Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Neurology ; 101(21): e2078-e2093, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37914414

ABSTRACT

BACKGROUND AND OBJECTIVES: Advanced therapies (ATs; deep brain stimulation [DBS] or pump therapies: continuous subcutaneous apomorphine infusion [CSAI], levodopa/carbidopa intestinal gel [LCIG]) are used in later stages of Parkinson disease (PD). However, decreasing efficacy over time and/or side effects may require an AT change or combination in individual patients. Current knowledge about changing or combining ATs is limited to mostly retrospective and small-scale studies. The nationwide case collection Combinations of Advanced Therapies in PD assessed simultaneous or sequential AT combinations in Germany since 2005 to analyze their clinical outcome, their side effects, and the reasons for AT modifications. METHODS: Data were acquired retrospectively by modular questionnaires in 22 PD centers throughout Germany based on clinical records and comprised general information about the centers/patients, clinical (Mini-Mental Status Test/Montréal Cognitive Assessment, Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale [MDS-UPDRS], side effects, reasons for AT modification), and therapeutical (ATs with specifications, oral medication) data. Data assessment started with initiation of the second AT. RESULTS: A total of 148 AT modifications in 116 patients were associated with significantly improved objective (median decrease of MDS-UPDRS Part III 4.0 points [p < 0.001], of MDS-UPDRS Part IV 6.0 points [p < 0.001], of MDS-UPDRS Part IV-off-time item 1.0 points [p < 0.001]) and subjective clinical outcome and decreasing side effect rates. Main reasons for an AT modification were insufficient symptom control and side effects of the previous therapy. Subgroup analyses suggest addition of DBS in AT patients with leading dyskinesia, addition of LCIG for leading other cardinal motor symptoms, and addition of LCIG or CSAI for dominant off-time. The most long-lasting therapy-until requiring a modification-was DBS. DISCUSSION: Changing or combining ATs may be beneficial when 1 AT is insufficient in efficacy or side effects. The outcome of an AT combination is comparable with the clinical benefit by introducing the first AT. The added AT should be chosen dependent on dominant clinical symptoms and adverse effects. Furthermore, prospective trials are needed to confirm the results of this exploratory case collection. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that, in patients with PD, changing or combining ATs is associated with an improvement in the MDS-UPDRS or subjective symptom reporting.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/drug therapy , Parkinson Disease/psychology , Antiparkinson Agents/therapeutic use , Retrospective Studies , Prospective Studies , Carbidopa/therapeutic use , Levodopa/therapeutic use , Infusions, Subcutaneous , Drug Combinations , Gels/therapeutic use
2.
Brain Stimul ; 5(3): 378-387, 2012 Jul.
Article in English | MEDLINE | ID: mdl-21782543

ABSTRACT

BACKGROUND: The subthalamic nucleus (STN) as an effective target for deep brain stimulation (DBS) in advanced Parkinson's disease is functionally divided into the dorsolateral sensorimotor and the ventromedial limbic and associative parts. To implant electrodes for DBS close to the sensorimotor region is considered crucial for optimal motor benefit and for avoidance of potential cognitive and behavioral side effects. OBJECTIVE: The aim of this study was to determine whether the functional segregation of the STN is associated with distinct and region-specific neuronal activity patterns and action potential properties obtained by intraoperative microelectrode recordings. METHODS: In 12 Parkinson's disease patients, stepwise intraoperative microelectrode recordings were performed using five concentrically configured electrodes starting 10 mm above the calculated target point until the dorsal border of the substantia nigra. RESULTS: Based on autocorrelogram analysis of a total of 329 single units, we found a higher occurrence of oscillatory (P < 0.01) and bursty (P = 0.058) spike pattern in the dorsal versus the ventral STN. In contrast the ventral region was characterized by irregular firing neurons (P < 0.01). There were no significant differences in firing frequency, coefficient of variance, asymmetry index as well as spike form, duration, and amplitude. CONCLUSIONS: Among all parameters analyzed in the study, spike pattern is the only convenient electrophysiologic parameter for the differentiation of STN subregions in patients with Parkinson's disease. The autocorrelogram-based analysis of spike activity seems to be of certain value for the delineation of the dorsolateral STN and might therefore facilitate the precise electrode implantation for DBS.


Subject(s)
Brain Mapping/methods , Deep Brain Stimulation/instrumentation , Microelectrodes , Parkinson Disease/diagnosis , Parkinson Disease/physiopathology , Subthalamic Nucleus/physiopathology , Equipment Design , Equipment Failure Analysis , Female , Humans , Intraoperative Care/methods , Male , Middle Aged , Parkinson Disease/therapy , Prosthesis Implantation/methods , Reproducibility of Results , Sensitivity and Specificity
3.
Ann Neurol ; 69(5): 778-92, 2011 May.
Article in English | MEDLINE | ID: mdl-21391235

ABSTRACT

OBJECTIVE: We studied the independent and joint effects of the genes encoding alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) in Parkinson disease (PD) as part of a large meta-analysis of individual data from case-control studies participating in the Genetic Epidemiology of Parkinson's Disease (GEO-PD) consortium. METHODS: Participants of Caucasian ancestry were genotyped for a total of 4 SNCA (rs2583988, rs181489, rs356219, rs11931074) and 2 MAPT (rs1052553, rs242557) single nucleotide polymorphism (SNPs). Individual and joint effects of SNCA and MAPT SNPs were investigated using fixed- and random-effects logistic regression models. Interactions were studied on both a multiplicative and an additive scale, and using a case-control and case-only approach. RESULTS: Fifteen GEO-PD sites contributed a total of 5,302 cases and 4,161 controls. All 4 SNCA SNPs and the MAPT H1-haplotype-defining SNP (rs1052553) displayed a highly significant marginal association with PD at the significance level adjusted for multiple comparisons. For SNCA, the strongest associations were observed for SNPs located at the 3' end of the gene. There was no evidence of statistical interaction between any of the 4 SNCA SNPs and rs1052553 or rs242557, neither on the multiplicative nor on the additive scale. INTERPRETATION: This study confirms the association between PD and both SNCA SNPs and the H1 MAPT haplotype. It shows, based on a variety of approaches, that the joint action of variants in these 2 loci is consistent with independent effects of the genes without additional interacting effects.


Subject(s)
Genetic Predisposition to Disease , Parkinson Disease/genetics , Polymorphism, Single Nucleotide/genetics , alpha-Synuclein/genetics , tau Proteins/genetics , Adult , Age of Onset , Aged , Aged, 80 and over , Case-Control Studies , Female , Humans , Logistic Models , Male , Middle Aged , Odds Ratio , Retrospective Studies
4.
Hum Brain Mapp ; 32(6): 896-904, 2011 Jun.
Article in English | MEDLINE | ID: mdl-20572209

ABSTRACT

This study set out to determine whether there is white matter involvement in essential tremor (ET), the most common movement disorder. We collected diffusion MRI and analysed differences in fractional anisotropy (FA) and mean diffusivity (MD) between ET patients and control subjects as markers of white matter integrity. We used both classical ROI-based statistics and whole-brain analysis techniques, including voxel-wise analysis with SPM5 and tract-based spatial statistics (TBSS). Using region of interest (ROI) analysis, we found increased MD bilaterally in the inferior cerebellar peduncles (ICP) and reduced FA in the right-sided ICP of ET patients. Whole-brain analyses with TBSS detected increased MD distributed in both motor and nonmotor white matter fibers of ET patients predominantly in the left parietal white matter, while there were no significant FA differences in these areas between ET patients and controls. Voxel-wise analysis with SPM detected significant increase of MD congruent with the highest probability of difference as detected by TBSS. VBM analysis of T1 images did not detect significant differences in either gray or white matter density between our study groups. In summary, we found evidence for changes in white matter MRI properties in ET. The circumscript pathology of the ICP corroborates the pathogenetic concept of the cerebellum and its projections as key structures for tremor generation in ET. Moreover, increased diffusivity in white matter structures of both hemispheres suggests widespread alterations of fiber integrity in motor and nonmotor networks in ET patients. The underlying cause of the DTI changes observed remains to be elucidated.


Subject(s)
Brain Mapping/methods , Brain/pathology , Diffusion Tensor Imaging , Essential Tremor/pathology , Adult , Aged , Anisotropy , Female , Humans , Male , Middle Aged
5.
J Neurol Neurosurg Psychiatry ; 81(10): 1087-92, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20543186

ABSTRACT

OBJECTIVE: Transcranial sonography (TCS) shows characteristic hyperechogenicity of the substantia nigra (SN) in patients with Parkinson's disease (PD). Although this feature is well established, sufficient observer reliability and diagnostic accuracy are prerequisites for advancements of this method. METHODS: The authors investigated both aspects in a cross-sectional study with four blinded TCS raters in 22 PD patients and 10 healthy controls. RESULTS: As expected, the authors found significant bilateral SN hyperechogenicity in PD patients. Quantitative computerised SN planimetry had a substantial intra- (intraclass correlation coefficient (ICC) 0.97 and 0.93 respectively for both hemispheres) and inter-rater reliability (ICC 0.84 and 0.89), while visual semiquantitative echogenicity grading of the SN revealed a moderate intrarater (weighted kappa 0.80 ipsilateral and 0.74 contralateral) and slight (0.33) to fair (0.51) inter-rater reliability only. Diagnostic accuracy measured as the area under the curve of receiver-operating characteristics plots was highest in TCS of the SN opposite the clinically most affected body side (planimetry 0.821, echogenicity grading 0.792) with a hyperechogenic area of 0.24 cm(2) as the optimum cut-off value for the differentiation between PD and controls (sensitivity 79%, specificity 81%). CONCLUSIONS: The data demonstrate that the observer variability of SN planimetry is low in the hands of experienced investigators. This approach also offers adequate diagnostic accuracy. The authors conclude that reliable SN TCS data on PD can be achieved in clinical routine and multicentre trials when standardised analysis protocols and certain quality criteria of brain parenchyma sonography are met.


Subject(s)
Parkinson Disease/diagnosis , Substantia Nigra/diagnostic imaging , Ultrasonography, Doppler, Transcranial/methods , Aged , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Predictive Value of Tests , ROC Curve , Reproducibility of Results , Substantia Nigra/pathology
7.
Exp Neurol ; 215(1): 110-8, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18973756

ABSTRACT

Ataxin-2 is a novel protein, normally with a domain of 22 consecutive glutamine (Q) residues, which may expand beyond a threshold of (Q)(32), causing a neurodegenerative disease named Spinocerebellar ataxia type 2 (SCA2). To obtain clues about the functions of ataxin-2, we used fluorescence microscopy and centrifugation fractionation analyses. Immunocytochemical detection in non-neuronal and neuronal cells showed endogenous and transfected ataxin-2 distributed throughout the cytoplasm, with perinuclear preference and a granular appearance. Triple-labelling and confocal microscopy demonstrated co-localisation with the endoplasmic reticulum (ER) markers calreticulin, calnexin and CFP-ER. The pathogenic form of ataxin-2 with an expanded polyQ domain showed the same distribution pattern. Subcellular fractionation of mouse brain homogenates showed endogenous ataxin-2 associated with rough ER (rER) membranes, in a manner dependent on RNA, salt and phosphorylation. Our data are in agreement with recent findings that ataxin-2 directly interacts with poly(A)-binding protein (PABP), thus associating with polyribosomes under normal conditions and being recruited to stress granules under environmental stress. These data, in conjunction with the presence of Lsm domains within ataxin-2, suggest that ataxin-2 is involved in the processing of mRNA and/or the regulation of translation.


Subject(s)
Endoplasmic Reticulum, Rough/metabolism , Nerve Tissue Proteins/metabolism , Neurons/ultrastructure , Animals , Ataxins , Calnexin/metabolism , Calreticulin/metabolism , Cells, Cultured , Cyclooxygenase 1/metabolism , Embryo, Mammalian , Golgi Matrix Proteins , Hippocampus/cytology , Humans , Membrane Proteins/metabolism , Mice , Microscopy, Confocal , Nerve Tissue Proteins/genetics , Peptides/metabolism , Rats , Rats, Sprague-Dawley , Subcellular Fractions/metabolism , Subcellular Fractions/ultrastructure , Transfection/methods , Vesicular Transport Proteins/metabolism
8.
Cell Signal ; 20(10): 1725-39, 2008 10.
Article in English | MEDLINE | ID: mdl-18602463

ABSTRACT

Ataxin-2 is a novel protein, where the unstable expansion of an internal polyglutamine domain can cause the neurodegenerative disease Spinocerebellar Ataxia type 2 (SCA2). To elucidate its cellular function, we have used full-length ataxin-2 as bait in a yeast two-hybrid screen of human adult brain cDNA. As binding partners we found endophilin A1 and A3, two brain-expressed members of the endophilin A family involved in synaptic vesicle endocytosis. Co-immunoprecipitation studies confirmed the binding of these proteins as an endogenous complex in mouse brain. In vitro binding experiments narrowed the binding interfaces down to two proline-rich domains on ataxin-2, which interacted with the SH3 domain of endophilin A1/A3. Ataxin-2 and endophilin associated at the endoplasmic reticulum as well as at the plasma membrane as determined by immunofluorescence microscopy of transfected cell lines, and by centrifugation fractionation studies of mouse brain. Importantly, the pattern observed in transfected cells was conserved in rat hippocampal neurons. In the mouse brain, an association of ataxin-2 with endocytic proteins such as the adaptor CIN85 and the ubiquitin ligase c-Cbl was also demonstrated. GST pull-down assays showed ataxin-2 to directly interact with the SH3 domains A and C of CIN85 and with the SH3 domain of Src, a kinase activated after receptor stimulation. Functional studies demonstrated that ataxin-2 affects endocytic trafficking of the epidermal growth factor receptor (EGFR). Taken together, these data implicate ataxin-2 to play a role in endocytic receptor cycling.


Subject(s)
Acyltransferases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Endocytosis , ErbB Receptors/metabolism , Nerve Tissue Proteins/metabolism , Acyltransferases/chemistry , Adaptor Proteins, Signal Transducing/chemistry , Amino Acid Sequence , Animals , Ataxins , Brain/metabolism , Catalysis , Cell Line , Cell Membrane/enzymology , Endoplasmic Reticulum/enzymology , Humans , Mice , Molecular Sequence Data , Neoplasm Proteins/metabolism , Nerve Tissue Proteins/chemistry , Proline/metabolism , Protein Binding , Protein Structure, Tertiary , Protein Transport , Proto-Oncogene Proteins c-cbl/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...