Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters











Publication year range
1.
Food Chem ; 460(Pt 1): 140471, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39059326

ABSTRACT

Turanose, an isomer of sucrose, naturally exists in honey. Previous study indicated that turanose content increased gradually in acacia honey as honeybees brewed honey in the hive. However, it is unclear how turanose is generated in honey. We hypothesised that turanose was produced by enzymes from honeybees and performed a series of simulation experiments to prove this hypothesis. We found turanose in honey was produced by honeybees processing sucrose. Furthermore, we determined that sugar composition of simulated nectar influenced the turanose concentration in honey: when sucrose concentration was below 5%, turanose was difficult to form, whereas high concentration of fructose and limited glucose were beneficial in producing turanose. Using 13C-labelled sucrose tests combined with proteomics analysis, we identified that α-glucosidase converted sucrose to turanose through an intermolecular isomerisation process. This study reveals the formation mechanism of turanose in honey and assists in the scientific control and improvement of honey quality.


Subject(s)
Honey , Isotope Labeling , Mass Spectrometry , Sucrose , Honey/analysis , Bees , Sucrose/analysis , Sucrose/chemistry , Sucrose/metabolism , Animals , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism
2.
Plant Physiol Biochem ; 214: 108889, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38954945

ABSTRACT

Abscisic acid (ABA) is crucial for plant water deficit (WD) acclimation, but how the interplay between ABA and guard cell (GC) metabolism aids plant WD acclimation remains unclear. Here, we investigated how ABA regulates GC metabolism and how this contributes to plant WD acclimation using tomato wild type (WT) and the ABA-deficient sitiens mutant. These genotypes were characterized at physiological, metabolic, and transcriptional levels under recurring WD periods and were used to perform a13C-glucose labelling experiment using isolated guard cells following exogenously applied ABA. ABA deficiency altered the level of sugars and organic acids in GCs in both irrigated and WD plants and the dynamic of accumulation/degradation of these compounds in GCs during the dark-to-light transition. WD-induced metabolic changes were more pronounced in sitiens than WT GCs. Results from the 13C-labelling experiment indicate that ABA is required for the glycolytic fluxes toward malate and acts as a negative regulator of a putative sucrose substrate cycle. The expression of key ABA-biosynthetic genes was higher in WT than in sitiens GCs after two cycles of WD. Additionally, the intrinsic leaf water use efficiency increased only in WT after the second WD cycle, compared to sitiens. Our results highlight that ABA deficiency disrupts the homeostasis of GC primary metabolism and the WD memory, negatively affecting plant WD acclimation. Our study demonstrates which metabolic pathways are activated by WD and/or regulated by ABA in GCs, which improves our understanding of plant WD acclimation, with clear consequences for plant metabolic engineering in the future.


Subject(s)
Abscisic Acid , Solanum lycopersicum , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Solanum lycopersicum/metabolism , Solanum lycopersicum/genetics , Plant Stomata/metabolism , Plant Stomata/drug effects , Gene Expression Regulation, Plant/drug effects
3.
J Chromatogr A ; 1706: 464269, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37586140

ABSTRACT

High-resolution tandem quadrupole time-of-flight mass analysers enable new automated workflows for untargeted data evaluation of complex samples like drug products. An example of such procedure is the so-called general unknown comparative screening (GUCS), which is used for software-assisted, automated identification of components that are only present in a sample and not in a reference. The GUCS approach has been employed for the first time to detect both degradation products and reaction products in drug products. Two different carbocisteine containing syrup prototypes - one with sucrose and the other with artificial sweeteners - were selected as examples after nine months of storage at 40 °C and 75% relative humidity. The samples were analysed chromatographically using a Coresep SB mixed-mode column and high-resolution MS and MS/MS data were recorded in information dependant acquisition mode on a Sciex X500R quadrupole time-of-flight mass spectrometer. Data analysis was considerably facilitated using the corresponding placebo formulation as reference samples. With the GUCS approach two hitherto unknown degradation products of carbocisteine, i.e. the carbocisteine lactam of the sulfoxides and the disulfide between l-cysteine and thioglycolic acid, were detected at low concentrations in both of the syrup formulations. The presumed structures were confirmed by in silico analysis of the fragment spectra and high-resolution LC-MS experiments with reference substances. Two additional impurities were found in the sucrose-containing sample and identified as the N-glycosides of carbocisteine and its lactam, respectively, using binary mixtures with a 13C-labelled monosaccharide.


Subject(s)
Drug Contamination , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Software , Chromatography, High Pressure Liquid/methods
4.
Plant Physiol Biochem ; 201: 107862, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37413941

ABSTRACT

Evidence suggests that guard cells have higher rate of phosphoenolpyruvate carboxylase (PEPc)-mediated dark CO2 assimilation than mesophyll cells. However, it is unknown which metabolic pathways are activated following dark CO2 assimilation in guard cells. Furthermore, it remains unclear how the metabolic fluxes throughout the tricarboxylic acid (TCA) cycle and associated pathways are regulated in illuminated guard cells. Here we carried out a13C-HCO3 labelling experiment in tobacco guard cells harvested under continuous dark or during the dark-to-light transition to elucidate principles of metabolic dynamics downstream of CO2 assimilation. Most metabolic changes were similar between dark-exposed and illuminated guard cells. However, illumination altered the metabolic network structure of guard cells and increased the 13C-enrichment in sugars and metabolites associated to the TCA cycle. Sucrose was labelled in the dark, but light exposure increased the 13C-labelling and leads to more drastic reductions in the content of this metabolite. Fumarate was strongly labelled under both dark and light conditions, while illumination increased the 13C-enrichment in pyruvate, succinate and glutamate. Only one 13C was incorporated into malate and citrate in either dark or light conditions. Our results indicate that several metabolic pathways are redirected following PEPc-mediated CO2 assimilation in the dark, including gluconeogenesis and the TCA cycle. We further showed that the PEPc-mediated CO2 assimilation provides carbons for gluconeogenesis, the TCA cycle and glutamate synthesis and that previously stored malate and citrate are used to underpin the specific metabolic requirements of illuminated guard cells.


Subject(s)
Carbon Dioxide , Malates , Malates/metabolism , Carbon Dioxide/metabolism , Mesophyll Cells/metabolism , Phosphoenolpyruvate Carboxylase/metabolism , Citrates/metabolism
5.
J Biomol NMR ; 77(4): 183-190, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37338652

ABSTRACT

Cell-free protein synthesis using eCells allows production of amino acids from inexpensive 13C-labelled precursors. We show that the metabolic pathway converting pyruvate, glucose and erythrose into aromatic amino acids is maintained in eCells. Judicious choice of 13C-labelled starting material leads to proteins, where the sidechains of aromatic amino acids display [13C,1H]-HSQC cross-peaks free of one-bond 13C-13C couplings. Selective 13C-labelling of tyrosine and phenylalanine residues is achieved simply by using different compositions of the reaction buffers.


Subject(s)
Amino Acids, Aromatic , Proteins , Nuclear Magnetic Resonance, Biomolecular , Proteins/chemistry , Amino Acids, Aromatic/chemistry , Amino Acids/chemistry , Tyrosine/chemistry
6.
Anal Bioanal Chem ; 415(21): 5151-5163, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37347300

ABSTRACT

Climate change directs the focus in biotechnology increasingly on one-carbon metabolism for fixation of CO2 and CO2-derived chemicals (e.g. methanol, formate) to reduce our reliance on both fossil and food-competing carbon sources. The tetrahydrofolate pathway is involved in several one-carbon fixation pathways. To study such pathways, stable isotope-labelled tracer analysis performed with mass spectrometry is state of the art. However, no such method is currently available for tetrahydrofolate vitamers. In the present work, we established a fit-for-purpose extraction method for the methylotrophic yeast Komagataella phaffii that allows access to intracellular methyl- and methenyl-tetrahydrofolate (THF) with demonstrated stability over several hours. To determine isotopologue distributions of methyl-THF, LC-QTOFMS provides a selective fragment ion with suitable intensity of at least two isotopologues in all samples, but not for methenyl-THF. However, the addition of ion mobility separation provided a critical selectivity improvement allowing accurate isotopologue distribution analysis of methenyl-THF with LC-IM-TOFMS. Application of these new methods for 13C-tracer experiments revealed a decrease from 83 ± 4 to 64 ± 5% in the M + 0 carbon isotopologue fraction in methyl-THF after 1 h of labelling with formate, and to 54 ± 5% with methanol. The M + 0 carbon isotopologue fraction of methenyl-THF was reduced from 83 ± 2 to 78 ± 1% over the same time when using 13C-methanol labelling. The labelling results of multiple strains evidenced the involvement of the THF pathway in the oxygen-tolerant reductive glycine pathway, the presence of the in vivo reduction of formate to formaldehyde, and the activity of the spontaneous condensation reaction of formaldehyde with THF in K. phaffii.


Subject(s)
Carbon Dioxide , Methanol , Carbon/metabolism , Tetrahydrofolates/metabolism , Mass Spectrometry , Formates
7.
New Phytol ; 238(1): 202-215, 2023 04.
Article in English | MEDLINE | ID: mdl-36604855

ABSTRACT

The plant cuticle is an important plant-atmosphere boundary, the synthesis and maintenance of which represents a significant metabolic cost. Only limited information regarding cuticle dynamics is available. We determined the composition and dynamics of Clusia rosea cuticular waxes and matrix using 13 CO2 labelling, compound-specific and bulk isotope ratio mass spectrometry. Collodion was used for wax collection; gas exchange techniques to test for any collodion effects on living leaves. Cutin matrix (MX) area density did not vary between young and mature leaves and between leaf sides. Only young leaves incorporated new carbon into their MX. Collodion-based sampling discriminated between epicuticular (EW) and intracuticular wax (IW) effectively. Epicuticular differed in composition from IW. The newly synthetised wax was deposited in IW first and later in EW. Both young and mature leaves synthetised IW and EW. The faster dynamics in young leaves were due to lower wax coverage, not a faster synthesis rate. Longer-chain alkanes were deposited preferentially on the abaxial, stomatous leaf side, producing differences between leaf sides in wax composition. We introduce a new, sensitive isotope labelling method and demonstrate that cuticular wax is renewed during leaf ontogeny of C. rosea. We discuss the ecophysiological significance of the new insights.


Subject(s)
Carbon Dioxide , Clusia , Carbon Dioxide/metabolism , Clusia/metabolism , Collodion/analysis , Collodion/metabolism , Waxes/metabolism , Plant Leaves/physiology , Plant Epidermis/metabolism
8.
Plant Cell Environ ; 45(10): 2923-2942, 2022 10.
Article in English | MEDLINE | ID: mdl-35906186

ABSTRACT

Signalling roles of hydrogen sulphide (H2 S) in stress biology are widely reported but not sufficiently established to urge its use in agronomic practice. Our lack of quantitative understanding of the metabolic rewiring in H2 S signalling makes it difficult to elucidate its functions in stress tolerance on the biochemical level. Here, Malus hupehensis Rehd. var. pingyiensis seedlings were first treated with salt stress for 2 weeks and then treated with four different concentrations of NaHS. Through vigorous investigations, including phenotypic analysis, 13 C transient labelling and targeted metabolic and transcriptomic analysis, for the first time in the seedlings of a woody fruit crop, we found out that H2 S recycles fixed carbons through glycolysis and tricarboxylic acid cycle to inhibit the futile accumulation of carbohydrates, to maintain an efficient CO2 assimilation, to keep a balanced starch metabolism, to produce sufficient H2 O2 , to maintain malate/γ-aminobutyric acid homeostasis via an H2 O2 -induced anion channel (aluminium-activated malate transporter) and eventually to improve salt-stress recovery. Our results systematically demonstrate the vital roles of central carbon metabolism in H2 S signalling and clarify the mode of action of H2 S in apple seedlings. We conclude that H2 S signalling interacts with central carbon metabolism in a bottom-up manner to recover plant growth after salt stress.


Subject(s)
Malus , Carbon/metabolism , Malates/metabolism , Malus/genetics , Malus/metabolism , Salt Stress , Seedlings/metabolism
9.
Angew Chem Int Ed Engl ; 61(18): e202201432, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35191576

ABSTRACT

The interaction of the SARS CoV2 spike glycoprotein with two sialic acid-containing trisaccharides (α2,3 and α2,6 sialyl N-acetyllactosamine) has been demonstrated by NMR. The NMR-based distinction between the signals of those sialic acids in the glycans covalently attached to the spike protein and those belonging to the exogenous α2,3 and α2,6 sialyl N-acetyllactosamine ligands has been achieved by synthesizing uniformly 13 C-labelled trisaccharides at the sialic acid and galactose moieties. STD-1 H,13 C-HSQC NMR experiments elegantly demonstrate the direct interaction of the sialic acid residues of both trisaccharides with additional participation of the galactose moieties, especially for the α2,3-linked analogue. Additional experiments with the spike protein in the presence of a specific antibody for the N-terminal domain and with the isolated receptor binding and N-terminal domains of the spike protein unambiguously show that the sialic acid binding site is located at the N-terminal domain.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Binding Sites , Galactose , Humans , N-Acetylneuraminic Acid/chemistry , SARS-CoV-2 , Sialic Acids/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Trisaccharides
10.
Front Plant Sci ; 13: 1049559, 2022.
Article in English | MEDLINE | ID: mdl-36699846

ABSTRACT

Fluxes are the ultimate phenotype of metabolism and their accurate quantification is fundamental to any understanding of metabolic networks. Steady state metabolic flux analysis has been the method of choice for quantifying fluxes in heterotrophic cells, but it is unable to measure fluxes during short-lived metabolic states, such as a transient oxidative load. Isotopically non-stationary metabolic flux analysis (INST-MFA) can be performed over shorter timescales (minutes - hours) and might overcome this limitation. INST-MFA has recently been applied to photosynthesising leaves, but agriculturally important tissues such as roots and storage organs, or plants during the night are heterotrophic. Here we outline the application of INST-MFA to heterotrophic plant cells. Using INST-MFA we were able to identify changes in the fluxes supported by phosphoenolpyruvate carboxylase and malic enzyme under oxidative load, highlighting the potential of INST-MFA to measure fluxes during short-lived metabolic states. We discuss the challenges in applying INST-MFA, and highlight further development required before it can be routinely used to quantify fluxes in heterotrophic plant cells.

11.
Front Mol Biosci ; 8: 784318, 2021.
Article in English | MEDLINE | ID: mdl-34859057

ABSTRACT

The intrinsic flexibility of glycans complicates the study of their structures and dynamics, which are often important for their biological function. NMR has provided insights into the conformational, dynamic and recognition features of glycans, but suffers from severe chemical shift degeneracy. We employed labelled glycans to explore the conformational behaviour of a ß(1-6)-Glc hexasaccharide model through residual dipolar couplings (RDCs). RDC delivered information on the relative orientation of specific residues along the glycan chain and provided experimental clues for the existence of certain geometries. The use of two different aligning media demonstrated the adaptability of flexible oligosaccharide structures to different environments.

13.
J Labelled Comp Radiopharm ; 64(10): 385-402, 2021 08.
Article in English | MEDLINE | ID: mdl-34157793

ABSTRACT

13 C-labelled ω-hydroxy-carboxylic acids HO213 C-(CH2 )n -CH2 OH or HO2 C-(CH2 )n -13 CH2 OH (n = 12, 16, 20, 28) with 13 C labels selectively introduced either at the carboxy group or at the primary alcohol function at the end of the hydrocarbon chain have been synthesized. Different synthetic strategies had to be applied depending on the position of the label, the chain length of the respective synthetic target and due to economic considerations. 13 C labels in general were introduced by nucleophilic substitution of a suitable leaving group with labelled potassium cyanide and subsequent hydrolysis of the nitriles to produce the corresponding labelled carboxy functions, which may also be reduced to give the labelled primary alcohol group. All new compounds are characterized by GC/MS, IR and NMR methods as well as by elemental analysis.


Subject(s)
Carbon Isotopes/chemistry , Carboxylic Acids/chemistry , Polyesters/chemical synthesis
14.
Oecologia ; 197(4): 1063-1077, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34047842

ABSTRACT

The majority of alpine plants are of small stature. Through their small size alpine plants are decoupled from the free atmospheric circulation and accumulate solar heat. However, a few alpine species do not follow that "rule" and protrude with their aboveground structures from the microclimatic shelter of the main canopy boundary layer. We aim at explaining the phenomenon of being tall by exploring the biomass production and carbon relations of four pairs of small and tall phylogenetically related taxa in alpine grassland. We compared species and stature-specific biomass allocation, shifts in non-structural carbohydrate (NSC) concentrations in different tissues throughout the season, and we used 13C labels to track carbon transfer from leaves to belowground structures. Small and tall herbs did not differ in their above- to belowground biomass allocation. The NSC composition (starch, fructan, simple sugars) and allocation did not show a stature-specific pattern, except for higher concentrations of simple sugars in tall species during their extended shoot growth. In relative terms, tall species had higher NSC pools in rhizomes, whereas small species had higher NSC pools in roots. Our findings do not place tall alpine forbs in an exceptional category in terms of biomass allocation and carbohydrate storage. The tall versus small stature of the examined herbs does not seem to be associated with specific adjustments in carbon relations. 13C pulse labelling revealed early C autonomy in young, unfolding leaves of the tall species, which are thus independent of the carbon reserves in the massive belowground organs.


Subject(s)
Carbon , Grassland , Biomass , Carbohydrates , Seasons
15.
J Exp Bot ; 72(8): 3263-3278, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33544130

ABSTRACT

Phytochrome photoreceptors are known to regulate plastic growth responses to vegetation shade. However, recent reports also suggest an important role for phytochromes in carbon resource management, metabolism, and growth. Here, we use 13CO2 labelling patterns in multiallele phy mutants to investigate the role of phytochrome in the control of metabolic fluxes. We also combine quantitative data of 13C incorporation into protein and cell wall polymers, gas exchange measurements, and system modelling to investigate why biomass is decreased in adult multiallele phy mutants. Phytochrome influences the synthesis of stress metabolites such as raffinose and proline, and the accumulation of sugars, possibly through regulating vacuolar sugar transport. Remarkably, despite their modified metabolism and vastly altered architecture, growth rates in adult phy mutants resemble those of wild-type plants. Our results point to delayed seedling growth and smaller cotyledon size as the cause of the adult-stage phy mutant biomass defect. Our data signify a role for phytochrome in metabolic stress physiology and carbon partitioning, and illustrate that phytochrome action at the seedling stage sets the trajectory for adult biomass production.


Subject(s)
Phytochrome , Seedlings/growth & development , Biomass , Cotyledon , Light , Phytochrome B , Stress, Physiological
16.
J Exp Bot ; 72(7): 2570-2583, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33481019

ABSTRACT

Understanding the limiting factors of grain filling is essential for the further improvement of grain yields in rice (Oryza sativa). The relatively slow grain growth of the high-yielding cultivar 'Momiroman' is not improved by increasing carbon supply, and hence low sink activity (i.e. the metabolic activity of assimilate consumption/storage in sink organs) may be a limiting factor for grain filling. However, there is no metabolic evidence to corroborate this hypothesis, partly because there is no consensus on how to define and quantify sink activity. In this study, we investigated the carbon flow at a metabolite level from photosynthesis in leaves to starch synthesis in grains of three high-yielding cultivars using the stable isotope 13C. We found that a large amount of newly fixed carbon assimilates in Momiroman was stored as hexose instead of being converted to starch. In addition, the activity of ADP-glucose pyrophosphorylase and the expression of AGPS2b, which encodes a subunit of the ADP-glucose pyrophosphorylase enzyme, were both lower in Momiroman than in the other two cultivars in grains in superior positions on panicle branches. Hence, slower starch synthesis from hexose, which is partly explained by the low expression level of AGPS2b, may be the primary metabolic reason for the lower sink activity observed in Momiroman.


Subject(s)
Oryza , Starch/biosynthesis , Carbon , Hexoses , Oryza/metabolism , Plant Proteins/metabolism
17.
J Labelled Comp Radiopharm ; 64(1): 14-29, 2021 01.
Article in English | MEDLINE | ID: mdl-33063895

ABSTRACT

13 C-labeled dicarboxylic acids HO213 C-(CH2 )n -13 CO2 H (n = 10, 12, 14, 16, 18, 20, 22, 24, 26, 28) have been synthesized as internal standards for LC-MS and GC-MS analysis of cutin and suberin monomer degradation by soil-based microorganisms. Different synthetic strategies had to be applied depending on the chain length of the respective synthetic target and because of economic considerations. 13 C-labels were introduced by nucleophilic substitution of a suitable leaving group with labelled potassium cyanide and subsequent hydrolysis of the nitriles to produce the corresponding dicarboxylic acids. All new compounds are characterized by GC/MS, IR, and NMR methods as well as by elemental analysis.


Subject(s)
Lipids , Membrane Lipids , Carbon Dioxide , Dicarboxylic Acids , Mass Spectrometry
18.
New Phytol ; 229(1): 186-198, 2021 01.
Article in English | MEDLINE | ID: mdl-32491203

ABSTRACT

Despite the ecological and industrial importance of biomass accumulation in wood, the control of carbon (C) allocation to this tissue and to other tree tissues remain poorly understood. We studied sucrose synthase (SUS) to clarify its role in biomass formation and C metabolism at the whole tree level in hybrid aspen (Populus tremula × tremuloides). To this end, we analysed source leaves, phloem, developing wood, and roots of SUSRNAi trees using a combination of metabolite profiling, 13 CO2 pulse labelling experiments, and long-term field experiments. The glasshouse grown SUSRNAi trees exhibited a mild stem phenotype together with a reduction in wood total C. The 13 CO2 pulse labelling experiments showed an alteration in the C flow in all the analysed tissues, indicating that SUS affects C metabolism at the whole tree level. This was confirmed when the SUSRNAi trees were grown in the field over a 5-yr period; their stem height, diameter and biomass were substantially reduced. These results establish that SUS influences C allocation to developing wood, and that it affects C metabolism at the whole tree level.


Subject(s)
Populus , Wood , Carbon , Glucosyltransferases , Populus/genetics , Trees
19.
Math Biosci ; 300: 122-129, 2018 06.
Article in English | MEDLINE | ID: mdl-29526552

ABSTRACT

The isotopically non-stationary 13C labelling experiments, as an emerging experimental technique, can estimate the intracellular fluxes of the cell culture under an isotopic transient period. However, to the best of our knowledge, the issue of the structural identifiability analysis of non-stationary isotope experiments is not well addressed in the literature. In this work, the local structural identifiability analysis for non-stationary cumomer balance equations is conducted based on the Taylor series approach. The numerical rank of the Jacobian matrices of the finite extended time derivatives of the measured fractions with respect to the free parameters is taken as the criterion. It turns out that only one single time point is necessary to achieve the structural identifiability analysis of the cascaded linear dynamic system of non-stationary isotope experiments. The equivalence between the local structural identifiability of the cascaded linear dynamic systems and the local optimum condition of the nonlinear least squares problem is elucidated in the work. Optimal measurements sets can then be determined for the metabolic network. Two simulated metabolic networks are adopted to demonstrate the utility of the proposed method.


Subject(s)
Carbon Isotopes , Isotope Labeling/methods , Metabolic Networks and Pathways , Models, Theoretical , Cells, Cultured , Computer Simulation , Humans
20.
Metabolomics ; 14(1): 9, 2018.
Article in English | MEDLINE | ID: mdl-29238275

ABSTRACT

INTRODUCTION: Cupriavidus necator H16 is a gram-negative bacterium, capable of lithoautotrophic growth by utilizing hydrogen as an energy source and fixing carbon dioxide (CO2) through Calvin-Benson-Bassham (CBB) cycle. The potential to utilize synthesis gas (Syngas) and the prospects of rerouting carbon from polyhydroxybutyrate synthesis to value-added compounds makes C. necator an excellent chassis for industrial application. OBJECTIVES: In the context of lack of sufficient quantitative information of the metabolic pathways and to advance in rational metabolic engineering for optimized product synthesis in C. necator H16, we carried out a metabolic flux analysis based on steady-state 13C-labelling. METHODS: In this study, steady-state carbon labelling experiments, using either d-[1-13C]fructose or [1,2-13C]glycerol, were undertaken to investigate the carbon flux through the central carbon metabolism in C. necator H16 under heterotrophic and mixotrophic growth conditions, respectively. RESULTS: We found that the CBB cycle is active even under heterotrophic condition, and growth is indeed mixotrophic. While Entner-Doudoroff (ED) pathway is shown to be the major route for sugar degradation, tricarboxylic acid (TCA) cycle is highly active in mixotrophic condition. Enhanced flux is observed in reductive pentose phosphate pathway (redPPP) under the mixotrophic condition to supplement the precursor requirement for CBB cycle. The flux distribution was compared to the mRNA abundance of genes encoding enzymes involved in key enzymatic reactions of the central carbon metabolism. CONCLUSION: This study leads the way to establishing 13C-based quantitative fluxomics for rational pathway engineering in C. necator H16.

SELECTION OF CITATIONS
SEARCH DETAIL