Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-28955304

ABSTRACT

BACKGROUND: Elevated concentrations of liver enzymes have been associated with an increased risk of developing type 2 diabetes mellitus. However, it remains unclear to which specific aspects of diurnal glucose metabolism these associate most. We aimed to investigate the associations between liver enzyme concentrations and 24 h-glucose trajectories in individuals without diabetes mellitus from three independent cohorts. METHODS: This cross-sectional study included 436 participants without diabetes mellitus from the Active and Healthy Aging Study, the Switchbox Study, and the Growing Old Together Study. Fasting blood samples were drawn to measure gamma-glutamyltransferase (GGT), alanine transaminase, and aspartate transaminase. Measures of glycemia (e.g., nocturnal and diurnal mean glucose levels) and glycemic variability (e.g., mean amplitude of glucose excursions) were derived from continuous glucose monitoring. Analyses were performed separately for the three cohorts; derived estimates were additionally meta-analyzed. RESULTS: After meta-analyses of the three cohorts, elevated liver enzyme concentrations, and specifically elevated GGT concentrations, were associated with higher glycemia. More specific, participants in the highest GGT tertile (GGT ≥37.9 U/L) had a 0.39 mmol/L (95% confidence interval: 0.23, 0.56) higher mean nocturnal glucose (3:00 to 6:00 a.m.) and a 0.23 mmol/L (0.10, 0.36) higher diurnal glucose (6:00 to 0:00 a.m.) than participants in the lowest GGT tertile (GGT <21.23 U/L). However, elevated liver enzyme concentrations were not associated with a higher glycemic variability. CONCLUSION: Though elevated liver enzyme concentrations did not associate with higher glycemic variability in participants without diabetes mellitus, specifically, elevated GGT concentrations associated with higher glycemia.

2.
PLoS One ; 11(2): e0149992, 2016.
Article in English | MEDLINE | ID: mdl-26914832

ABSTRACT

BACKGROUND: The rs7903146-T allele in the transcription factor 7-like 2 (TCF7L2) gene has been associated with impaired pancreatic insulin secretion, enhanced liver glucose production, and an increased risk of type 2 diabetes. Nevertheless, the impact of rs7903146 on daily glucose trajectories remains unclear. Continuous glucose monitoring (CGM) can estimate glycemia and glycemic variability based on consecutive glucose measurements collected over several days. The purpose of the present study was to investigate the associations of rs7903146 with glycemia and glycemic variability in middle-aged participants without diabetes. METHODS: Complete data from 235 participants without diabetes from the Leiden Longevity Study were available. Participants were divided into two groups based on rs7903146 genotype; rs7903146-CC genotype carriers (N = 123) and rs7903146-CT/TT genotype carriers (N = 112). Validated parameters of glycemia (e.g., mean 24h glucose level) and glycemic variability (e.g., 24h standard deviation) were derived from data collected with a CGM system for a 72-hour period. RESULTS: The study population was on average 64.7 years old (standard deviation = 5.9) and composed of 49.8% of women. Compared with rs7903146-CC carriers, rs7903146-CT/TT carriers exhibited a trend towards a higher mean 24-hour glucose level (5.21 versus 5.32 mmol/L; p-value = 0.15) and a significantly higher mean nocturnal glucose (3:00am- 6:00am; 4.48 versus 4.67 mmol/L; p-value = 0.03) that was explained for 34.6% by body weight and percentage body fat. No differences in measures of glycemic variability between the genotype groups were observed. CONCLUSION: Despite limited sample size, our study indicates that the rs7903146-T allele in TCF7L2 was associated with a higher mean nocturnal glucose dependent on body composition, which might suggest that rs7902146 affects liver-specific aspects of glucose metabolism.


Subject(s)
Blood Glucose/genetics , Diabetes Mellitus, Type 2/metabolism , Liver/metabolism , Transcription Factor 7-Like 2 Protein/genetics , Base Sequence , Blood Glucose Self-Monitoring , Body Composition/genetics , Diabetes Mellitus, Type 2/blood , Female , Gene Frequency/genetics , Glucose/metabolism , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL