Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
Npj Imaging ; 2(1): 12, 2024.
Article En | MEDLINE | ID: mdl-38765879

Macrophages are key inflammatory mediators in many pathological conditions, including cardiovascular disease (CVD) and cancer, the leading causes of morbidity and mortality worldwide. This makes macrophage burden a valuable diagnostic marker and several strategies to monitor these cells have been reported. However, such strategies are often high-priced, non-specific, invasive, and/or not quantitative. Here, we developed a positron emission tomography (PET) radiotracer based on apolipoprotein A1 (ApoA1), the main protein component of high-density lipoprotein (HDL), which has an inherent affinity for macrophages. We radiolabeled an ApoA1-mimetic peptide (mA1) with zirconium-89 (89Zr) to generate a lipoprotein-avid PET probe (89Zr-mA1). We first characterized 89Zr-mA1's affinity for lipoproteins in vitro by size exclusion chromatography. To study 89Zr-mA1's in vivo behavior and interaction with endogenous lipoproteins, we performed extensive studies in wildtype C57BL/6 and Apoe-/- hypercholesterolemic mice. Subsequently, we used in vivo PET imaging to study macrophages in melanoma and myocardial infarction using mouse models. The tracer's cell specificity was assessed by histology and mass cytometry (CyTOF). Our data show that 89Zr-mA1 associates with lipoproteins in vitro. This is in line with our in vivo experiments, in which we observed longer 89Zr-mA1 circulation times in hypercholesterolemic mice compared to C57BL/6 controls. 89Zr-mA1 displayed a tissue distribution profile similar to ApoA1 and HDL, with high kidney and liver uptake as well as substantial signal in the bone marrow and spleen. The tracer also accumulated in tumors of melanoma-bearing mice and in the ischemic myocardium of infarcted animals. In these sites, CyTOF analyses revealed that natZr-mA1 was predominantly taken up by macrophages. Our results demonstrate that 89Zr-mA1 associates with lipoproteins and hence accumulates in macrophages in vivo. 89Zr-mA1's high uptake in these cells makes it a promising radiotracer for non-invasively and quantitatively studying conditions characterized by marked changes in macrophage burden.

2.
Eur Heart J ; 45(19): 1753-1764, 2024 May 21.
Article En | MEDLINE | ID: mdl-38753456

BACKGROUND AND AIMS: Chronic stress associates with cardiovascular disease, but mechanisms remain incompletely defined. Advanced imaging was used to identify stress-related neural imaging phenotypes associated with atherosclerosis. METHODS: Twenty-seven individuals with post-traumatic stress disorder (PTSD), 45 trauma-exposed controls without PTSD, and 22 healthy controls underwent 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI). Atherosclerotic inflammation and burden were assessed using 18F-FDG PET (as maximal target-to-background ratio, TBR max) and MRI, respectively. Inflammation was assessed using high-sensitivity C-reactive protein (hsCRP) and leucopoietic imaging (18F-FDG PET uptake in spleen and bone marrow). Stress-associated neural network activity (SNA) was assessed on 18F-FDG PET as amygdala relative to ventromedial prefrontal cortex (vmPFC) activity. MRI diffusion tensor imaging assessed the axonal integrity (AI) of the uncinate fasciculus (major white matter tract connecting vmPFC and amygdala). RESULTS: Median age was 37 years old and 54% of participants were female. There were no significant differences in atherosclerotic inflammation between participants with PTSD and controls; adjusted mean difference in TBR max (95% confidence interval) of the aorta 0.020 (-0.098, 0.138), and of the carotids 0.014 (-0.091, 0.119). Participants with PTSD had higher hsCRP, spleen activity, and aorta atherosclerotic burden (normalized wall index). Participants with PTSD also had higher SNA and lower AI. Across the cohort, carotid atherosclerotic burden (standard deviation of wall thickness) associated positively with SNA and negatively with AI independent of Framingham risk score. CONCLUSIONS: In this study of limited size, participants with PTSD did not have higher atherosclerotic inflammation than controls. Notably, impaired cortico-limbic interactions (higher amygdala relative to vmPFC activity or disruption of their intercommunication) associated with carotid atherosclerotic burden. Larger studies are needed to refine these findings.


Carotid Artery Diseases , Positron-Emission Tomography , Stress Disorders, Post-Traumatic , Humans , Female , Male , Adult , Stress Disorders, Post-Traumatic/physiopathology , Stress Disorders, Post-Traumatic/diagnostic imaging , Carotid Artery Diseases/physiopathology , Carotid Artery Diseases/diagnostic imaging , Fluorodeoxyglucose F18 , Magnetic Resonance Imaging , Middle Aged , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology , Amygdala/diagnostic imaging , Amygdala/physiopathology , Radiopharmaceuticals , Case-Control Studies , Stress, Psychological/physiopathology , Stress, Psychological/complications
3.
Nat Rev Cardiol ; 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575752

Assessing atherosclerosis severity is essential for precise patient stratification. Specifically, there is a need to identify patients with residual inflammation because these patients remain at high risk of cardiovascular events despite optimal management of cardiovascular risk factors. Molecular imaging techniques, such as PET, can have an essential role in this context. PET imaging can indicate tissue-based disease status, detect early molecular changes and provide whole-body information. Advances in molecular biology and bioinformatics continue to help to decipher the complex pathogenesis of atherosclerosis and inform the development of imaging tracers. Concomitant advances in tracer synthesis methods and PET imaging technology provide future possibilities for atherosclerosis imaging. In this Review, we summarize the latest developments in PET imaging techniques and technologies for assessment of atherosclerotic cardiovascular disease and discuss the relationship between imaging readouts and transcriptomics-based plaque phenotyping.

4.
Cell Rep ; 42(12): 113458, 2023 12 26.
Article En | MEDLINE | ID: mdl-37995184

Innate immune memory, also called "trained immunity," is a functional state of myeloid cells enabling enhanced immune responses. This phenomenon is important for host defense, but also plays a role in various immune-mediated conditions. We show that exogenously administered sphingolipids and inhibition of sphingolipid metabolizing enzymes modulate trained immunity. In particular, we reveal that acid ceramidase, an enzyme that converts ceramide to sphingosine, is a potent regulator of trained immunity. We show that acid ceramidase regulates the transcription of histone-modifying enzymes, resulting in profound changes in histone 3 lysine 27 acetylation and histone 3 lysine 4 trimethylation. We confirm our findings by identifying single-nucleotide polymorphisms in the region of ASAH1, the gene encoding acid ceramidase, that are associated with the trained immunity cytokine response. Our findings reveal an immunomodulatory effect of sphingolipids and identify acid ceramidase as a relevant therapeutic target to modulate trained immunity responses in innate immune-driven disorders.


Acid Ceramidase , Trained Immunity , Acid Ceramidase/genetics , Acid Ceramidase/metabolism , Histones , Lysine , Sphingolipids/genetics , Immunity, Innate
5.
JACC Basic Transl Sci ; 8(7): 801-816, 2023 Jul.
Article En | MEDLINE | ID: mdl-37547068

In the past 2 decades, research on atherosclerotic cardiovascular disease has uncovered inflammation to be a key driver of the pathophysiological process. A pressing need therefore exists to quantitatively and longitudinally probe inflammation, in preclinical models and in cardiovascular disease patients, ideally using non-invasive methods and at multiple levels. Here, we developed and employed in vivo multiparametric imaging approaches to investigate the immune response following myocardial infarction. The myocardial infarction models encompassed either transient or permanent left anterior descending coronary artery occlusion in C57BL/6 and Apoe-/-mice. We performed nanotracer-based fluorine magnetic resonance imaging and positron emission tomography (PET) imaging using a CD11b-specific nanobody and a C-C motif chemokine receptor 2-binding probe. We found that immune cell influx in the infarct was more pronounced in the permanent occlusion model. Further, using 18F-fluorothymidine and 18F-fluorodeoxyglucose PET, we detected increased hematopoietic activity after myocardial infarction, with no difference between the models. Finally, we observed persistent systemic inflammation and exacerbated atherosclerosis in Apoe-/- mice, regardless of which infarction model was used. Taken together, we showed the strengths and capabilities of multiparametric imaging in detecting inflammatory activity in cardiovascular disease, which augments the development of clinical readouts.

6.
Nat Biomed Eng ; 7(9): 1097-1112, 2023 09.
Article En | MEDLINE | ID: mdl-37291433

Immunoparalysis is a compensatory and persistent anti-inflammatory response to trauma, sepsis or another serious insult, which increases the risk of opportunistic infections, morbidity and mortality. Here, we show that in cultured primary human monocytes, interleukin-4 (IL4) inhibits acute inflammation, while simultaneously inducing a long-lasting innate immune memory named trained immunity. To take advantage of this paradoxical IL4 feature in vivo, we developed a fusion protein of apolipoprotein A1 (apoA1) and IL4, which integrates into a lipid nanoparticle. In mice and non-human primates, an intravenously injected apoA1-IL4-embedding nanoparticle targets myeloid-cell-rich haematopoietic organs, in particular, the spleen and bone marrow. We subsequently demonstrate that IL4 nanotherapy resolved immunoparalysis in mice with lipopolysaccharide-induced hyperinflammation, as well as in ex vivo human sepsis models and in experimental endotoxemia. Our findings support the translational development of nanoparticle formulations of apoA1-IL4 for the treatment of patients with sepsis at risk of immunoparalysis-induced complications.


Interleukin-4 , Sepsis , Humans , Animals , Mice , Interleukin-4/metabolism , Trained Immunity , Monocytes
7.
Elife ; 112022 09 20.
Article En | MEDLINE | ID: mdl-36125123

Pharmacological and genetic studies over the past decade have established the follicle-stimulating hormone (FSH) as an actionable target for diseases affecting millions, namely osteoporosis, obesity, and Alzheimer's disease. Blocking FSH action prevents bone loss, fat gain, and neurodegeneration in mice. We recently developed a first-in-class, humanized, epitope-specific FSH-blocking antibody, MS-Hu6, with a KD of 7.52 nM. Using a Good Laboratory Practice (GLP)-compliant platform, we now report the efficacy of MS-Hu6 in preventing and treating osteoporosis in mice and parameters of acute safety in monkeys. Biodistribution studies using 89Zr-labeled, biotinylated or unconjugated MS-Hu6 in mice and monkeys showed localization to bone and bone marrow. The MS-Hu6 displayed a ß phase t½ of 7.5 days (180 hr) in humanized Tg32 mice. We tested 217 variations of excipients using the protein thermal shift assay to generate a final formulation that rendered MS-Hu6 stable in solution upon freeze-thaw and at different temperatures, with minimal aggregation, and without self-, cross-, or hydrophobic interactions or appreciable binding to relevant human antigens. The MS-Hu6 showed the same level of "humanness" as human IgG1 in silico and was non-immunogenic in ELISpot assays for IL-2 and IFN-γ in human peripheral blood mononuclear cell cultures. We conclude that MS-Hu6 is efficacious, durable, and manufacturable, and is therefore poised for future human testing.


Follicle Stimulating Hormone , Osteoporosis , Animals , Epitopes/metabolism , Excipients , Follicle Stimulating Hormone/metabolism , Humans , Immunoglobulin G/metabolism , Interleukin-2/metabolism , Leukocytes, Mononuclear/metabolism , Mice , Osteoporosis/drug therapy , Tissue Distribution
8.
Sci Rep ; 12(1): 6185, 2022 04 13.
Article En | MEDLINE | ID: mdl-35418569

In recent years, cardiovascular immuno-imaging by positron emission tomography (PET) has undergone tremendous progress in preclinical settings. Clinically, two approved PET tracers hold great potential for inflammation imaging in cardiovascular patients, namely FDG and DOTATATE. While the former is a widely applied metabolic tracer, DOTATATE is a relatively new PET tracer targeting the somatostatin receptor 2 (SST2). In the current study, we performed a detailed, head-to-head comparison of DOTATATE-based radiotracers and [18F]F-FDG in mouse and rabbit models of cardiovascular inflammation. For mouse experiments, we labeled DOTATATE with the long-lived isotope [64Cu]Cu to enable studying the tracer's mode of action by complementing in vivo PET/CT experiments with thorough ex vivo immunological analyses. For translational PET/MRI rabbit studies, we employed the more widely clinically used [68Ga]Ga-labeled DOTATATE, which was approved by the FDA in 2016. DOTATATE's pharmacokinetics and timed biodistribution were determined in control and atherosclerotic mice and rabbits by ex vivo gamma counting of blood and organs. Additionally, we performed in vivo PET/CT experiments in mice with atherosclerosis, mice subjected to myocardial infarction and control animals, using both [64Cu]Cu-DOTATATE and [18F]F-FDG. To evaluate differences in the tracers' cellular specificity, we performed ensuing ex vivo flow cytometry and gamma counting. In mice subjected to myocardial infarction, in vivo [64Cu]Cu-DOTATATE PET showed higher differential uptake between infarcted (SUVmax 1.3, IQR, 1.2-1.4, N = 4) and remote myocardium (SUVmax 0.7, IQR, 0.5-0.8, N = 4, p = 0.0286), and with respect to controls (SUVmax 0.6, IQR, 0.5-0.7, N = 4, p = 0.0286), than [18F]F-FDG PET. In atherosclerotic mice, [64Cu]Cu-DOTATATE PET aortic signal, but not [18F]F-FDG PET, was higher compared to controls (SUVmax 1.1, IQR, 0.9-1.3 and 0.5, IQR, 0.5-0.6, respectively, N = 4, p = 0.0286). In both models, [64Cu]Cu-DOTATATE demonstrated preferential accumulation in macrophages with respect to other myeloid cells, while [18F]F-FDG was taken up by macrophages and other leukocytes. In a translational PET/MRI study in atherosclerotic rabbits, we then compared [68Ga]Ga-DOTATATE and [18F]F-FDG for the assessment of aortic inflammation, combined with ex vivo radiometric assays and near-infrared imaging of macrophage burden. Rabbit experiments showed significantly higher aortic accumulation of both [68Ga]Ga-DOTATATE and [18F]F-FDG in atherosclerotic (SUVmax 0.415, IQR, 0.338-0.499, N = 32 and 0.446, IQR, 0.387-0.536, N = 27, respectively) compared to control animals (SUVmax 0.253, IQR, 0.197-0.285, p = 0.0002, N = 10 and 0.349, IQR, 0.299-0.423, p = 0.0159, N = 11, respectively). In conclusion, we present a detailed, head-to-head comparison of the novel SST2-specific tracer DOTATATE and the validated metabolic tracer [18F]F-FDG for the evaluation of inflammation in small animal models of cardiovascular disease. Our results support further investigations on the use of DOTATATE to assess cardiovascular inflammation as a complementary readout to the widely used [18F]F-FDG.


Atherosclerosis , Myocardial Infarction , Organometallic Compounds , Animals , Atherosclerosis/diagnostic imaging , Fluorodeoxyglucose F18/metabolism , Gallium Radioisotopes , Humans , Inflammation/diagnostic imaging , Mice , Myocardial Infarction/diagnostic imaging , Organometallic Compounds/metabolism , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography/methods , Rabbits , Radionuclide Imaging , Radiopharmaceuticals , Tissue Distribution
9.
STAR Protoc ; 2(2): 100434, 2021 06 18.
Article En | MEDLINE | ID: mdl-33899016

Noninvasive immunoimaging holds great potential for studying and stratifying disease as well as therapeutic efficacy. Radiolabeled single-domain antibody fragments (i.e., nanobodies) are appealing probes for immune landscape profiling, as they display high stability, rapid targeting, and excellent specificity, while allowing extremely sensitive nuclear readouts. Here, we present a protocol for radiolabeling an anti-CD11b nanobody and studying its uptake in mice by a combination of positron emission tomography imaging, ex vivo gamma counting, and autoradiography. Our protocol is applicable to nanobodies against other antigens. For complete details on the use and execution of this protocol, please see Priem et al. (2020), Senders et al. (2019), or Rashidian et al. (2017).


Immunologic Techniques/methods , Positron-Emission Tomography/methods , Single-Domain Antibodies , Animals , Histological Techniques , Mice , Molecular Imaging/methods , Organ Specificity , Single-Domain Antibodies/analysis , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/metabolism
11.
Sci Transl Med ; 13(584)2021 03 10.
Article En | MEDLINE | ID: mdl-33692130

Macrophages play a central role in the pathogenesis of atherosclerosis. The inflammatory properties of these cells are dictated by their metabolism, of which the mechanistic target of rapamycin (mTOR) signaling pathway is a key regulator. Using myeloid cell-specific nanobiologics in apolipoprotein E-deficient (Apoe -/-) mice, we found that targeting the mTOR and ribosomal protein S6 kinase-1 (S6K1) signaling pathways rapidly diminished plaque macrophages' inflammatory activity. By investigating transcriptome modifications, we identified Psap, a gene encoding the lysosomal protein prosaposin, as closely related with mTOR signaling. Subsequent in vitro experiments revealed that Psap inhibition suppressed both glycolysis and oxidative phosphorylation. Transplantation of Psap -/- bone marrow to low-density lipoprotein receptor knockout (Ldlr -/-) mice led to a reduction in atherosclerosis development and plaque inflammation. Last, we confirmed the relationship between PSAP expression and inflammation in human carotid atherosclerotic plaques. Our findings provide mechanistic insights into the development of atherosclerosis and identify prosaposin as a potential therapeutic target.


Atherosclerosis , Plaque, Atherosclerotic , Saposins/therapeutic use , Animals , Disease Models, Animal , Inflammation , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE
12.
Sci Adv ; 7(10)2021 03.
Article En | MEDLINE | ID: mdl-33674313

Immunotherapies controlling the adaptive immune system are firmly established, but regulating the innate immune system remains much less explored. The intrinsic interactions between nanoparticles and phagocytic myeloid cells make these materials especially suited for engaging the innate immune system. However, developing nanotherapeutics is an elaborate process. Here, we demonstrate a modular approach that facilitates efficiently incorporating a broad variety of drugs in a nanobiologic platform. Using a microfluidic formulation strategy, we produced apolipoprotein A1-based nanobiologics with favorable innate immune system-engaging properties as evaluated by in vivo screening. Subsequently, rapamycin and three small-molecule inhibitors were derivatized with lipophilic promoieties, ensuring their seamless incorporation and efficient retention in nanobiologics. A short regimen of intravenously administered rapamycin-loaded nanobiologics (mTORi-NBs) significantly prolonged allograft survival in a heart transplantation mouse model. Last, we studied mTORi-NB biodistribution in nonhuman primates by PET/MR imaging and evaluated its safety, paving the way for clinical translation.


Immune System , Nanoparticles , Animals , Immunotherapy , Mice , Sirolimus/pharmacology , Tissue Distribution
13.
Cell Rep Med ; 1(9): 100146, 2020 12 22.
Article En | MEDLINE | ID: mdl-33377122

Hydroxychloroquine is being investigated for a potential prophylactic effect in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but its mechanism of action is poorly understood. Circulating leukocytes from the blood of coronavirus disease 2019 (COVID-19) patients show increased responses to Toll-like receptor ligands, suggestive of trained immunity. By analyzing interferon responses of peripheral blood mononuclear cells from healthy donors conditioned with heat-killed Candida, trained innate immunity can be modeled in vitro. In this model, hydroxychloroquine inhibits the responsiveness of these innate immune cells to virus-like stimuli and interferons. This is associated with a suppression of histone 3 lysine 27 acetylation and histone 3 lysine 4 trimethylation of inflammation-related genes, changes in the cellular lipidome, and decreased expression of interferon-stimulated genes. Our findings indicate that hydroxychloroquine inhibits trained immunity in vitro, which may not be beneficial for the antiviral innate immune response to SARS-CoV-2 infection in patients.


Hydroxychloroquine/pharmacology , Immunity, Innate/drug effects , Immunologic Memory/drug effects , Interferons/immunology , COVID-19/immunology , Epigenesis, Genetic/drug effects , Humans , Hydroxychloroquine/therapeutic use , Immunomodulation , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lipid Metabolism/drug effects , SARS-CoV-2 , Severity of Illness Index , COVID-19 Drug Treatment
14.
Sci Transl Med ; 12(568)2020 11 04.
Article En | MEDLINE | ID: mdl-33148623

Acute bacterial endocarditis is a rapid, difficult to manage, and frequently lethal disease. Potent antibiotics often cannot efficiently kill Staphylococcus aureus that colonizes the heart's valves. S. aureus relies on virulence factors to evade therapeutics and the host's immune response, usurping the host's clotting system by activating circulating prothrombin with staphylocoagulase and von Willebrand factor-binding protein. An insoluble fibrin barrier then forms around the bacterial colony, shielding the pathogen from immune cell clearance. Targeting virulence factors may provide previously unidentified avenues to better diagnose and treat endocarditis. To tap into this unused therapeutic opportunity, we codeveloped therapeutics and multimodal molecular imaging to probe the host-pathogen interface. We introduced and validated a family of small-molecule optical and positron emission tomography (PET) reporters targeting active thrombin in the fibrin-rich environment of bacterial colonies. The imaging agents, based on the clinical thrombin inhibitor dabigatran, are bound to heart valve vegetations in mice. Using optical imaging, we monitored therapy with antibodies neutralizing staphylocoagulase and von Willebrand factor-binding protein in mice with S. aureus endocarditis. This treatment deactivated bacterial defenses against innate immune cells, decreased in vivo imaging signal, and improved survival. Aortic or tricuspid S. aureus endocarditis in piglets was also successfully imaged with clinical PET/magnetic resonance imaging. Our data map a route toward adjuvant immunotherapy for endocarditis and provide efficient tools to monitor this drug class for infectious diseases.


Endocarditis, Bacterial , Staphylococcal Infections , Animals , Coagulase , Endocarditis, Bacterial/diagnostic imaging , Endocarditis, Bacterial/drug therapy , Mice , Multimodal Imaging , Staphylococcal Infections/drug therapy , Staphylococcus aureus , Swine
15.
Circ Cardiovasc Imaging ; 13(10): e010586, 2020 10.
Article En | MEDLINE | ID: mdl-33076700

BACKGROUND: Macrophages, innate immune cells that reside in all organs, defend the host against infection and injury. In the heart and vasculature, inflammatory macrophages also enhance tissue damage and propel cardiovascular diseases. METHODS: We here use in vivo positron emission tomography (PET) imaging, flow cytometry, and confocal microscopy to evaluate quantitative noninvasive assessment of cardiac, arterial, and pulmonary macrophages using the nanotracer 64Cu-Macrin-a 20-nm spherical dextran nanoparticle assembled from nontoxic polyglucose. RESULTS: PET imaging using 64Cu-Macrin faithfully reported accumulation of macrophages in the heart and lung of mice with myocardial infarction, sepsis, or pneumonia. Flow cytometry and confocal microscopy detected the near-infrared fluorescent version of the nanoparticle (VT680Macrin) primarily in tissue macrophages. In 5-day-old mice, 64Cu-Macrin PET imaging quantified physiologically more numerous cardiac macrophages. Upon intravenous administration of 64Cu-Macrin in rabbits and pigs, we detected heightened macrophage numbers in the infarcted myocardium, inflamed lung regions, and atherosclerotic plaques using a clinical PET/magnetic resonance imaging scanner. Toxicity studies in rats and human dosimetry estimates suggest that 64Cu-Macrin is safe for use in humans. CONCLUSIONS: Taken together, these results indicate 64Cu-Macrin could serve as a facile PET nanotracer to survey spatiotemporal macrophage dynamics during various physiological and pathological conditions. 64Cu-Macrin PET imaging could stage inflammatory cardiovascular disease activity, assist disease management, and serve as an imaging biomarker for emerging macrophage-targeted therapeutics.


Copper Radioisotopes , Dextrans , Heart/diagnostic imaging , Lung/diagnostic imaging , Macrophages/pathology , Molecular Imaging , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Animals , Atherosclerosis/diagnostic imaging , Atherosclerosis/pathology , Copper Radioisotopes/administration & dosage , Copper Radioisotopes/pharmacokinetics , Dextrans/administration & dosage , Dextrans/pharmacokinetics , Disease Models, Animal , Injections, Intravenous , Lung/pathology , Macrophages, Alveolar/pathology , Mice , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology , Nanoparticles , Pneumonia/diagnostic imaging , Pneumonia/pathology , Predictive Value of Tests , Rabbits , Radiopharmaceuticals/administration & dosage , Radiopharmaceuticals/pharmacokinetics , Swine , Swine, Miniature , Time Factors
16.
Cell ; 183(3): 786-801.e19, 2020 10 29.
Article En | MEDLINE | ID: mdl-33125893

Trained immunity, a functional state of myeloid cells, has been proposed as a compelling immune-oncological target. Its efficient induction requires direct engagement of myeloid progenitors in the bone marrow. For this purpose, we developed a bone marrow-avid nanobiologic platform designed specifically to induce trained immunity. We established the potent anti-tumor capabilities of our lead candidate MTP10-HDL in a B16F10 mouse melanoma model. These anti-tumor effects result from trained immunity-induced myelopoiesis caused by epigenetic rewiring of multipotent progenitors in the bone marrow, which overcomes the immunosuppressive tumor microenvironment. Furthermore, MTP10-HDL nanotherapy potentiates checkpoint inhibition in this melanoma model refractory to anti-PD-1 and anti-CTLA-4 therapy. Finally, we determined MTP10-HDL's favorable biodistribution and safety profile in non-human primates. In conclusion, we show that rationally designed nanobiologics can promote trained immunity and elicit a durable anti-tumor response either as a monotherapy or in combination with checkpoint inhibitor drugs.


Immune Checkpoint Inhibitors/therapeutic use , Immunity , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Nanotechnology , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Animals , Behavior, Animal , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Proliferation/drug effects , Cholesterol/metabolism , Female , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immunity/drug effects , Immunotherapy , Lipoproteins, HDL/metabolism , Mice, Inbred C57BL , Primates , Tissue Distribution/drug effects , Tumor Microenvironment/drug effects
17.
Cells ; 9(9)2020 08 29.
Article En | MEDLINE | ID: mdl-32872393

T cell-driven inflammation plays a critical role in the initiation and progression of atherosclerosis. The co-inhibitory protein Cytotoxic T-Lymphocyte Associated protein (CTLA) 4 is an important negative regulator of T cell activation. Here, we studied the effects of the antibody-mediated inhibition of CTLA4 on experimental atherosclerosis by treating 6-8-week-old Ldlr-/- mice, fed a 0.15% cholesterol diet for six weeks, biweekly with 200 µg of CTLA4 antibodies or isotype control for six weeks. 18F-fluorodeoxyglucose Positron Emission Tomography-Computed Tomography showed no effect of the CTLA4 inhibition of activity in the aorta, spleen, and bone marrow, indicating that monocyte/macrophage-driven inflammation was unaffected. Correspondingly, flow cytometry demonstrated that the antibody-mediated inhibition of CTLA4 did not affect the monocyte populations in the spleen. αCTLA4 treatment induced an activated T cell profile, characterized by a decrease in naïve CD44-CD62L+CD4+ T cells and an increase in CD44+CD62L- CD4+ and CD8+ T cells in the blood and lymphoid organs. Furthermore, αCTLA4 treatment induced endothelial activation, characterized by increased ICAM1 expression in the aortic endothelium. In the aortic arch, which mainly contained early atherosclerotic lesions at this time point, αCTLA4 treatment induced a 2.0-fold increase in the plaque area. These plaques had a more advanced morphological phenotype and an increased T cell/macrophage ratio, whereas the smooth muscle cell and collagen content decreased. In the aortic root, a site that contained more advanced plaques, αCTLA4 treatment increased the plaque T cell content. The short-term antibody-mediated inhibition of CTLA4 thus accelerated the progression of atherosclerosis by inducing a predominantly T cell-driven inflammation, and resulted in the formation of plaques with larger necrotic cores and less collagen. This indicates that existing therapies that are based on αCTLA4 antibodies may promote CVD development in patients.


Atherosclerosis/genetics , CTLA-4 Antigen/metabolism , Hyperlipidemias/genetics , Inflammation/genetics , Animals , Disease Models, Animal , Disease Progression , Inflammation/pathology , Male , Mice , Mice, Knockout
18.
ACS Nano ; 14(7): 7832-7846, 2020 07 28.
Article En | MEDLINE | ID: mdl-32413260

Although the first nanomedicine was clinically approved more than two decades ago, nanoparticles' (NP) in vivo behavior is complex and the immune system's role in their application remains elusive. At present, only passive-targeting nanoformulations have been clinically approved, while more complicated active-targeting strategies typically fail to advance from the early clinical phase stage. This absence of clinical translation is, among others, due to the very limited understanding for in vivo targeting mechanisms. Dynamic in vivo phenomena such as NPs' real-time targeting kinetics and phagocytes' contribution to active NP targeting remain largely unexplored. To better understand in vivo targeting, monitoring NP accumulation and distribution at complementary levels of spatial and temporal resolution is imperative. Here, we integrate in vivo positron emission tomography/computed tomography imaging with intravital microscopy and flow cytometric analyses to study αvß3-integrin-targeted cyclic arginine-glycine-aspartate decorated liposomes and oil-in-water nanoemulsions in tumor mouse models. We observed that ligand-mediated accumulation in cancerous lesions is multifaceted and identified "NP hitchhiking" with phagocytes to contribute considerably to this intricate process. We anticipate that this understanding can facilitate rational improvement of nanomedicine applications and that immune cell-NP interactions can be harnessed to develop clinically viable nanomedicine-based immunotherapies.


Nanoparticles , Neoplasms , Animals , Integrin alphaV , Integrin alphaVbeta3 , Lipids , Mice , Neoplasms/drug therapy , Phagocytes
19.
Nat Nanotechnol ; 15(5): 398-405, 2020 05.
Article En | MEDLINE | ID: mdl-32313216

Ischaemic heart disease evokes a complex immune response. However, tools to track the systemic behaviour and dynamics of leukocytes non-invasively in vivo are lacking. Here, we present a multimodal hot-spot imaging approach using an innovative high-density lipoprotein-derived nanotracer with a perfluoro-crown ether payload (19F-HDL) to allow myeloid cell tracking by 19F magnetic resonance imaging. The 19F-HDL nanotracer can additionally be labelled with zirconium-89 and fluorophores to detect myeloid cells by in vivo positron emission tomography imaging and optical modalities, respectively. Using our nanotracer in atherosclerotic mice with myocardial infarction, we observed rapid myeloid cell egress from the spleen and bone marrow by in vivo 19F-HDL magnetic resonance imaging. Concurrently, using ex vivo techniques, we showed that circulating pro-inflammatory myeloid cells accumulated in atherosclerotic plaques and at the myocardial infarct site. Our multimodality imaging approach is a valuable addition to the immunology toolbox, enabling the study of complex myeloid cell behaviour dynamically.


Myeloid Cells/pathology , Myocardial Ischemia/diagnostic imaging , Animals , Atherosclerosis/diagnostic imaging , Atherosclerosis/pathology , Cell Tracking/methods , Crown Ethers/analysis , Female , Fluorescent Dyes/analysis , Fluorine/analysis , Magnetic Resonance Imaging/methods , Mice , Mice, Inbred C57BL , Multimodal Imaging/methods , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology , Myocardial Ischemia/pathology , Optical Imaging/methods , Positron-Emission Tomography/methods , Radioisotopes/analysis , Zirconium/analysis
20.
JACC CardioOncol ; 2(4): 599-610, 2020 Nov.
Article En | MEDLINE | ID: mdl-34396271

BACKGROUND: Immunotherapy has revolutionized cancer treatment. However, immune checkpoint inhibitors (ICIs) that target PD-1 (programmed cell death protein-1) and/or CTLA-4 (cytotoxic T lymphocyte-associated antigen-4) are commonly associated with acute immune-related adverse events. Accumulating evidence also suggests that ICIs aggravate existing inflammatory diseases. OBJECTIVES: As inflammation drives atherosclerotic cardiovascular disease, we studied the propensity of short-term ICI therapy to aggravate atherosclerosis. METHODS: We used 18F-FDG (2-deoxy-2-[fluorine-18]fluoro-D-glucose) positron emission tomography-computed tomography to detect macrophage-driven vascular and systemic inflammation in pembrolizumab and nivolumab/ipilimumab-treated melanoma patients. In parallel, atherosclerotic Ldlr -/- mice were treated with CTLA-4 and PD-1 inhibition to study the proinflammatory consequences of immune checkpoint inhibition. RESULTS: ICI treatment did not affect 18F-FDG uptake in the large arteries, spleen, and bone marrow of melanoma patients, nor myeloid cell activation in blood and lymphoid organs in hyperlipidemic mice. In contrast, we found marked changes in the adaptive immune response (i.e., increased CD4+ effector T cell and CD8+ cytotoxic T cell numbers in lymphoid organs and the arterial wall of our hyperlipidemic mice). Although plaque size was unaffected, plaques had progressed toward a lymphoid-based inflammatory phenotype, characterized by a 2.7-fold increase of CD8+ T cells and a 3.9-fold increase in necrotic core size. Increased endothelial activation was observed with a 2.2-fold and 1.6-fold increase in vascular cell adhesion molecule-1 and intercellular adhesion molecule-1, respectively. CONCLUSIONS: This study demonstrates that combination therapy with anti-CTLA-4 and anti-PD-1 antibodies does not affect myeloid-driven vascular and systemic inflammation in melanoma patients and hyperlipidemic mice. However, short-term ICI therapy in mice induces T cell-mediated plaque inflammation and drives plaque progression.

...