetes patients. CONCLUSION: Totally pancreatectomised patients were characterised by increased sensitivity to exogenous glucagon at the level of hepatic glucose, amino acid, and lipid metabolism, suggesting that the metabolic disturbances characterising these patients may be rooted in perturbed hepatic processes normally controlled by pancreatic glucagon.


Subject(s)
Diabetes Mellitus, Type 1 , Glucagon , Liver , Pancreatectomy , Humans , Glucagon/blood , Glucagon/metabolism , Male , Middle Aged , Female , Liver/metabolism , Liver/drug effects , Adult , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/blood , Lipid Metabolism/drug effects , Blood Glucose/metabolism , Blood Glucose/drug effects , Amino Acids/metabolism , Amino Acids/administration & dosage , Amino Acids/blood , Glucose/metabolism
5.
Nutrition ; 122: 112394, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38458062

ABSTRACT

BACKGROUND: Breast cancer survivors are a growing population due to improved treatment. It is known that postmenopausal women treated for breast cancer may experience weight gain and increased insulin resistance, but detailed knowledge on how chemotherapy impact metabolic and endocrine mechanisms remain unknown. OBJECTIVES: We performed a thorough, preliminary study to elucidate the differing mechanisms of postprandial absorption and metabolism in postmenopausal early breast cancer (EBC) patients treated with adjuvant chemotherapy compared to healthy controls. We hypothesize that chemotherapy has a negative impact on metabolism in EBC patients. METHODS: We examined four postmenopausal women shortly after treatment with chemotherapy for EBC and four age-matched healthy women who served as controls using isotopic tracers during a mixed meal-test. Blood was sampled during the 240 min meal-test to examine postprandial absorption and endogenous synthesis of lipid and carbohydrate metabolites. RESULTS: We found that insulin concentrations were numerically higher before the meal-test in the EBC patients compared to controls (76.3 pmol/L vs 37.0 pmol/L; P = 0.06). Glucose kinetics was increased postprandial (most pronounced at 30 min, 9.46 mmol/L vs 7.33 mmol/L; P = 0.51), with no difference between the groups regarding liver glucose output. Fatty acid kinetics showed a numeric increase in oleic acid rate of appearance in BC patients, but only during the first hour after the mixed meal. There was no significant difference in VLDL-TAG synthesis between the two groups. CONCLUSIONS: This preliminary study is unique in using advanced tracer methods to investigate in vivo metabolism of EBC patients after chemotherapy although no statistical differences in glucose and fatty acid kinetics was seen compared to controls. However, during the first two postprandial hours, oral glucose and oleic acid appearance in the systematic circulation was elevated in the EBC patients. This could be due to changes in gastrointestinal uptake and further studies with altered set-up could provide valuable insights.


Subject(s)
Breast Neoplasms , Glucose , Humans , Female , Breast Neoplasms/drug therapy , Oleic Acid , Postmenopause , Preliminary Data , Blood Glucose/metabolism , Insulin , Fatty Acids , Postprandial Period , Triglycerides
6.
Clin Nutr ESPEN ; 60: 240-246, 2024 04.
Article in English | MEDLINE | ID: mdl-38479917

ABSTRACT

BACKGROUND & AIMS: Cirrhosis is associated with insulin resistance and impaired glucose tolerance, which may be caused by impairments at different tissue levels (liver, skeletal muscle, and/or beta cell). METHODS: Here, glucose kinetics at whole-body and skeletal muscle level in patients with cirrhosis (Child-Pugh A and B) were studied during parenteral nutrition using the isotope dilution technique and arteriovenous balance approach across the leg. As opposed to the euglycemic hyperinsulinemic clamp or glucose tolerance tests applied in previous studies, this approach provides a nutrient composition more similar to a normal meal while circumventing any possible portal-systemic shunting, impaired hepatic uptake and incretin effect. RESULTS: We confirmed the presence of hepatic and peripheral insulin resistance in our patient population. Endogenous glucose production was less suppressed in response to parenteral nutrition. However, glucose uptake in skeletal muscle was increased. CONCLUSION: Our results suggests that in our study participants with cirrhosis, the hepatic and peripheral insulin resistance is compensated for by increased insulin secretion and thus, increased glucose uptake in muscle. Hereby, glucose homeostasis is maintained.


Subject(s)
Glucose , Insulin Resistance , Humans , Male , Liver Cirrhosis, Alcoholic , Muscle, Skeletal , Insulin , Liver Cirrhosis , Parenteral Nutrition
7.
Cardiovasc Diabetol ; 23(1): 13, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38184612

ABSTRACT

BACKGROUND: Metabolic effects of empagliflozin treatment include lowered glucose and insulin concentrations, elevated free fatty acids and ketone bodies and have been suggested to contribute to the cardiovascular benefits of empagliflozin treatment, possibly through an improved cardiac function. We aimed to evaluate the influence of these metabolic changes on cardiac function in patients with T2D. METHODS: In a randomized cross-over design, the SGLT2 inhibitor empagliflozin (E) was compared with insulin (I) treatment titrated to the same level of glycemic control in 17 patients with type 2 diabetes, BMI of > 28 kg/m2, C-peptide > 500 pM. Treatments lasted 5 weeks and were preceded by 3-week washouts (WO). At the end of treatments and washouts, cardiac diastolic function was determined with magnetic resonance imaging from left ventricle early peak-filling rate and left atrial passive emptying fraction (primary and key secondary endpoints); systolic function from left ventricle ejection fraction (secondary endpoint). Coupling between cardiac function and fatty acid concentrations, was studied on a separate day with a second scan after reduction of plasma fatty acids with acipimox. Data are Mean ± standard error. Between treatment difference (ΔT: E-I) and treatments effects (ΔE: E-WO or ΔI: I -WO) were evaluated using Students' t-test or Wilcoxon signed rank test as appropriate. RESULTS: Glucose concentrations were similar, fatty acids, ketone bodies and lipid oxidation increased while insulin concentrations decreased on empagliflozin compared with insulin treatment. Cardiac diastolic and systolic function were unchanged by either treatment. Acipimox decreased fatty acids with 35% at all visits, and this led to reduced cardiac diastolic (ΔT: -51 ± 22 ml/s (p < 0.05); ΔE: -33 ± 26 ml/s (ns); ΔI: 37 ± 26 (ns, p < 0.05 vs ΔE)) and systolic function (ΔT: -3 ± 1% (p < 0.05); ΔE: -3 ± 1% (p < 0.05): ΔI: 1 ± 2 (ns, ns vs ΔE)) under chronotropic stress during empagliflozin compared to insulin treatment. CONCLUSIONS: Despite significant metabolic differences, cardiac function did not differ on empagliflozin compared with insulin treatment. Impaired cardiac function during acipimox treatment, could suggest greater cardiac reliance on lipid metabolism for proper function during empagliflozin treatment in patients with type 2 diabetes. TRIAL REGISTRATION: EudraCT 2017-002101-35, August 2017.


Subject(s)
Atrial Appendage , Diabetes Mellitus, Type 2 , Humans , Insulin , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Cross-Over Studies , Glucose , Fatty Acids , Ketone Bodies
8.
Endocr Connect ; 13(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38276866

ABSTRACT

Objective: In obesity and type 2 diabetes, hyperglucagonaemia may be caused by elevated levels of glucagonotropic amino acids due to hepatic glucagon resistance at the level of amino acid turnover. Here, we investigated the effect of exogenous glucagon on circulating amino acids in obese and non-obese individuals with and without type 2 diabetes. Design: This was a post hoc analysis in a glucagon infusion study performed in individuals with type 2 diabetes (n = 16) and in age, sex, and body mass index-matched control individuals without diabetes (n = 16). Each group comprised two subgroups of eight individuals with and without obesity, respectively. Methods: All participants received a 1-h glucagon infusion (4 ng/kg/min) in the overnight fasted state. Plasma amino acid concentrations were measured with frequent intervals. Results: Compared to the control subgroup without obesity, baseline total amino acid levels were elevated in the control subgroup with obesity and in the type 2 diabetes subgroup without obesity. In all subgroups, amino acid levels decreased by up to 20% in response to glucagon infusion, which resulted in high physiological steady-state glucagon levels (mean concentration: 74 pmol/L, 95% CI [68;79] pmol/L). Following correction for multiple testing, no intergroup differences in changes in amino acid levels reached significance. Conclusion: Obesity and type 2 diabetes status was associated with elevated fasting levels of total amino acids. The glucagon infusion decreased circulating amino acid levels similarly in all subgroups, without significant differences in the response to exogenous glucagon between individuals with and without obesity and type 2 diabetes. Significance statement: The hormone glucagon stimulates glucose production from the liver, which may promote hyperglycaemia if glucagon levels are abnormally elevated, as is often seen in type 2 diabetes and obesity. Glucagon levels are closely linked to, and influenced by, the levels of circulating amino acids. To further investigate this link, we measured amino acid levels in individuals with and without obesity and type 2 diabetes before and during an infusion of glucagon. We found that circulating amino acid levels were higher in type 2 diabetes and obesity, and that glucagon infusion decreased amino acid levels in both individuals with and without type 2 diabetes and obesity. The study adds novel information to the link between circulating levels of glucagon and amino acids.

9.
Endocr Connect ; 13(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37947763

ABSTRACT

Aims: Hyperglucagonaemia contributes to the pathophysiology in type 2 diabetes (T2D), but the mechanisms behind the inappropriate glucagon secretion are not fully understood. Glucagon and amino acids are regulated in a feedback loop referred to as the liver-α cell axis. Individuals with non-alcoholic fatty liver disease (NAFLD) appear to be glucagon resistant, disrupting the liver-α cell axis resulting in hyperglucagonaemia and hyperaminoacidaemia. We investigated the associations between circulating glucagon, amino acids, and liver fat content in a cohort of individuals with T2D. Methods: We included 110 individuals with T2D in this cross-sectional study. Liver fat content was quantified using 1H magnetic resonance spectroscopy (MRS). Associations between liver fat content and plasma glucagon and amino acids, respectively, were estimated in multivariate linear regression analyses. Results: Individuals with NAFLD (n = 52) had higher plasma glucagon concentrations than individuals without NAFLD (n = 58). The positive association between plasma glucagon concentrations and liver fat content was confirmed in the multivariable regression analyses. Plasma concentrations of isoleucine and glutamate were increased, and glycine and serine concentrations were decreased in individuals with NAFLD. Concentrations of other amino acids were similar between individuals with and without NAFLD, and no clear association was seen between liver fat content and amino acids in the regression analyses. Conclusion: MRS-diagnosed NAFLD in T2D is associated with hyperglucagonaemia and elevated plasma concentrations of isoleucine and glutamate and low plasma concentrations of glycine and serine. Whether NAFLD and glucagon resistance per se induce these changes remains to be elucidated.

SELECTION OF CITATIONS
SEARCH DETAIL