Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Clin Transl Oncol ; 26(5): 1139-1146, 2024 May.
Article in English | MEDLINE | ID: mdl-37848693

ABSTRACT

PURPOSE: Breast cancer is the most common malignancy accounting for 11.7% of all cancer cases, with a rising incidence rate. Various diagnostic methods, including 18F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (18F-FDG PET/CT), play a crucial role in breast cancer diagnosis and staging. However, the unnecessary use of advanced imaging techniques such as PET/CT in early-stage breast cancer can have negative effects on both economics and patients. We aimed to investigate the impact of PET/CT on the management decisions of early-stage breast cancer patients by the breast cancer tumor board. METHODS: A retrospective analysis was performed on a cohort of 81 patients with early-stage breast cancer who were evaluated by breast cancer tumor board from January 2015 to December 2020. Demographic, clinical, and radiographic data, along with surgical procedures and treatment options, were documented and analyzed. RESULTS: The results showed that 18F-FDG PET/CT had a moderate impact on treatment decisions of breast cancer tumor board, as only treatment decisions were changed in 14,86% of the patients. The surgical procedure decision of breast cancer tumor board changed in 12.35% of patients, while 87.65% of patients had consistent decisions before and after PET/CT. Pathological assessments revealed invasive ductal carcinoma as the most prevalent tumor type, and molecular subtypes were predominantly luminal B. PET/CT use had limited impact on surgical procedures and did not significantly alter treatment decisions of breast cancer tumor board in this early-stage breast cancer cohort. CONCLUSIONS: In conclusion, this study highlights the importance of adherence to the guidelines and appropriate use of PET/CT in early-stage breast cancer management. PET/CT should be reserved for cases where it is clinically warranted, considering the potential economic burden and minimal impact on treatment decisions of breast cancer tumor board in this patient population.

2.
Biochim Biophys Acta Gen Subj ; 1867(9): 130397, 2023 09.
Article in English | MEDLINE | ID: mdl-37290716

ABSTRACT

BACKGROUND: Glycolytic inhibitor 2-deoxy-d-glucose (2-DG) binds to hexokinase in a non-competitive manner and phosphoglucose isomerase in a competitive manner, blocking the initial steps of the glycolytic pathway. Although 2-DG stimulates endoplasmic reticulum (ER) stress, activating the unfolded protein response to restore protein homeostasis, it is unclear which ER stress-related genes are modulated in response to 2-DG treatment in human primary cells. Here, we aimed to determine whether the treatment of monocytes and monocyte-derived macrophages (MDMs) with 2-DG leads to a transcriptional profile specific to ER stress. METHODS: We performed bioinformatics analysis to identify differentially expressed genes (DEGs) in previously reported RNA-seq datasets of 2-DG treated cells. RT-qPCR was performed to verify the sequencing data on cultured MDMs. RESULTS: A total of 95 common DEGs were found by transcriptional analysis of monocytes and MDMs treated with 2-DG. Among these, 74 were up-regulated and 21 were down-regulated. Multitranscript analysis showed that DEGs are linked to integrated stress response (GRP78/BiP, PERK, ATF4, CHOP, GADD34, IRE1α, XBP1, SESN2, ASNS, PHGDH), hexosamine biosynthetic pathway (GFAT1, GNA1, PGM3, UAP1), and mannose metabolism (GMPPA and GMPPB). CONCLUSIONS: Results reveal that 2-DG triggers a gene expression program that might be involved in restoring protein homeostasis in primary cells. GENERAL SIGNIFICANCE: 2-DG is known to inhibit glycolysis and induce ER stress; however, its effect on gene expression in primary cells is not well understood. This work shows that 2-DG is a stress inducer shifting the metabolic state of monocytes and macrophages.


Subject(s)
Glucose , Monocytes , Humans , Glucose/metabolism , Monocytes/metabolism , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases , Unfolded Protein Response/genetics , Macrophages/metabolism , Endoplasmic Reticulum Chaperone BiP , Deoxyglucose/pharmacology , Deoxyglucose/metabolism , Gene Expression , Sestrins/metabolism
3.
Braz J Psychiatry ; 44(5): 495-506, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36420910

ABSTRACT

OBJECTIVE: Positron emission tomography (PET) allows in vivo evaluation of molecular targets in neurodegenerative diseases, such as Alzheimer's disease. Mild cognitive impairment is an intermediate stage between normal cognition and Alzheimer-type dementia. In vivo fibrillar amyloid-beta can be detected in PET using [11C]-labeled Pittsburgh compound B (11C-PiB). In contrast, [18F]fluoro-2-deoxy-d-glucose (18F-FDG) is a neurodegeneration biomarker used to evaluate cerebral glucose metabolism, indicating neuronal injury and synaptic dysfunction. In addition, early cerebral uptake of amyloid-PET tracers can determine regional cerebral blood flow. The present study compared early-phase 11C-PiB and 18F-FDG in older adults without cognitive impairment, amnestic mild cognitive impairment, and clinical diagnosis of probable Alzheimer's disease. METHODS: We selected 90 older adults, clinically classified as healthy controls, with amnestic mild cognitive impairment, or with probable Alzheimer's disease, who underwent an 18F-FDG PET, early-phase 11C-PiB PET and magnetic resonance imaging. All participants were also classified as amyloid-positive or -negative in late-phase 11C-PiB. The data were analyzed using statistical parametric mapping. RESULTS: We found that the probable Alzheimer's disease and amnestic mild cognitive impairment group had lower early-phase 11C-PiB uptake in limbic structures than 18F-FDG uptake. The images showed significant interactions between amyloid-beta status (negative or positive). However, early-phase 11C-PiB appears to provide different information from 18F-FDG about neurodegeneration. CONCLUSIONS: Our study suggests that early-phase 11C-PiB uptake correlates with 18F-FDG, irrespective of the particular amyloid-beta status. In addition, we observed distinct regional distribution patterns between both biomarkers, reinforcing the need for more robust studies to investigate the real clinical value of early-phase amyloid-PET imaging.


Subject(s)
Alzheimer Disease , Humans , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Fluorodeoxyglucose F18/metabolism , Carbon Radioisotopes/metabolism , Brain/diagnostic imaging , Brain/pathology , Positron-Emission Tomography/methods , Amyloid beta-Peptides
4.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; Braz. J. Psychiatry (São Paulo, 1999, Impr.);44(5): 495-506, Sept.-Oct. 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1403774

ABSTRACT

Objective: Positron emission tomography (PET) allows in vivo evaluation of molecular targets in neurodegenerative diseases, such as Alzheimer's disease. Mild cognitive impairment is an intermediate stage between normal cognition and Alzheimer-type dementia. In vivo fibrillar amyloid-beta can be detected in PET using [11C]-labeled Pittsburgh compound B (11C-PiB). In contrast, [18F]fluoro-2-deoxy-d-glucose (18F-FDG) is a neurodegeneration biomarker used to evaluate cerebral glucose metabolism, indicating neuronal injury and synaptic dysfunction. In addition, early cerebral uptake of amyloid-PET tracers can determine regional cerebral blood flow. The present study compared early-phase 11C-PiB and 18F-FDG in older adults without cognitive impairment, amnestic mild cognitive impairment, and clinical diagnosis of probable Alzheimer's disease. Methods: We selected 90 older adults, clinically classified as healthy controls, with amnestic mild cognitive impairment, or with probable Alzheimer's disease, who underwent an 18F-FDG PET, early-phase 11C-PiB PET and magnetic resonance imaging. All participants were also classified as amyloid-positive or -negative in late-phase 11C-PiB. The data were analyzed using statistical parametric mapping. Results: We found that the probable Alzheimer's disease and amnestic mild cognitive impairment group had lower early-phase 11C-PiB uptake in limbic structures than 18F-FDG uptake. The images showed significant interactions between amyloid-beta status (negative or positive). However, early-phase 11C-PiB appears to provide different information from 18F-FDG about neurodegeneration. Conclusions: Our study suggests that early-phase 11C-PiB uptake correlates with 18F-FDG, irrespective of the particular amyloid-beta status. In addition, we observed distinct regional distribution patterns between both biomarkers, reinforcing the need for more robust studies to investigate the real clinical value of early-phase amyloid-PET imaging.

5.
Stereotact Funct Neurosurg ; 97(4): 232-240, 2019.
Article in English | MEDLINE | ID: mdl-31722358

ABSTRACT

BACKGROUND: Positron emission tomography (PET) imaging in epilepsy is an in vivo technique that allows the localization of a possible seizure onset zone (SOZ) during the interictal period. Stereo-electro-encephalography (SEEG) is the gold standard to define the SOZ. The objective of this research was to evaluate the accuracy of PET imaging in localizing the site of SOZ compared with SEEG. METHODS: Seven patients with refractory temporal lobe epilepsy (Ep) and 2 healthy controls (HC) underwent 2 PET scans, one with 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) and another with 2'-[18F]fluoroflumazenil (FFMZ), acquired 1 day apart. FDG was acquired for 10 min (static scan) 1 h after administration. An FFMZ scan was acquired for 60 min from radiopharmaceutical administration in a dynamic mode. Each brain PET image was segmented using a standard template implemented in PMOD 3.8. The pons was used as the reference region for modeling of the nondisplaceable binding potential (BPND)for FFMZ, and to obtain uptake ratios for FDG. SEEG studies of patients were performed as a part of their surgical evaluation to define the SOZ. RESULTS: Well-defined differences between HC and Ep were found with both radiopharmaceuticals, showing the utility to identify abnormal brain regions using quantitative PET imaging. Lateralization of the SOZ findings by PET (lower uptake/binding in a specific brain hemisphere) matched in 86% for FFMZ and 71% for FDG with SEEG data. CONCLUSION: Quantitative PET imaging is an excellent complementary tool that matches reasonably well with SEEG to define SOZ in presurgical evaluation.


Subject(s)
Drug Resistant Epilepsy/diagnostic imaging , Epilepsy, Temporal Lobe/diagnostic imaging , Flumazenil/analogs & derivatives , Fluorine Radioisotopes , Fluorodeoxyglucose F18 , Positron-Emission Tomography/methods , Adolescent , Adult , Brain Mapping/methods , Drug Resistant Epilepsy/metabolism , Drug Resistant Epilepsy/surgery , Epilepsy, Temporal Lobe/metabolism , Epilepsy, Temporal Lobe/surgery , Female , Flumazenil/metabolism , Fluorine Radioisotopes/metabolism , Fluorodeoxyglucose F18/metabolism , Humans , Male , Middle Aged , Seizures/diagnostic imaging , Seizures/metabolism , Seizures/surgery
6.
Pharmacol Res ; 135: 112-121, 2018 09.
Article in English | MEDLINE | ID: mdl-30048754

ABSTRACT

Angiotensin-(19), a peptide of the non-classical renin angiotensin system, has been shown to prevent and revert hypertension and cardiac hypertrophy. We hypothetized that systemic delivery of angiotensin-(1-9) following myocardial infarction will also be protective and extend to provide protection during reperfusion of the ischemic heart. Adult Sprague Dawley rats were subjected to left anterior descending artery ligation and treated with angiotensin-(1-9) via osmotic mini-pump for 2 weeks in the presence or absence of Mas receptor or AT2R antagonists (A779 and PD123319, respectively). Myocardial death and left ventricular function were evaluated after infarction. Infarct size and functional parameters were determined in isolated rat hearts after global ischemia/reperfusion in the presence of angiotensin-(1-9) plus receptor antagonists or Akt inhibitor at reperfusion. in vitro, neonatal rat ventricular cardiomyocytes underwent simulated ischemia/reperfusion and angiotensin-(1-9) was co-incubated with A779, PD123319 or Akt inhibitor. Systemic delivery of angiotensin-(1-9) significantly decreased cell death and improved left ventricular recovery after in vivo myocardial infarction. Perfusion with the peptide reduced the infarct size and improved functional recovery after ex vivo ischemia/reperfusion. In vitro, angiotensin-(1-9) decreased cell death in isolated neonatal rat ventricular cardiomyocytes subjected to simulated ischemia/reperfusion. The cardioprotective effects of angiotensin-(1-9) were blocked by PD123319 and Akti VIII but not by A779. Angiotensin-(1-9) limits reperfusion-induced cell death by an AT2R- and Aktdependent mechanism. Angiotensin-(1-9) is a novel strategy to protect against cardiac ischemia/reperfusion injury.


Subject(s)
Angiotensin I/therapeutic use , Cardiotonic Agents/therapeutic use , Myocardial Reperfusion Injury/prevention & control , Peptide Fragments/therapeutic use , Angiotensin I/pharmacology , Animals , Animals, Newborn , Cardiotonic Agents/pharmacology , Cells, Cultured , Heart/drug effects , Heart/physiology , Male , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocardium/metabolism , Peptide Fragments/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 2/metabolism
7.
Braz. J. Microbiol. ; 48(3): 602-606, jul.-set. 2017. tab, ilus, graf
Article in English | VETINDEX | ID: vti-728629

ABSTRACT

Expression of pectinolytic genes is regulated by catabolic repression limiting the production of pectin lyase (PL) if the natural inducer, pectin, is missing from the growth medium. Here, we report the isolation of Penicillium griseoroseum mutants resistant to 2-deoxy-d-glucose (DG) that show resistance to catabolite repression and overproduce PL. Three spontaneous and nine UV-induced mutants were obtained. Some mutants produced sectors (segments morphologically different) that were also studied. The mutants were analyzed for pectinases production on pectinase-agar plates and five mutants and two sectors showing larger clearing zones than the wild type were selected for quantitative assay. Although PL production higher than the wild type has been found, phenotype instability was observed for most of the mutants and, after transfers to nonselective medium, the DG resistance was no longer present. Only mutants M03 and M04 were stable maintaining the DG-resistance phenotype. When growing for 120 h in liquid medium containing glucose with or without pectin, both mutants showed higher PL production. In the presence of glucose as sole carbon source, the mutant M03 produced 7.8-fold more PL than the wild type. Due its phenotypic stability and PL overproduction, the mutant M03 presents potential for industrial applications.(AU)


Subject(s)
Pectins/genetics , Penicillium , Catabolite Repression , Lyases , Mutagenesis
8.
Braz. j. microbiol ; Braz. j. microbiol;48(3): 602-606, July-Sept. 2017. tab, graf
Article in English | LILACS | ID: biblio-889128

ABSTRACT

Abstract Expression of pectinolytic genes is regulated by catabolic repression limiting the production of pectin lyase (PL) if the natural inducer, pectin, is missing from the growth medium. Here, we report the isolation of Penicillium griseoroseum mutants resistant to 2-deoxy-d-glucose (DG) that show resistance to catabolite repression and overproduce PL. Three spontaneous and nine UV-induced mutants were obtained. Some mutants produced sectors (segments morphologically different) that were also studied. The mutants were analyzed for pectinases production on pectinase-agar plates and five mutants and two sectors showing larger clearing zones than the wild type were selected for quantitative assay. Although PL production higher than the wild type has been found, phenotype instability was observed for most of the mutants and, after transfers to nonselective medium, the DG resistance was no longer present. Only mutants M03 and M04 were stable maintaining the DG-resistance phenotype. When growing for 120 h in liquid medium containing glucose with or without pectin, both mutants showed higher PL production. In the presence of glucose as sole carbon source, the mutant M03 produced 7.8-fold more PL than the wild type. Due its phenotypic stability and PL overproduction, the mutant M03 presents potential for industrial applications.


Subject(s)
Fungal Proteins/metabolism , Penicillium/enzymology , Polysaccharide-Lyases/metabolism , Catabolite Repression , Culture Media/chemistry , Culture Media/metabolism , Fungal Proteins/genetics , Mutation , Pectins/metabolism , Penicillium/genetics , Penicillium/metabolism
9.
Braz J Microbiol ; 48(3): 602-606, 2017.
Article in English | MEDLINE | ID: mdl-28237679

ABSTRACT

Expression of pectinolytic genes is regulated by catabolic repression limiting the production of pectin lyase (PL) if the natural inducer, pectin, is missing from the growth medium. Here, we report the isolation of Penicillium griseoroseum mutants resistant to 2-deoxy-d-glucose (DG) that show resistance to catabolite repression and overproduce PL. Three spontaneous and nine UV-induced mutants were obtained. Some mutants produced sectors (segments morphologically different) that were also studied. The mutants were analyzed for pectinases production on pectinase-agar plates and five mutants and two sectors showing larger clearing zones than the wild type were selected for quantitative assay. Although PL production higher than the wild type has been found, phenotype instability was observed for most of the mutants and, after transfers to nonselective medium, the DG resistance was no longer present. Only mutants M03 and M04 were stable maintaining the DG-resistance phenotype. When growing for 120h in liquid medium containing glucose with or without pectin, both mutants showed higher PL production. In the presence of glucose as sole carbon source, the mutant M03 produced 7.8-fold more PL than the wild type. Due its phenotypic stability and PL overproduction, the mutant M03 presents potential for industrial applications.


Subject(s)
Fungal Proteins/metabolism , Penicillium/enzymology , Polysaccharide-Lyases/metabolism , Catabolite Repression , Culture Media/chemistry , Culture Media/metabolism , Fungal Proteins/genetics , Mutation , Pectins/metabolism , Penicillium/genetics , Penicillium/metabolism
10.
Neurochem Int ; 98: 72-81, 2016 09.
Article in English | MEDLINE | ID: mdl-27184733

ABSTRACT

Glutamate, the main excitatory neurotransmitter in the vertebrate brain, exerts its actions through specific membrane receptors present in neurons and glial cells. Over-stimulation of glutamate receptors results in neuronal death, phenomena known as excitotoxicity. A family of sodium-dependent, glutamate uptake transporters mainly expressed in glial cells, removes the amino acid from the synaptic cleft preventing neuronal death. The sustained sodium influx associated to glutamate removal in glial cells, activates the sodium/potassium ATPase restoring the ionic balance, additionally, glutamate entrance activates glutamine synthetase, both events are energy demanding, therefore glia cells increase their ATP expenditure favouring glucose uptake, and triggering several signal transduction pathways linked to proper neuronal glutamate availability, via the glutamate/glutamine shuttle. To further characterize these complex transporters interactions, we used the well-established model system of cultured chick cerebellum Bergmann glia cells. A time and dose-dependent increase in the activity, plasma membrane localization and protein levels of glucose transporters was detected upon d-aspartate exposure. Interestingly, this increase is the result of a protein kinase C-dependent signaling cascade. Furthermore, a glutamate-dependent glucose and glutamate transporters co-immunoprecipitation was detected. These results favour the notion that glial cells are involved in glutamatergic neuronal physiology.


Subject(s)
Glucose/metabolism , Glutamic Acid/metabolism , Neuroglia/metabolism , Amino Acid Transport System X-AG , Animals , Aspartic Acid/pharmacology , Carrier Proteins/metabolism , Cells, Cultured , Chick Embryo , Energy Metabolism/physiology , Excitatory Amino Acids/metabolism , Neuroglia/drug effects , Neurotransmitter Agents/metabolism , Protein Kinase C/metabolism , Signal Transduction/physiology , Sodium-Potassium-Exchanging ATPase/metabolism
11.
Braz. J. Biol. ; 74(3, supl.1): S191-S198, 8/2014. tab, graf
Article in English | VETINDEX | ID: vti-14883

ABSTRACT

Frogs have been used as an alternative model to study pain mechanisms because the simplicity of their nervous tissue and the phylogenetic aspect of this question. One of these models is the sciatic nerve transection (SNT), which mimics the clinical symptoms of “phantom limb”, a condition that arises in humans after amputation or transverse spinal lesions. In mammals, the SNT increases glucose metabolism in the central nervous system, and the lactate generated appears to serve as an energy source for nerve cells. An answerable question is whether there is elevated glucose uptake in the dorsal root ganglia (DRG) after peripheral axotomy. As glucose is the major energy substrate for frog nervous tissue, and these animals accumulate lactic acid under some conditions, bullfrogs Lithobates catesbeianus were used to demonstrate the effect of SNT on DRG and spinal cord 1-[14C] 2-deoxy-D-glucose (14C-2-DG) uptake in the presence and absence of lactate. We also investigated the effect of this condition on the formation of 14CO2 from 14C-glucose and 14C-L-lactate, and plasmatic glucose and lactate levels. The 3-O-[14C] methyl-D-glucose (14C-3-OMG) uptake was used to demonstrate the steady-state tissue/medium glucose distribution ratio under these conditions. Three days after SNT, 14C-2-DG uptake increased, but 14C-3-OMG uptake remained steady. The increase in 14C-2-DG uptake was lower when lactate was added to the incubation medium. No change was found in glucose and lactate oxidation after SNT, but lactate and glucose levels in the blood were reduced. Thus, our results showed that SNT increased the glucose metabolism in the frog DRG and spinal cord. The effect of lactate on this uptake suggests that glucose is used in glycolytic pathways after SNT.(AU)


As rãs são usadas como modelos experimentais alternativos no estudo da nocicepção, tanto pela simplicidade do seu tecido nervoso como por permitirem uma abordagem filogenética sobre o tema. Um desses modelos é a secção do nervo isquiático (SNI), o qual simula os sintomas clínicos do “membro fantasma”, uma condição que ocorre nos humanos após amputação ou secção completa da medula espinal. Em mamíferos, a SNI aumenta o metabolismo da glicose no sistema nervoso central, e o lactato é uma fonte energética para as células nervosas. Porém é desconhecido se essa é a situação em gânglio da raiz dorsal (GRD). Como a glicose é o principal substrato energético para o tecido nervoso de rãs, e a concentração plasmática de lactato está aumentada nesses animais em distintas situações, a rã-touro Lithobates catesbeianus foi usada para demonstrar os efeitos da SNI sobre a captação de 1-[14C] 2-deoxi-D-glicose (14C-2-DG), na presença e ausência de lactato, em GRD e medula espinal. Foram demonstrados ainda os efeitos dessa condição experimental sobre a formação de 14CO2 a partir de 14C-glicose e 14C-L-lactato, e a concentração plasmática de glicose e lactato. A captação de 3-O-[14C] metil-D-glicose (14C-3-OMG) foi usada para demonstrar a relação tecido/meio estável da glicose nessas condições. A captação de 14C-2-DG aumentou três dias após a SNI, sem qualquer alteração na captação de 14C-3-OMG. O aumento foi reduzido quando o lactato foi acrescentado ao meio de incubação. A taxa de oxidação da glicose e do lactato não modificou após SNI, mas houve redução na concentração plasmática de glicose e lactato. Assim, a SNI aumenta o metabolismo da glicose no GRD e medula espinal de rãs. Os efeitos do lactato sobre essa captação sugerem o uso da glicose na via glicolítica após a SNI.(AU)


Subject(s)
Animals , Male , Anura/blood , Ganglia, Spinal/metabolism , Glucose/metabolism , Lactic Acid/metabolism , Sciatic Nerve/surgery , Spinal Cord/metabolism , Glucose/analysis , Lactic Acid/blood
12.
Braz. j. biol ; Braz. j. biol;74(3)8/2014.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1468198

ABSTRACT

Frogs have been used as an alternative model to study pain mechanisms because the simplicity of their nervous tissue and the phylogenetic aspect of this question. One of these models is the sciatic nerve transection (SNT), which mimics the clinical symptoms of phantom limb, a condition that arises in humans after amputation or transverse spinal lesions. In mammals, the SNT increases glucose metabolism in the central nervous system, and the lactate generated appears to serve as an energy source for nerve cells. An answerable question is whether there is elevated glucose uptake in the dorsal root ganglia (DRG) after peripheral axotomy. As glucose is the major energy substrate for frog nervous tissue, and these animals accumulate lactic acid under some conditions, bullfrogs Lithobates catesbeianus were used to demonstrate the effect of SNT on DRG and spinal cord 1-[14C] 2-deoxy-D-glucose (14C-2-DG) uptake in the presence and absence of lactate. We also investigated the effect of this condition on the formation of 14CO2 from 14C-glucose and 14C-L-lactate, and plasmatic glucose and lactate levels. The 3-O-[14C] methyl-D-glucose (14C-3-OMG) uptake was used to demonstrate the steady-state tissue/medium glucose distribution ratio under these conditions. Three days after SNT, 14C-2-DG uptake increased, but 14C-3-OMG uptake remained steady. The increase in 14C-2-DG uptake was lower when lactate was added to the incubation medium. No change was found in glucose and lactate oxidation after SNT, but lactate and glucose levels in the blood were reduced. Thus, our results showed that SNT increased the glucose metabolism in the frog DRG and spinal cord. The effect of lactate on this uptake suggests that glucose is used in glycolytic pathways after SNT.


As rãs são usadas como modelos experimentais alternativos no estudo da nocicepção, tanto pela simplicidade do seu tecido nervoso como por permitirem uma abordagem filogenética sobre o tema. Um desses modelos é a secção do nervo isquiático (SNI), o qual simula os sintomas clínicos do membro fantasma, uma condição que ocorre nos humanos após amputação ou secção completa da medula espinal. Em mamíferos, a SNI aumenta o metabolismo da glicose no sistema nervoso central, e o lactato é uma fonte energética para as células nervosas. Porém é desconhecido se essa é a situação em gânglio da raiz dorsal (GRD). Como a glicose é o principal substrato energético para o tecido nervoso de rãs, e a concentração plasmática de lactato está aumentada nesses animais em distintas situações, a rã-touro Lithobates catesbeianus foi usada para demonstrar os efeitos da SNI sobre a captação de 1-[14C] 2-deoxi-D-glicose (14C-2-DG), na presença e ausência de lactato, em GRD e medula espinal. Foram demonstrados ainda os efeitos dessa condição experimental sobre a formação de 14CO2 a partir de 14C-glicose e 14C-L-lactato, e a concentração plasmática de glicose e lactato. A captação de 3-O-[14C] metil-D-glicose (14C-3-OMG) foi usada para demonstrar a relação tecido/meio estável da glicose nessas condições. A captação de 14C-2-DG aumentou três dias após a SNI, sem qualquer alteração na captação de 14C-3-OMG. O aumento foi reduzido quando o lactato foi acrescentado ao meio de incubação. A taxa de oxidação da glicose e do lactato não modificou após SNI, mas houve redução na concentração plasmática de glicose e lactato. Assim, a SNI aumenta o metabolismo da glicose no GRD e medula espinal de rãs. Os efeitos do lactato sobre essa captação sugerem o uso da glicose na via glicolítica após a SNI.

13.
Braz. j. biol ; Braz. j. biol;74(3,supl.1): S191-S198, 8/2014. tab, graf
Article in English | LILACS | ID: lil-732296

ABSTRACT

Frogs have been used as an alternative model to study pain mechanisms because the simplicity of their nervous tissue and the phylogenetic aspect of this question. One of these models is the sciatic nerve transection (SNT), which mimics the clinical symptoms of “phantom limb”, a condition that arises in humans after amputation or transverse spinal lesions. In mammals, the SNT increases glucose metabolism in the central nervous system, and the lactate generated appears to serve as an energy source for nerve cells. An answerable question is whether there is elevated glucose uptake in the dorsal root ganglia (DRG) after peripheral axotomy. As glucose is the major energy substrate for frog nervous tissue, and these animals accumulate lactic acid under some conditions, bullfrogs Lithobates catesbeianus were used to demonstrate the effect of SNT on DRG and spinal cord 1-[14C] 2-deoxy-D-glucose (14C-2-DG) uptake in the presence and absence of lactate. We also investigated the effect of this condition on the formation of 14CO2 from 14C-glucose and 14C-L-lactate, and plasmatic glucose and lactate levels. The 3-O-[14C] methyl-D-glucose (14C-3-OMG) uptake was used to demonstrate the steady-state tissue/medium glucose distribution ratio under these conditions. Three days after SNT, 14C-2-DG uptake increased, but 14C-3-OMG uptake remained steady. The increase in 14C-2-DG uptake was lower when lactate was added to the incubation medium. No change was found in glucose and lactate oxidation after SNT, but lactate and glucose levels in the blood were reduced. Thus, our results showed that SNT increased the glucose metabolism in the frog DRG and spinal cord. The effect of lactate on this uptake suggests that glucose is used in glycolytic pathways after SNT.


As rãs são usadas como modelos experimentais alternativos no estudo da nocicepção, tanto pela simplicidade do seu tecido nervoso como por permitirem uma abordagem filogenética sobre o tema. Um desses modelos é a secção do nervo isquiático (SNI), o qual simula os sintomas clínicos do “membro fantasma”, uma condição que ocorre nos humanos após amputação ou secção completa da medula espinal. Em mamíferos, a SNI aumenta o metabolismo da glicose no sistema nervoso central, e o lactato é uma fonte energética para as células nervosas. Porém é desconhecido se essa é a situação em gânglio da raiz dorsal (GRD). Como a glicose é o principal substrato energético para o tecido nervoso de rãs, e a concentração plasmática de lactato está aumentada nesses animais em distintas situações, a rã-touro Lithobates catesbeianus foi usada para demonstrar os efeitos da SNI sobre a captação de 1-[14C] 2-deoxi-D-glicose (14C-2-DG), na presença e ausência de lactato, em GRD e medula espinal. Foram demonstrados ainda os efeitos dessa condição experimental sobre a formação de 14CO2 a partir de 14C-glicose e 14C-L-lactato, e a concentração plasmática de glicose e lactato. A captação de 3-O-[14C] metil-D-glicose (14C-3-OMG) foi usada para demonstrar a relação tecido/meio estável da glicose nessas condições. A captação de 14C-2-DG aumentou três dias após a SNI, sem qualquer alteração na captação de 14C-3-OMG. O aumento foi reduzido quando o lactato foi acrescentado ao meio de incubação. A taxa de oxidação da glicose e do lactato não modificou após SNI, mas houve redução na concentração plasmática de glicose e lactato. Assim, a SNI aumenta o metabolismo da glicose no GRD e medula espinal de rãs. Os efeitos do lactato sobre essa captação sugerem o uso da glicose na via glicolítica após a SNI.


Subject(s)
Animals , Male , Anura/blood , Ganglia, Spinal/metabolism , Glucose/metabolism , Lactic Acid/metabolism , Sciatic Nerve/surgery , Spinal Cord/metabolism , Anura/surgery , Glucose/analysis , Lactic Acid/blood
SELECTION OF CITATIONS
SEARCH DETAIL