Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928201

ABSTRACT

Clinical treatment options to combat Encephalopathy of Prematurity (EoP) are still lacking. We, and others, have proposed (intranasal) mesenchymal stem cells (MSCs) as a potent therapeutic strategy to boost white matter repair in the injured preterm brain. Using a double-hit mouse model of diffuse white matter injury, we previously showed that the efficacy of MSC treatment was time dependent, with a significant decrease in functional and histological improvements after the postponement of cell administration. In this follow-up study, we aimed to investigate the mechanisms underlying this loss of therapeutic efficacy. Additionally, we optimized the regenerative potential of MSCs by means of genetic engineering with the transient hypersecretion of beneficial factors, in order to prolong the treatment window. Though the cerebral expression of known chemoattractants was stable over time, the migration of MSCs to the injured brain was partially impaired. Moreover, using a primary oligodendrocyte (OL) culture, we showed that the rescue of injured OLs was reduced after delayed MSC coculture. Cocultures of modified MSCs, hypersecreting IGF1, LIF, IL11, or IL10, with primary microglia and OLs, revealed a superior treatment efficacy over naïve MSCs. Additionally, we showed that the delayed intranasal administration of IGF1-, LIF-, or IL11-hypersecreting MSCs, improved myelination and the functional outcome in EoP mice. In conclusion, the impaired migration and regenerative capacity of intranasally applied MSCs likely underlie the observed loss of efficacy after delayed treatment. The intranasal administration of IGF1-, LIF-, or IL11-hypersecreting MSCs, is a promising optimization strategy to prolong the window for effective MSC treatment in preterm infants with EoP.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mice , Mesenchymal Stem Cell Transplantation/methods , Secretome/metabolism , Disease Models, Animal , Oligodendroglia/metabolism , Oligodendroglia/cytology , Humans , Coculture Techniques , Microglia/metabolism , Mice, Inbred C57BL
2.
Small ; : e2311402, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757547

ABSTRACT

The native extracellular matrix (ECM) undergoes constant remodeling, where adhesive ligand presentation changes over time and in space to control stem cell function. As such, it is of interest to develop 2D biointerfaces able to study these complex ligand stem-cell interactions. In this study, a novel dynamic bio interface based on DNA hybridization is developed, which can be employed to control ligand display kinetics and used to study dynamic cell-ligand interaction. In this approach, mesoporous silica nanoparticles (MSN) are functionalized with single-strand DNA (MSN-ssDNA) and spin-coated on a glass substrate to create the 2D bio interface. Cell adhesive tripeptide RGD is conjugated to complementary DNA strands (csDNA) of 9, 11, or 20 nucleotides in length, to form csDNA-RGD. The resulting 3 csDNA-RGD conjugates can hybridize with the ssDNA on the MSN surface, presenting RGD with increased ligand dissociation rates as DNA length is shortened. Slow RGD dissociation rates led to enhanced stem cell adhesion and spreading, resulting in elongated cell morphology. Cells on surfaces with slow RGD dissociation rates also exhibited higher motility, migrating in multiple directions compared to cells on surfaces with fast RGD dissociation rates. This study contributes to the existing body of knowledge on dynamic ligand-stem cell interactions.

3.
ACS Appl Mater Interfaces ; 16(14): 17347-17360, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38561903

ABSTRACT

Three-dimensional (3D) cell assemblies, such as multicellular spheroids, can be powerful biological tools to closely mimic the complexity of cell-cell and cell-matrix interactions in a native-like microenvironment. However, potential applications of large spheroids are limited by the insufficient diffusion of oxygen and nutrients through the spheroids and, thus, result in the formation of a necrotic core. To overcome this drawback, we present a new strategy based on nanoparticle-coated microparticles. In this study, microparticles function as synthetic centers to regulate the diffusion of small molecules, such as oxygen and nutrients, within human mesenchymal stem cell (hMSC) spheroids. The nanoparticle coating on the microparticle surface acts as a nutrient reservoir to release glucose locally within the spheroids. We first coated the surface of the poly(lactic-co-glycolic acid) (PLGA) microparticles with mesoporous silica nanoparticles (MSNs) based on electrostatic interactions and then formed cell-nanofunctionalized microparticle spheroids. Next, we investigated the stability of the MSN coating on the microparticles' surface during 14 days of incubation in cell culture medium at 37 °C. Then, we evaluated the influence of MSN-coated PLGA microparticles on spheroid aggregation and cell viability. Our results showed the formation of homogeneous spheroids with good cell viability. As a proof of concept, fluorescently labeled glucose (2-NBD glucose) was loaded into the MSNs at different concentrations, and the release behavior was monitored. For cell culture studies, glucose was loaded into the MSNs coated onto the PLGA microparticles to sustain local nutrient release within the hMSC spheroids. In vitro results demonstrated that the local delivery of glucose from MSNs enhanced the cell viability in spheroids during a short-term hypoxic culture. Taken together, the newly developed nanofunctionalized microparticle-based delivery system may offer a versatile platform for local delivery of small molecules within 3D cellular assemblies and, thus, improve cell viability in spheroids.


Subject(s)
Silicon Dioxide , Spheroids, Cellular , Humans , Oxygen
4.
JPhys Mater ; 7(1): 012502, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38144214

ABSTRACT

This Roadmap on drug delivery aims to cover some of the most recent advances in the field of materials for drug delivery systems (DDSs) and emphasizes the role that multifunctional materials play in advancing the performance of modern DDSs in the context of the most current challenges presented. The Roadmap is comprised of multiple sections, each of which introduces the status of the field, the current and future challenges faced, and a perspective of the required advances necessary for biomaterial science to tackle these challenges. It is our hope that this collective vision will contribute to the initiation of conversation and collaboration across all areas of multifunctional materials for DDSs. We stress that this article is not meant to be a fully comprehensive review but rather an up-to-date snapshot of different areas of research, with a minimal number of references that focus upon the very latest research developments.

5.
Discov Nano ; 18(1): 161, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38127184

ABSTRACT

Mutations in nuclear and mitochondrial genes are responsible for severe chronic disorders such as mitochondrial myopathies. Gene therapy using antisense oligonucleotides is a promising strategy to treat mitochondrial DNA (mtDNA) diseases by blocking the replication of the mutated mtDNA. However, transport vehicles are needed for intracellular, mitochondria-specific transport of oligonucleotides. Nanoparticle (NP) based vectors such as large pore mesoporous silica nanoparticles (LP) often rely on surface complexation of oligonucleotides exposing them to nucleases and limiting mitochondria targeting and controlled release ability. In this work, stable, fluorescent, hollow silica nanoparticles (HSN) that encapsulate and protect oligonucleotides in the hollow core were synthesized by a facile one-pot procedure. Both rhodamine B isothiocyanate and bis[3-(triethoxysilyl)propyl]tetrasulfide were incorporated in the HSN matrix by co-condensation to enable cell tracing, intracellular-specific degradation and controlled oligonucleotide release. We also synthesized LP as a benchmark to compare the oligonucleotide loading and release efficacy of our HSN. Mitochondria targeting was enabled by NP functionalization with cationic, lipophilic Triphenylphosphine (TPP) and, for the first time a fusogenic liposome based carrier, previously reported under the name MITO-Porter. HSN exhibited high oligonucleotide incorporation ratios and release dependent on intracellular degradation. Further, MITO-Porter capping of our NP enabled delayed, glutathione (GSH) responsive oligonucleotide release and mitochondria targeting at the same efficiency as TPP functionalized NP. Overall, our NP are promising vectors for anti-gene therapy of mtDNA disease as well as many other monogenic disorders worldwide.

6.
Biomater Adv ; 154: 213647, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37839298

ABSTRACT

The development of suitable bioinks with high printability, mechanical strength, biodegradability, and biocompatibility is a key challenge for the clinical translation of 3D constructs produced with bioprinting technologies. In this work, we developed a new type of nanocomposite bioinks containing thiolated mesoporous silica nanoparticles (MSN) that act as active fillers within norbornene-functionalized hydrogels. The MSNs could rapidly covalently crosslink the hydrogels upon exposure to UV light. The mechanical properties of the gels could be modulated from 9.3 to 19.7 kPa with increasing concentrations of MSN. The ability of the MSN to covalently crosslink polymeric networks was, however, significantly influenced by polymer architecture and the number of functional groups. Modification of the outer surface of MSNs with matrix metalloproteinase (MMP) sensitive peptides (MSN-MMPs) resulted in proteinase K and MMP-9 enzyme responsive biodegradable bioinks. Additional cysteine modified RGD peptide incorporation enhanced cell-matrix interactions and reduced the gelation time for bioprinting. The nanocomposite bioinks could be printed by using extrusion-based bioprinting. Our nanocomposite bioinks preserved their shape during in vitro studies and encapsulated MG63 cells preserved their viability and proliferated within the bioinks. As such, our nanocomposite bioinks are promising bioinks for creating bioprinted constructs with tunable mechanical and degradation properties.


Subject(s)
Bioprinting , Nanocomposites , Tissue Scaffolds/chemistry , Bioprinting/methods , Printing, Three-Dimensional , Hydrogels
7.
ACS Appl Mater Interfaces ; 15(32): 38171-38184, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37527490

ABSTRACT

Stem cell adhesion is mediated via the binding of integrin receptors to adhesion motifs present in the extracellular matrix (ECM). The spatial organization of adhesion ligands plays an important role in stem cell integrin-mediated adhesion. In this study, we developed a series of biointerfaces using arginine-glycine-aspartate (RGD)-functionalized mesoporous silica nanoparticles (MSN-RGD) to study the effect of RGD adhesion ligand global density (ligand coverage over the surface), spacing, and RGD clustering levels on stem cell adhesion and differentiation. To prepare the biointerface, MSNs were chemically functionalized with RGD peptides via an antifouling poly(ethylene glycol) (PEG) linker. The RGD surface functionalization ratio could be controlled to create MSNs with high and low RGD ligand clustering levels. MSN films with varying RGD global densities could be created by blending different ratios of MSN-RGD and non-RGD-functionalized MSNs together. A computational simulation study was performed to analyze nanoparticle distribution and RGD spacing on the resulting surfaces to determine experimental conditions. Enhanced cell adhesion and spreading were observed when RGD global density increased from 1.06 to 5.32 nmol cm-2 using highly clustered RGD-MSN-based films. Higher RGD ligand clustering levels led to larger cell spreading and increased formation of focal adhesions. Moreover, a higher RGD ligand clustering level promoted the expression of alkaline phosphatase in hMSCs. Overall, these findings indicate that both RGD global density and clustering levels are crucial variables in regulating stem cell behaviors. This study provides important information about ligand-integrin interactions, which could be implemented into biomaterial design to achieve optimal performance of adhesive functional peptides.


Subject(s)
Nanoparticles , Silicon Dioxide , Cell Adhesion , Silicon Dioxide/pharmacology , Aspartic Acid , Glycine/pharmacology , Ligands , Peptides/pharmacology , Integrins/metabolism , Cell Differentiation , Stem Cells/metabolism , Arginine/pharmacology
8.
Biomater Sci ; 11(11): 3828-3839, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37074160

ABSTRACT

Selenium (Se) compounds are promising chemotherapeutics due to their ability to inhibit cancer cell activity via the generation of reactive oxygen species (ROS). However, to circumvent adverse effects on bone healthy cells, new methods are needed to allow intracellular Se delivery. Mesoporous silica nanoparticles (MSNs) are promising carriers for therapeutic ion delivery due to their biocompability, rapid uptake via endocytosis, and ability to efficiently incorporate ions within their tunable structure. With the aim of selectively inhibiting cancer cells, here we developed three types of MSNs and investigated their ability to deliver Se. Specifically, MSNs containing SeO32- loaded on the surface and in the pores (MSN-SeL), SeO32- doped in the silica matrix (Se-MSNs) and Se nanoparticles (SeNP) coated with mesoporous silica (SeNP-MSNs), were successfully synthesized. All synthesized nanoparticles were stable in neutral conditions but showed rapid Se release in the presence of glutathione (GSH) and nicotinamide adenine dinucleotide phosphate (NADPH). Furthermore, all nanoparticles were cytotoxic towards SaoS-2 cells and showed significantly lower toxicity towards healthy osteoblasts, where Se doped MSNs showed lowest toxicity towards osteoblasts. We further show that the nanoparticles could induce ROS and cell apoptosis. Here we demonstrate MSNs as promising Se delivery carriers for osteosarcoma (OS) therapy.


Subject(s)
Nanoparticles , Osteosarcoma , Selenium , Humans , Drug Carriers/chemistry , Silicon Dioxide/chemistry , Reactive Oxygen Species/metabolism , Glutathione , Osteosarcoma/drug therapy , Nanoparticles/chemistry
9.
Biomater Adv ; 142: 213148, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36274359

ABSTRACT

Hydroxyapatite nanoparticles are popular tools in bone regeneration, but they have also been used for gene delivery and as anticancer drugs. Understanding their mechanism of action, particularly for the latter application, is crucial to predict their toxicity. To this end, we aimed to elucidate the importance of nanoparticle membrane interactions in the cytotoxicity of MG-63 cells using two different types of nanoparticles. In addition, conventional techniques for studying nanoparticle internalisation were evaluated and compared with newer and less exploited approaches. Hydroxyapatite and magnesium-doped hydroxyapatite nanoparticles were used as suspensions or compacted as specular discs. Comparison between cells seeded on the discs and those supplemented with the nanoparticles allowed direct interaction of the cell membrane with the material to be ruled out as the main mechanism of toxicity. In addition, standard techniques such as flow cytometry were inconclusive when used to assess nanoparticles toxicity. Interestingly, the use of intracellular calcium fluorescent probes revealed the presence of a high number of calcium-rich vesicles after nanoparticle supplementation in cell culture. These structures could not be detected by transmission electron microscopy due to their liquid content. However, by using cryo-soft X-ray imaging, which was used to visualise the cellular ultrastructure without further treatment other than vitrification and to quantify the linear absorption coefficient of each organelle, it was possible to identify them as multivesicular bodies, potentially acting as calcium stores. In the study, an advanced state of degradation of the hydroxyapatite and magnesium-doped hydroxyapatite nanoparticles within MG-63 cells was observed. Overall, we demonstrate that the combination of fluorescent calcium probes together with cryo-SXT is an excellent approach to investigate intracellular calcium, especially when found in its soluble form.


Subject(s)
Durapatite , Nanoparticles , Durapatite/chemistry , Magnesium , Nanoparticles/toxicity , Bone Regeneration , Microscopy, Electron, Transmission
10.
Nanomaterials (Basel) ; 12(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36079956

ABSTRACT

Nanoparticles such as mesoporous bioactive glasses (MBGs) and mesoporous silica nanoparticles (MSN) are promising for use in bone regeneration applications due to their inherent bioactivity. Doping silica nanoparticles with bioinorganic ions could further enhance their biological performance. For example, zinc (Zn) is often used as an additive because it plays an important role in bone formation and development. Local delivery and dose control are important aspects of its therapeutic application. In this work, we investigated how Zn incorporation in MSN and MBG nanoparticles impacts their ability to promote human mesenchymal stem cell (hMSC) osteogenesis and mineralization in vitro. Zn ions were incorporated in three different ways; within the matrix, on the surface or in the mesopores. The nanoparticles were further coated with a calcium phosphate (CaP) layer to allow pH-responsive delivery of the ions. We demonstrate that the Zn incorporation amount and ion release profile affect the nanoparticle's ability to stimulate osteogenesis in hMSCs. Specifically, we show that the nanoparticles that contain rapid Zn release profiles and a degradable silica matrix were most effective in inducing hMSC differentiation. Moreover, cells cultured in the presence of nanoparticle-containing media resulted in the highest induction of alkaline phosphate (ALP) activity, followed by culturing hMSC on nanoparticles immobilized on the surface as films. Exposure to nanoparticle-conditioned media did not increase ALP activity in hMSCs. In summary, Zn incorporation mode and nanoparticle application play an important role in determining the bioactivity of ion-doped silica nanoparticles.

11.
ACS Appl Nano Mater ; 5(3): 3237-3251, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35372794

ABSTRACT

Stem cell (SC)-based therapies hold the potential to revolutionize therapeutics by enhancing the body's natural repair processes. Currently, there are only three SC therapies with marketing authorization within the European Union. To optimize outcomes, it is important to understand the biodistribution and behavior of transplanted SCs in vivo. A variety of imaging agents have been developed to trace SCs; however, they mostly lack the ability to simultaneously monitor the SC function and biodistribution at high resolutions. Here, we report the synthesis and application of a nanoparticle (NP) construct consisting of a gold NP core coated with rhodamine B isothiocyanate (RITC)-doped mesoporous silica (AuMS). The MS layer further contained a thiol-modified internal surface and an amine-modified external surface for dye conjugation. Highly fluorescent AuMS of three different sizes were successfully synthesized. The NPs were non-toxic and efficiently taken up by limbal epithelial SCs (LESCs). We further showed that we can functionalize AuMS with a reactive oxygen species (ROS)-sensitive fluorescent dye using two methods, loading the probe into the mesopores, with or without additional capping by a lipid bilayer, and by covalent attachment to surface and/or mesoporous-functionalized thiol groups. All four formulations displayed a ROS concentration-dependent increase in fluorescence. Further, in an ex vivo SC transplantation model, a combination of optical coherence tomography and fluorescence microscopy was used to synergistically identify AuMS-labeled LESC distribution at micrometer resolution. Our AuMS constructs allow for multimodal imaging and simultaneous ROS sensing of SCs and represent a promising tool for in vivo SC tracing.

12.
Colloids Surf B Biointerfaces ; 215: 112495, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35429737

ABSTRACT

A significant bottleneck in the clinical translation of stem cells remains eliciting the desired stem cell behavior once transplanted in the body. In their natural environment, stem cell fate is regulated by their interaction with extracellular matrix (ECM), mainly through integrin-mediated cell adhesion. 2D biointerfaces that selectively present ECM-derived ligands can be used as valuable tools to study and improve our understanding on how stem cells interact with their environment. Here we developed a new type of biointerface based on mesoporous silica nanoparticles (MSN) which are interesting nanomaterials for biointerface engineering because they allow close control over surface physiochemical properties. To create the platform, DNA functionalized MSN (MSN-ssDNA) with varying PEG linker length were developed. Cell adhesion tripeptide RGD was conjugated to a complementary DNA strand, which could specifically bind to MSN-ssDNA to create MSN-dsDNA-RGD films. We showed that MSN-dsDNA-RGD films could promote hMSCs adhesion and spreading, whereas MSN-dsDNA films without RGD resulted in poor cell spreading with round morphology, and low cell adhesion. In addition, we showed that cell adhesion to the films is PEG length-dependent. The design of the platform allows easy incorporation of other and multiple ECM ligands, as well as soluble cues, making MSN-ssDNA based biointerfaces a novel tool to study ligand-stem cell interactions.


Subject(s)
Nanoparticles , Silicon Dioxide , Cell Adhesion , DNA , Ligands , Nanoparticles/chemistry , Oligopeptides/chemistry , Silicon Dioxide/chemistry
13.
Tissue Eng Part A ; 28(11-12): 461-477, 2022 06.
Article in English | MEDLINE | ID: mdl-35107351

ABSTRACT

Calcium phosphates (CaPs) and silicate-based bioglasses have been extensively studied since the early 1970s due to their unique capacity to bind to host bone, which led to their clinical translation and commercialization in the 1980s. Since the mid-1990s, researchers have synthesized nanoscale CaP and silicate-based particles of increased specific surface area, chemical reactivity, and solubility, which offer specific advantages compared to their bulk counterparts. This review provides a critical perspective on the history and emerging trends of these two classes of ceramic nanoparticles. Their synthesis and functional properties in terms of particle composition, size, shape, charge, dispersion, and toxicity are discussed as a function of relevant processing parameters. Specifically, emerging trends such as the influence of ion doping and mesoporosity on the biological and pharmaceutical performance of these nanoparticles are reviewed in more detail. Finally, a broad comparative overview is provided on the physicochemical properties and applicability of CaP and silicate-based nanoparticles within the fields of (i) local delivery of therapeutic agents, (ii) functionalization of biomaterial scaffolds or implant coatings, and (iii) bioimaging applications. Impact statement This review provides a critical perspective on the history and emerging trends of the two main classes of bioceramic nanoparticles, that is, calcium phosphate (CaP) and silicate-based nanoparticles. While most reviews in literature focus on either CaP or silicate-based nanoparticles, our review evaluates both classes of bioceramic nanoparticles simultaneously. This combined review offers the opportunity to analyze differences and similarities with respect to the historic development and emerging trends within both fields of bioceramics research.


Subject(s)
Calcium Phosphates , Nanoparticles , Biocompatible Materials , Calcium Phosphates/chemistry , Nanoparticles/chemistry , Silicates/chemistry
14.
ACS Appl Mater Interfaces ; 14(4): 4959-4968, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35041377

ABSTRACT

A limiting factor in large bone defect regeneration is the slow and disorganized formation of a functional vascular network in the defect area, often resulting in delayed healing or implant failure. To overcome this, strategies that induce angiogenic processes should be combined with potent bone graft substitutes in new bone regeneration approaches. To this end, we describe a unique approach to immobilize the pro-angiogenic growth factor VEGF165 in its native state on the surface of nanosized bioactive glass particles (nBGs) via a binding peptide (PR1P). We demonstrate that covalent coupling of the peptide to amine functional groups grafted on the nBG surface allows immobilization of VEGF with high efficiency and specificity. The amount of coupled peptide could be controlled by varying amine density, which eventually allows tailoring the amount of bound VEGF within a physiologically effective range. In vitro analysis of endothelial cell tube formation in response to VEGF-carrying nBG confirmed that the biological activity of VEGF is not compromised by the immobilization. Instead, comparable angiogenic stimulation was found for lower doses of immobilized VEGF compared to exogenously added VEGF. The described system, for the first time, employs a binding peptide for growth factor immobilization on bioactive glass nanoparticles and represents a promising strategy to overcome the problem of insufficient neovascularization in large bone defect regeneration.


Subject(s)
Biocompatible Materials/chemistry , Nanoparticles/chemistry , Peptides/chemistry , Vascular Endothelial Growth Factor A/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Glass/chemistry , Humans , Materials Testing , Particle Size , Surface Properties , Vascular Endothelial Growth Factor A/metabolism
15.
Adv Healthc Mater ; 11(4): e2101588, 2022 02.
Article in English | MEDLINE | ID: mdl-34751004

ABSTRACT

Ceramic (nano)materials are promising materials for bone regeneration applications. The addition of bioinorganics such as strontium (Sr) and zinc (Zn) is a popular approach to further improve their biological performance. However, control over ion delivery is important to prevent off-target effects. Mesoporous silica nanoparticles (MSNs) are popular nanomaterials that can be designed to incorporate and controllably deliver multiple ions to steer specific regenerative processes. In this work, MSNs loaded with Sr (MSNSr ) and surface coated with a pH-sensitive calcium phosphate (MSNSr -CaP) or calcium phosphate zinc layer (MSNSr -CaZnP) are developed. The ability of the MSNs to promote osteogenesis in human mesenchymal stromal cells (hMSCs) under basic cell culture conditions is explored and compared to ion administration directly to the cell culture media. Here, it is shown that MSN-CaPs can effectively induce alkaline phosphatase (ALP) levels and osteogenic gene expression in the absence of other osteogenic stimulants, where an improved effect is observed for MSNs surface coated with multiple ions. Moreover, comparatively lower ion doses are needed when using MSNs as delivery vehicles compared to direct ion administration in the medium. In summary, the MSNs developed here represent promising vehicles to deliver (multiple) bioinorganics and promote hMSC osteogenesis in basic conditions.


Subject(s)
Nanoparticles , Osteogenesis , Calcium Phosphates/pharmacology , Cell Differentiation , Humans , Silicon Dioxide/pharmacology , Strontium/pharmacology
16.
Acta Biomater ; 131: 80-96, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34237424

ABSTRACT

Stem cells have great potential in the field of tissue engineering and regenerative medicine due to their inherent regenerative capabilities. However, an ongoing challenge within their clinical translation is to elicit or predict the desired stem cell behavior once transplanted. Stem cell behavior and function are regulated by their interaction with biophysical and biochemical signals present in their natural environment (i.e., stem cell niches). To increase our understanding about the interplay between stem cells and their resident microenvironments, biointerfaces have been developed as tools to study how these substrates can affect stem cell behaviors. This article aims to review recent developments on fabricating cell-instructive interfaces to control cell adhesion processes towards directing stem cell behavior. After an introduction on stem cells and their natural environment, static surfaces exhibiting predefined biochemical signals to probe the effect of chemical features on stem cell behaviors are discussed. In the third section, we discuss more complex dynamic platforms able to display biochemical cues with spatiotemporal control using on-off ligand display, reversible ligand display, and ligand mobility. In the last part of the review, we provide the reader with an outlook on future designs of biointerfaces. STATEMENT OF SIGNIFICANCE: Stem cells have great potential as treatments for many degenerative disorders prevalent in our aging societies. However, an ongoing challenge within their clinical translation is to promote stem cell mediated regeneration once they are transplanted in the body. Stem cells reside within our bodies where their behavior and function are regulated by interactions with their natural environment called the stem cell niche. To increase our understanding about the interplay between stem cells and their niche, 2D materials have been developed as tools to study how specific signals can affect stem cell behaviors. This article aims to review recent developments on fabricating cell-instructive interfaces to control cell adhesion processes towards directing stem cell behavior.


Subject(s)
Cell Communication , Tissue Engineering , Cell Differentiation , Ligands , Regenerative Medicine , Stem Cell Niche , Stem Cells
17.
Biomater Sci ; 9(5): 1754-1766, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33433541

ABSTRACT

Calcium phosphates (CaPs) in the form of hydroxyapatite (HA) have been extensively studied in the context of bone regeneration due to their chemical similarity to natural bone mineral. While HA is known to promote osteogenic differentiation, the structural properties of the ceramic have been shown to affect the extent of this effect; several studies have suggested that nanostructured HA can improve the bioactivity. However, the role shape plays in the osteogenic potential is more elusive. Here we studied the effect of HA nanoparticle shape on the ability to induce osteogenesis in human mesenchymal stromal cells (hMSCs) by developing nanoparticle films using needle-, rice- and spherical-shaped HA. We showed that the HA films made from all three shapes of nanoparticles induced increased levels of osteogenic markers (i.e. runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2), alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN) on protein and gene level in comparison to hMSCs cultured on cover glass slides. Furthermore, their expression levels and profiles differed significantly as a function of nanoparticle shape. We also showed that nanoparticle films were more efficient in inducing osteogenic gene expression in hMSCs compared to adding nanoparticles to hMSCs in culture media. Finally, we demonstrated that hMSC morphology upon adhesion to the HA nanoparticle films is dependent on nanoparticle shape, with hMSCs exhibiting a more spread morphology on needle-shaped nanoparticle films compared to hMSCs seeded on rice- and spherical-shaped nanoparticle films. Our data suggests that HA nanoparticle films are efficient in inducing hMSC osteogenesis in basic cell culture conditions and that nanoparticle shape plays a vital role in cell adhesion and morphology and extent of induction of osteogenic differentiation.


Subject(s)
Mesenchymal Stem Cells , Nanoparticles , Alkaline Phosphatase , Cell Differentiation , Cells, Cultured , Durapatite , Humans , Osteogenesis
18.
Glia ; 69(3): 655-680, 2021 03.
Article in English | MEDLINE | ID: mdl-33045105

ABSTRACT

Encephalopathy of prematurity (EoP) is a common cause of long-term neurodevelopmental morbidity in extreme preterm infants. Diffuse white matter injury (dWMI) is currently the most commonly observed form of EoP. Impaired maturation of oligodendrocytes (OLs) is the main underlying pathophysiological mechanism. No therapies are currently available to combat dWMI. Intranasal application of mesenchymal stem cells (MSCs) is a promising therapeutic option to boost neuroregeneration after injury. Here, we developed a double-hit dWMI mouse model and investigated the therapeutic potential of intranasal MSC therapy. Postnatal systemic inflammation and hypoxia-ischemia led to transient deficits in cortical myelination and OL maturation, functional deficits and neuroinflammation. Intranasal MSCs migrated dispersedly into the injured brain and potently improved myelination and functional outcome, dampened cerebral inflammationand rescued OL maturation after dWMI. Cocultures of MSCs with primary microglia or OLs show that MSCs secrete factors that directly promote OL maturation and dampen neuroinflammation. We show that MSCs adapt their secretome after ex vivo exposure to dWMI milieu and identified several factors including IGF1, EGF, LIF, and IL11 that potently boost OL maturation. Additionally, we showed that MSC-treated dWMI brains express different levels of these beneficial secreted factors. In conclusion, the combination of postnatal systemic inflammation and hypoxia-ischemia leads to a pattern of developmental brain abnormalities that mimics the clinical situation. Intranasal delivery of MSCs, that secrete several beneficial factors in situ, is a promising strategy to restore myelination after dWMI and subsequently improve the neurodevelopmental outcome of extreme preterm infants in the future.


Subject(s)
Brain Injuries , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Humans , Hypoxia , Infant, Newborn , Infant, Premature , Inflammation , Mice , Neuroinflammatory Diseases , Secretome
19.
Adv Ther (Weinh) ; 3(7)2020 Jul.
Article in English | MEDLINE | ID: mdl-33884290

ABSTRACT

Nanoparticle-based targeted drug delivery holds promise for treatment of cancers. However, most approaches fail to be translated into clinical success due to ineffective tumor targeting in vivo. Here, the delivery potential of mesoporous silica nanoparticles (MSN) functionalized with targeting ligands for EGFR and CCR2 is explored in lung tumors. The addition of active targeting ligands on MSNs enhances their uptake in vitro but fails to promote specific delivery to tumors in vivo, when administered systemically via the blood or locally to the lung into immunocompetent murine lung cancer models. Ineffective tumor targeting is due to efficient clearance of the MSNs by the phagocytic cells of the liver, spleen, and lung. These limitations, however, are successfully overcome using a novel organ-restricted vascular delivery (ORVD) approach. ORVD in isolated and perfused mouse lungs of Kras-mutant mice enables effective nanoparticle extravasation from the tumor vasculature into the core of solid lung tumors. In this study, ORVD promotes tumor cell-specific uptake of nanoparticles at cellular resolution independent of their functionalization with targeting ligands. Organ-restricted vascular delivery thus opens new avenues for optimized nanoparticles for lung cancer therapy and may have broad applications for other vascularized tumor types.

20.
Acta Biomater ; 96: 557-567, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31284095

ABSTRACT

The development of smart interfaces that can guide tissue formation is of great importance in the field of regenerative medicine. Nanoparticles represent an interesting class of materials that can be used to enhance regenerative treatments by enabling close control over surface properties and directing cellular responses. Moreover, nanoparticles can be used to provide temporally controlled delivery of (multiple) biochemical compounds. Here, we exploited the cargo loading and surface functionalization properties of mesoporous silica nanoparticles (MSNs) to design films that can guide human mesenchymal stem cell (hMSC) differentiation towards the osteogenic lineage. We developed biocompatible MSN-based films that support stem cell adhesion and proliferation and demonstrated that these MSN films simultaneously allowed efficient local delivery of biomolecules without effecting film integrity. Films loaded with the osteogenesis-stimulating drug dexamethasone (Dex) were able to induce osteogenic differentiation of hMSCs in vitro. Dex delivery from the films led to increased alkaline phosphatase levels and matrix mineralization compared to directly supplementing Dex to the medium. Furthermore, we demonstrated that Dex release kinetics can be modulated using surface modifications with supported lipid bilayers. Together, these data demonstrate that MSN films represent an interesting approach to create biomaterial interfaces with controllable biomolecule release and surface properties to improve the bioactivity of biomaterials. STATEMENT OF SIGNIFICANCE: Engineering surfaces that can control cell and tissue responses is one of the major challenges in biomaterials-based regenerative therapies. Here, we demonstrate the potential of mesoporous silica nanoparticles (MSNs) as drug-delivering surface coatings. First, we show differentiation of mesenchymal stem cells towards the bone lineage when in contact with MSN films loaded with dexamethasone. Furthermore, we demonstrate that modification of MSNs with supported lipid bilayer allows control over drug release dynamics and cell shape. Given the range of loadable cargos and the tunability of release kinetics, MSN coatings can be used to mimic the sequential appearance of bioactive factors during tissue regeneration, which will ultimately lead to biomaterials with improved bioactivity.


Subject(s)
Cell Differentiation/drug effects , Dexamethasone , Membranes, Artificial , Mesenchymal Stem Cells/metabolism , Nanoparticles/chemistry , Osteogenesis/drug effects , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Dexamethasone/chemistry , Dexamethasone/pharmacology , Humans , Mesenchymal Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL