Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Elife ; 92020 08 24.
Article En | MEDLINE | ID: mdl-32831174

Previously, we showed that modulation of the energy barrier for synaptic vesicle fusion boosts release rates supralinearly (Schotten, 2015). Here we show that mouse hippocampal synapses employ this principle to trigger Ca2+-dependent vesicle release and post-tetanic potentiation (PTP). We assess energy barrier changes by fitting release kinetics in response to hypertonic sucrose. Mimicking activation of the C2A domain of the Ca2+-sensor Synaptotagmin-1 (Syt1), by adding a positive charge (Syt1D232N) or increasing its hydrophobicity (Syt14W), lowers the energy barrier. Removing Syt1 or impairing its release inhibitory function (Syt19Pro) increases spontaneous release without affecting the fusion barrier. Both phorbol esters and tetanic stimulation potentiate synaptic strength, and lower the energy barrier equally well in the presence and absence of Syt1. We propose a model where tetanic stimulation activates Syt1-independent mechanisms that lower the energy barrier and act additively with Syt1-dependent mechanisms to produce PTP by exerting multiplicative effects on release rates.


Neuronal Plasticity/physiology , Synaptic Vesicles , Synaptotagmin I/metabolism , Animals , Calcium/metabolism , Cells, Cultured , Female , Hippocampus/cytology , Hippocampus/metabolism , Male , Membrane Fusion/physiology , Mice , Mice, Inbred C57BL , Rats , Rats, Wistar , Synaptic Vesicles/chemistry , Synaptic Vesicles/metabolism
2.
EMBO J ; 38(17): e101289, 2019 09 02.
Article En | MEDLINE | ID: mdl-31368584

Synapse development requires spatiotemporally regulated recruitment of synaptic proteins. In this study, we describe a novel presynaptic mechanism of cis-regulated oligomerization of adhesion molecules that controls synaptogenesis. We identified synaptic adhesion-like molecule 1 (SALM1) as a constituent of the proposed presynaptic Munc18/CASK/Mint1/Lin7b organizer complex. SALM1 preferentially localized to presynaptic compartments of excitatory hippocampal neurons. SALM1 depletion in excitatory hippocampal primary neurons impaired Neurexin1ß- and Neuroligin1-mediated excitatory synaptogenesis and reduced synaptic vesicle clustering, synaptic transmission, and synaptic vesicle release. SALM1 promoted Neurexin1ß clustering in an F-actin- and PIP2-dependent manner. Two basic residues in SALM1's juxtamembrane polybasic domain are essential for this clustering. Together, these data show that SALM1 is a presynaptic organizer of synapse development by promoting F-actin/PIP2-dependent clustering of Neurexin.


Actins/metabolism , Calcium-Binding Proteins/metabolism , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Neural Cell Adhesion Molecules/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Synapses/metabolism , Animals , Cell Adhesion Molecules, Neuronal/metabolism , Cells, Cultured , HEK293 Cells , Hippocampus/cytology , Hippocampus/metabolism , Humans , Membrane Glycoproteins/genetics , Mice , Nerve Tissue Proteins/genetics , Neurogenesis
3.
EMBO J ; 37(20)2018 10 15.
Article En | MEDLINE | ID: mdl-30185408

Neuropeptides are essential signaling molecules transported and secreted by dense-core vesicles (DCVs), but the number of DCVs available for secretion, their subcellular distribution, and release probability are unknown. Here, we quantified DCV pool sizes in three types of mammalian CNS neurons in vitro and in vivo Super-resolution and electron microscopy reveal a total pool of 1,400-18,000 DCVs, correlating with neurite length. Excitatory hippocampal and inhibitory striatal neurons in vitro have a similar DCV density, and thalamo-cortical axons in vivo have a slightly higher density. Synapses contain on average two to three DCVs, at the periphery of synaptic vesicle clusters. DCVs distribute equally in axons and dendrites, but the vast majority (80%) of DCV fusion events occur at axons. The release probability of DCVs is 1-6%, depending on the stimulation. Thus, mammalian CNS neurons contain a large pool of DCVs of which only a small fraction can fuse, preferentially at axons.


Axons , Corpus Striatum , Hippocampus , Neurites , Secretory Vesicles , Synapses , Animals , Axons/metabolism , Axons/ultrastructure , Corpus Striatum/metabolism , Corpus Striatum/ultrastructure , Hippocampus/metabolism , Hippocampus/ultrastructure , Mice , Neurites/metabolism , Neurites/ultrastructure , Secretory Vesicles/metabolism , Secretory Vesicles/ultrastructure , Synapses/metabolism , Synapses/ultrastructure
4.
EMBO J ; 37(2): 300-320, 2018 01 17.
Article En | MEDLINE | ID: mdl-29150433

Tyrosine kinases are important regulators of synaptic strength. Here, we describe a key component of the synaptic vesicle release machinery, Munc18-1, as a phosphorylation target for neuronal Src family kinases (SFKs). Phosphomimetic Y473D mutation of a SFK phosphorylation site previously identified by brain phospho-proteomics abolished the stimulatory effect of Munc18-1 on SNARE complex formation ("SNARE-templating") and membrane fusion in vitro Furthermore, priming but not docking of synaptic vesicles was disrupted in hippocampal munc18-1-null neurons expressing Munc18-1Y473D Synaptic transmission was temporarily restored by high-frequency stimulation, as well as by a Munc18-1 mutation that results in helix 12 extension, a critical conformational step in vesicle priming. On the other hand, expression of non-phosphorylatable Munc18-1 supported normal synaptic transmission. We propose that SFK-dependent Munc18-1 phosphorylation may constitute a potent, previously unknown mechanism to shut down synaptic transmission, via direct occlusion of a Synaptobrevin/VAMP2 binding groove and subsequent hindrance of conformational changes in domain 3a responsible for vesicle priming. This would strongly interfere with the essential post-docking SNARE-templating role of Munc18-1, resulting in a largely abolished pool of releasable synaptic vesicles.


Munc18 Proteins/metabolism , SNARE Proteins/metabolism , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism , src-Family Kinases/metabolism , Animals , Mice , Mice, Knockout , Munc18 Proteins/genetics , Mutation , Phosphorylation/physiology , Protein Structure, Secondary , R-SNARE Proteins/genetics , R-SNARE Proteins/metabolism , SNARE Proteins/genetics , Synaptic Vesicles/genetics , Vesicle-Associated Membrane Protein 2/genetics , Vesicle-Associated Membrane Protein 2/metabolism , src-Family Kinases/genetics
5.
JCI Insight ; 1(19): e89631, 2016 11 17.
Article En | MEDLINE | ID: mdl-27882350

BACKGROUND. Cell-free circulating nucleic acids, including 22-nt microRNAs (miRNAs), represent noninvasive biomarkers for treatment response monitoring of cancer patients. While the majority of plasma miRNA is bound to proteins, a smaller, less well-characterized pool is associated with extracellular vesicles (EVs). Here, we addressed whether EV-associated miRNAs reflect metabolic disease in classical Hodgkin lymphoma (cHL) patients. METHODS. With standardized size-exclusion chromatography (SEC), we isolated EV-associated extracellular RNA (exRNA) fractions and protein-bound miRNA from plasma of cHL patients and healthy subjects. We performed a comprehensive small RNA sequencing analysis and validation by TaqMan qRT-PCR for candidate discovery. Fluorodeoxyglucose-PET (FDG-PET) status before treatment, directly after treatment, and during long-term follow-up was compared directly with EV miRNA levels. RESULTS. The plasma EV miRNA repertoire was more extensive compared with protein-bound miRNA that was heavily dominated by a few abundant miRNA species and was less informative of disease status. Purified EV fractions of untreated cHL patients and tumor EVs had enriched levels of miR24-3p, miR127-3p, miR21-5p, miR155-5p, and let7a-5p compared with EV fractions from healthy subjects and disease controls. Serial monitoring of EV miRNA levels in patients before treatment, directly after treatment, and during long-term follow-up revealed robust, stable decreases in miRNA levels matching a complete metabolic response, as observed with FDG-PET. Importantly, EV miRNA levels rose again in relapse patients. CONCLUSION. We conclude that cHL-related miRNA levels in circulating EVs reflect the presence of vital tumor tissue and are suitable for therapy response and relapse monitoring in individual cHL patients. FUNDING. Cancer Center Amsterdam Foundation (CCA-2013), Dutch Cancer Society (KWF-5510), Technology Foundation STW (STW Perspectief CANCER-ID).


Extracellular Vesicles , Hodgkin Disease/blood , MicroRNAs/blood , Biomarkers, Tumor/blood , Case-Control Studies , Hodgkin Disease/therapy , Humans , Neoplasm Recurrence, Local
...