Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.698
Filter
1.
Diagnostics (Basel) ; 14(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125483

ABSTRACT

BACKGROUND: Biparametric MRI (bpMRI) has an important role in the diagnosis of prostate cancer (PCa), by reducing the cost and duration of the procedure and adverse reactions. We assess the additional benefit of the ADC map in detecting prostate cancer (PCa). Additionally, we examine whether the ADC value correlates with the presence of clinically significant tumors (csPCa). METHODS: 104 peripheral lesions classified as PI-RADS v2.1 score 3 or 3+1 at the mpMRI underwent transperineal MRI/US fusion-guided targeted biopsy. RESULTS: The lesions were classified as PI-RADS 3 or 3+1; at histopathology, 30 were adenocarcinomas, 21 of which were classified as csPCa. The ADC threshold that maximized the Youden index in order to predict the presence of a tumor was 1103 (95% CI (990, 1243)), with a sensitivity of 0.8 and a specificity of 0.59; both values were greater than those found using the contrast medium, which were 0.5 and 0.54, respectively. Similar results were also found with csPCa, where the optimal ADC threshold was 1096 (95% CI (988, 1096)), with a sensitivity of 0.86 and specificity of 0.59, compared to 0.49 and 0.59 observed in the mpMRI. CONCLUSIONS: Our study confirms the possible use of a quantitative parameter (ADC value) in the risk stratification of csPCa, by reducing the number of biopsies and, therefore, the number of unwarranted diagnoses of PCa and the risk of overtreatment.

2.
Cancer Med ; 13(15): e70066, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39118477

ABSTRACT

PURPOSE: Neuroendocrine carcinoma of the cervix (NECC) is rare but results in poor prognosis. The causes of death (CODs) in NECC patients are rarely reported. Our study aimed to explore the distributions of death causes of NECC patients compared with squamous cell carcinoma (SCC) and adenocarcinoma (ADC) and to develop a validated survival prediction model. METHODS: Patients diagnosed with NECC, SCC, or ADC were identified from the Surveillance, Epidemiology, and End Results Program database from 1975 to 2019. We analyzed the standardized mortality ratio (SMR) to determine each cause of death for each survival time category. The Kaplan-Meier method was used for survival analysis. Univariate and multivariate Cox regression analyses were used to establish a nomogram model. RESULTS: A total of 358 NECC patients were included in this study, and 270 (75.4%) died during the follow-up period. Patients with NECC had 5.55 times (95% CI, 4.53-6.79, p < 0.0001) higher risk of death compared with patients with SCC and 10.38 times (95% CI, 8.28-13.01, p < 0.0001) higher compared with ADC. Cervical cancer is the main cause of death in NECC. As the diagnosis time increased, the risk of death from all causes and cervix cancer gradually decreased. While after at least 10 years of follow-up time, the highest and most dramatical SMR values were observed for metastasis (SMR, 138.81; 95% CI, 37.82-355.40; p < 0.05) and other cancers as the reason for death has an over 7-fold higher SMR (SMR: 7.07; 95% CI: 2.60-15.40, p < 0.05) more than 5 years after the cancer diagnosis. Race, FIGO stage, and surgery were independent risk factors for the overall survival (OS) of NECC patients. For the predictive nomogram, the C-index was 0.711 (95% CI: 0.697-0.725) and was corrected to 0.709 (95% CI: 0.680, 0.737) by bootstrap 1000 resampling validation. CONCLUSION: Compared with SCC and ADC, NECC patients have an elevated risk of mortality due to cervical cancer and metastasis. We successfully constructed a prognostic nomogram for patients with NECC. Based on refractoriness and high mortality of NECC, targeted treatment strategies and follow-up plans should be further developed according to the risk of death and distribution characteristics of CODs.


Subject(s)
Carcinoma, Neuroendocrine , Carcinoma, Squamous Cell , Cause of Death , Nomograms , SEER Program , Uterine Cervical Neoplasms , Humans , Female , Carcinoma, Neuroendocrine/mortality , Carcinoma, Neuroendocrine/pathology , Uterine Cervical Neoplasms/mortality , Uterine Cervical Neoplasms/pathology , Middle Aged , Prognosis , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/pathology , Adult , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Aged , Kaplan-Meier Estimate
3.
Nanomaterials (Basel) ; 14(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39120366

ABSTRACT

AuroLase® Therapy-a nanoparticle-enabled focal therapy-has the potential to safely and effectively treat localized prostate cancer (PCa), preserving baseline functionality. This article presents a detailed case of localized PCa treated with AuroLase, providing insight on expectations from the diagnosis of PCa to one year post-treatment. AuroLase Therapy is a two-day treatment consisting of a systemic infusion of gold nanoshells (~150-nm hydrodynamic diameter) on Day 1, and sub-ablative laser treatment on Day 2. Multiparametric MRI (mpMRI) was used for tumor visualization, treatment planning, and therapy response assessment. The PCa was targeted with a MR/Ultrasound-fusion (MR/US) transperineal approach. Successful treatment was confirmed at 6 and 12 months post-treatment by the absence of disease in MR/US targeted biopsies. On the mpMRI, confined void space was evident, an indication of necrotic tissues encompassing the treated lesion, which was completely resolved at 12 months, forming a band-like scar with no evidence of recurrent tumor. The patient's urinary and sexual functions were unchanged. During the one-year follow-up, changes on the DCE sequence and in the Ktrans and ADC values assist in qualitatively and quantitatively evaluating tissue changes. The results highlight the potential of gold-nanoparticle-enabled sub-ablative laser treatment to target and control localized PCa, maintain quality of life, and preserve baseline functionality.

4.
Cancer ; 130(S17): 3054-3066, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39092590

ABSTRACT

Antibody-drug conjugates (ADCs) have demonstrated effectiveness in treating various cancers, particularly exhibiting specificity in targeting human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Recent advancements in phase 3 clinical trials have broadened current understanding of ADCs, especially trastuzumab deruxtecan, in treating other HER2-expressing malignancies. This expansion of knowledge has led to the US Food and Drug Administration's approval of trastuzumab deruxtecan for HER2-positive and HER2-low breast cancer, HER2-positive gastric cancer, and HER2-mutant nonsmall cell lung cancer. Concurrent with the increasing use of ADCs in oncology, there is growing concern among health care professionals regarding the rise in the incidence of interstitial lung disease or pneumonitis (ILD/p), which is associated with anti-HER2 ADC therapy. Studies on anti-HER2 ADCs have reported varying ILD/p mortality rates. Consequently, it is crucial to establish guidelines for the diagnosis and management of ILD/p in patients receiving anti-HER2 ADC therapy. To this end, a panel of Chinese experts was convened to formulate a strategic approach for the identification and management of ILD/p in patients treated with anti-HER2 ADC therapy. This report presents the expert panel's opinions and recommendations, which are intended to guide the management of ILD/p induced by anti-HER2 ADC therapy in clinical practice.


Subject(s)
Immunoconjugates , Lung Diseases, Interstitial , Receptor, ErbB-2 , Humans , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/chemically induced , China , Immunoconjugates/therapeutic use , Immunoconjugates/adverse effects , Pneumonia/drug therapy , Female , Consensus , Trastuzumab/therapeutic use , Trastuzumab/adverse effects , Breast Neoplasms/drug therapy , Camptothecin/analogs & derivatives
5.
J Ovarian Res ; 17(1): 161, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118097

ABSTRACT

Ovarian cancer stands as the deadliest gynecologic malignancy, responsible for nearly 65% of all gynecologic cancer-related deaths. The challenges in early detection and diagnosis, coupled with the widespread intraperitoneal spread of cancer cells and resistance to chemotherapy, contribute significantly to the high mortality rate of this disease. Due to the absence of specific symptoms and the lack of effective screening methods, most ovarian cancer cases are diagnosed at advanced stages. While chemotherapy is a common treatment, it often leads to tumor recurrence, necessitating further interventions. In recent years, antibody-drug conjugates (ADCs) have emerged as a valuable tool in targeted cancer therapy. These complex biotherapeutics combine an antibody that specifically targets tumor specific/associated antigen(s) with a high potency anti-cancer drug through a linker, offering a promising approach for ovarian cancer treatment. The identification of molecular targets in various human tumors has paved the way for the development of targeted therapies, with ADCs being at the forefront of this innovation. By delivering cytotoxic agents directly to tumors and metastatic lesions, ADCs show potential in managing chemo-resistant ovarian cancers. Mucins such as MUC16, MUC13, and MUC1 have shown significantly higher expression in ovarian tumors as compared to normal and/or benign samples, thus have become promising targets for ADC generation. While traditional markers are limited by their elevated levels in non-cancerous conditions, mucins offer a new possibility for targeted treatment in ovarian cancer. This review comprehensively described the potential of mucins for the generation of ADC therapy, highlighting their importance in the quest to improve the outcome of ovarian cancer patients.


Subject(s)
Immunoconjugates , Mucins , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Mucins/metabolism , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Animals
6.
Cancers (Basel) ; 16(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39123409

ABSTRACT

BACKGROUND: Antibody-drug conjugates (ADCs) represent potent cancer therapies that deliver highly toxic drugs to tumor cells precisely, thus allowing for targeted treatment and significantly reducing off-target effects. Despite their effectiveness, ADCs can face limitations due to acquired resistance and potential side effects. OBJECTIVES: This study focuses on advances in various ADC components to improve both the efficacy and safety of these agents, and includes the analysis of several novel ADC formats. This work assesses whether the unique features of VHHs-such as their small size, enhanced tissue penetration, stability, and cost-effectiveness-make them a viable alternative to conventional antibodies for ADCs and reviews their current status in ADC development. METHODS: Following PRISMA guidelines, this study focused on VHHs as components of ADCs, examining advancements and prospects from 1 January 2014 to 30 June 2024. Searches were conducted in PubMed, Cochrane Library, ScienceDirect and LILACS using specific terms related to ADCs and single-domain antibodies. Retrieved articles were rigorously evaluated, excluding duplicates and non-qualifying studies. The selected peer-reviewed articles were analyzed for quality and synthesized to highlight advancements, methods, payloads, and future directions in ADC research. RESULTS: VHHs offer significant advantages for drug conjugation over conventional antibodies due to their smaller size and structure, which enhance tissue penetration and enable access to previously inaccessible epitopes. Their superior stability, solubility, and manufacturability facilitate cost-effective production and expand the range of targetable antigens. Additionally, some VHHs can naturally cross the blood-brain barrier or be easily modified to favor their penetration, making them promising for targeting brain tumors and metastases. Although no VHH-drug conjugates (nADC or nanoADC) are currently in the clinical arena, preclinical studies have explored various conjugation methods and linkers. CONCLUSIONS: While ADCs are transforming cancer treatment, their unique mechanisms and associated toxicities challenge traditional views on bioavailability and vary with different tumor types. Severe toxicities, often linked to compound instability, off-target effects, and nonspecific blood cell interactions, highlight the need for better understanding. Conversely, the rapid distribution, tumor penetration, and clearance of VHHs could be advantageous, potentially reducing toxicity by minimizing prolonged exposure. These attributes make single-domain antibodies strong candidates for the next generation of ADCs, potentially enhancing both efficacy and safety.

7.
Article in English | MEDLINE | ID: mdl-39089930

ABSTRACT

BACKGROUND: Aggressive NK/T-Cell neoplasms are rare hematological malignancies characterized by the abnormal proliferation of NK or NK-like T (NK/T) cells. CD6 is a transmembrane signal transducing receptor involved in lymphocyte activation and differentiation. This study aimed to investigate the CD6 expression in these malignancies and explore the potential of targeting CD6 in these diseases. MATERIALS AND METHODS: We conducted a retrospective study with totally 41 cases to investigate the expression of CD6 by immunohistochemistry, including aggressive NK-cell leukemia/lymphoma (ANKLL: N = 10) and extranodal NK/T-cell lymphoma (ENKTL: N = 31). A novel ANKLL model was applied for proof-of-concept functional studies of a CD6 antibody-drug-conjugate (CD6-ADC) both in vitro and in animal trial. RESULTS: CD6 was expressed in 68.3% (28/41) of cases (70% (7/10) of ANKLL and 67.7% (21/31) of ENKTL). The median overall survival (OS) for ANKLL and ENTKL cases was 1 and 12 months, respectively, with no significant difference in OS based on CD6 expression (p > 0.05, Kaplan-Meier with log-rank test). In vitro exposure of the CCANKL cell line, derived from an ANKL patient, to an anti-CD6ADC resulted in dose dependent induction of apoptosis. Furthermore, CCANKL engraftment in NSG mice could be blocked by treatment with the anti-CD6 ADC. CONCLUSION: To date, this is the first report to explore the expression of CD6 in ANKLL and ENKTL and confirms its expression in the majority of cases. The in vitro and in vivo data support further investigation of CD6 as a potential therapeutic target in these aggressive NK/T-cell malignancies.

8.
Rinsho Ketsueki ; 65(6): 547-557, 2024.
Article in Japanese | MEDLINE | ID: mdl-38960655

ABSTRACT

B-cell maturation antigen (BCMA)-targeting therapy is the most common approach to immunotherapy and cellular therapy for multiple myeloma (MM). Three major agents, CAR-T cells, bispecific antibodies, and ADC have been developed as novel therapeutic agents. CAR-T therapy showed favorable efficacy in the treatment of relapsed and refractory MM (RR MM) and was tried in early lines of therapy. Similarly, bispecific antibodies targeting BCMA or other targets have also shown promising effects in treatment of RR MM, and have been now tested in combination with other agents. Although issues such as poor fitness or exhaustion of T cells and increased susceptibility to viral infection remain to be fully resolved, novel immunotherapies and cellular therapies should further improve the prognosis of patients with RR MM.


Subject(s)
Antibodies, Bispecific , Multiple Myeloma , Multiple Myeloma/therapy , Multiple Myeloma/immunology , Humans , Antibodies, Bispecific/therapeutic use , B-Cell Maturation Antigen/immunology , Immunotherapy/methods , Molecular Targeted Therapy , Immunotherapy, Adoptive
9.
Cancers (Basel) ; 16(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39001482

ABSTRACT

Antibody-drug conjugates (ADCs) have been a significant advancement in cancer therapy, particularly for urothelial cancer (UC). These innovative treatments, originally developed for hematological malignancies, use target-specific monoclonal antibodies linked to potent cytotoxic agents. This rational drug design efficiently delivers cancer cell-killing agents to cells expressing specific surface proteins, which are abundant in UC owing to their high antigen expression. UC is an ideal candidate for ADC therapy, as it enhances on-target efficacy while mitigating systemic toxicity. In recent years, considerable progress has been made in understanding the biology and mechanisms of tumor progression in UC. However, despite the introduction of immune checkpoint inhibitors, advanced UC is characterized by rapid progression and poor survival rates. Targeted therapies that have been developed include the anti-nectin 4 ADC enfortumab vedotin and the fibroblast growth factor receptor inhibitor erdafitinib. Enfortumab vedotin has shown efficacy in prospective studies in patients with advanced UC, alone and in combination with pembrolizumab. The anti-Trop-2 ADC sacituzumab govitecan has also demonstrated effectiveness in single-armed studies. This review highlights the mechanism of action of ADCs, their application in mono- and combination therapies, primary mechanisms of resistance, and future perspectives for their clinical use in UC treatment. ADCs have proven to be an increasingly vital component of the therapeutic landscape for urothelial carcinoma, filling a gap in the treatment of this progressive disease.

10.
Cancers (Basel) ; 16(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39001500

ABSTRACT

OBJECTIVES: Glioblastomas (GBM) are the most common primary invasive neoplasms of the brain. Distinguishing between lesion recurrence and different types of treatment related changes in patients with GBM remains challenging using conventional MRI imaging techniques. Therefore, accurate and precise differentiation between true progression or pseudoresponse is crucial in deciding on the appropriate course of treatment. This retrospective study investigated the potential of apparent diffusion coefficient (ADC) map values derived from diffusion-weighted imaging (DWI) as a noninvasive method to increase diagnostic accuracy in treatment response. METHODS: A cohort of 21 glioblastoma patients (mean age: 59.2 ± 11.8, 12 Male, 9 Female) that underwent treatment with bevacizumab were selected. The ADC values were calculated from the DWI images obtained from a standardized brain protocol across 1.5-T and 3-T MRI scanners. Ratios were calculated for rADC values. Lesions were classified as bevacizumab-induced cytotoxicity based on characteristic imaging features (well-defined regions of restricted diffusion with persistent diffusion restriction over the course of weeks without tissue volume loss and absence of contrast enhancement). The rADC value was compared to these values in radiation necrosis and recurrent lesions, which were concluded in our prior study. The nonparametric Wilcoxon signed rank test with p < 0.05 was used for significance. RESULTS: The mean ± SD age of the selected patients was 59.2 ± 11.8. ADC values and corresponding mean rADC values for bevacizumab-induced cytotoxicity were 248.1 ± 67.2 and 0.39 ± 0.10, respectively. These results were compared to the ADC values and corresponding mean rADC values of tumor progression and radiation necrosis. Significant differences between rADC values were observed in all three groups (p < 0.001). Bevacizumab-induced cytotoxicity had statistically significant lower ADC values compared to both tumor recurrence and radiation necrosis. CONCLUSION: The study demonstrates the potential of ADC values as noninvasive imaging biomarkers for differentiating recurrent glioblastoma from radiation necrosis and bevacizumab-induced cytotoxicity.

11.
Radiography (Lond) ; 30(5): 1290-1296, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39029278

ABSTRACT

INTRODUCTION: Diffusion-weighted imaging (DWI) with radial acquisition regime (RADAR; RADAR-DWI) is a fast spin echo (FSE)-based DWI imaging technique that is known to be robust to magnetic susceptibility artifacts and distortions as compared with echo planar imaging DWI (EPI-DWI). Several reports have suggested that the apparent diffusion coefficient (ADC) values obtained with FSE-based DWI are different from those obtained with EPI-DWI. The purpose of this study was to create phantoms that mimic the T2 and ADC values of various tissues and to demonstrate the ADC values obtained with RADAR-DWI and EPI-DWI in low-field magnetic resonance imaging (MRI) systems. METHODS: Several phantoms were created using sucrose and manganese (II) chloride tetrahydrate mimicking various tissues. RADAR-DWI and EPI-DWI were used to scan the phantoms, and the obtained ADC values were compared. RESULTS: The ADC values obtained with RADAR-DWI were significantly higher than those obtained with EPI-DWI for all phantoms (P < 0.05). The ADC values obtained by RADAR-DWI ranged from 0.70 ± 0.01 to 1.21 ± 0.02 ( × 10-3mm2s-1). Meanwhile, the ADC values obtained with EPI-DWI ranged from 0.59 ± 0.01 to 1.08 ± 0.05 ( × 10-3mm2s-1). CONCLUSIONS: We created phantoms mimicking T2 and ADC values of various tissues and demonstrated the differences in ADC values obtained with RADAR-DWI and EPI-DWI using low-field MRI systems. IMPLICATIONS FOR PRACTICE: ADC values obtained by RADAR-DWI are significantly higher than those obtained by EPI-DWI, with different cutoff values for various tumor malignancies between them.

12.
Pharmaceutics ; 16(7)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39065640

ABSTRACT

Neuroblastoma (NB) is a cancer of the peripheral nervous system found in children under 15 years of age. It is the most frequently diagnosed cancer during infancy, accounting for ~12% of all cancer-related deaths in children. Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) is a membrane receptor that is associated with the primary tumor formation and metastasis of cancers in the gastrointestinal system. Remarkably, high levels of LGR5 are found in NB tumor cells, and high LGR5 expression is strongly correlated with poor survival. Antibody-drug conjugates (ADCs) are monoclonal antibodies that are covalently linked to cell-killing cytotoxins to deliver the payloads into cancer cells. We generated an ADC with an anti-LGR5 antibody and pyrrolobenzodiazepine (PBD) dimer-based payload SG3199 using a chemoenzymatic conjugation method. The resulting anti-LGR5 ADC was able to inhibit the growth of NB cells expressing LGR5 with high potency and specificity. Importantly, the ADC was able to completely inhibit the growth of NB xenograft tumors in vivo at a clinically relevant dose for the PBD class of ADCs. The findings support the potential of targeting LGR5 using the PBD class of payload for the treatment of high-risk NBs.

13.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39065798

ABSTRACT

Despite significant progress in cancer prevention, screening, and treatment, the still limited number of therapeutic options is an obstacle towards increasing the cancer cure rate. In recent years, many efforts were put forth to develop therapeutics that selectively target different components of the oncogenic Wnt/ß-catenin signaling pathway. These include small molecule inhibitors, antibodies, and more recently, gene-based approaches. Although some of them showed promising outcomes in clinical trials, the Wnt/ß-catenin pathway is still not targeted in routine clinical practice for cancer management. As for most anticancer treatments, a critical limitation to the use of Wnt/ß-catenin inhibitors is their therapeutic index, i.e., the difficulty of combining effective anticancer activity with acceptable toxicity. Protecting healthy tissues from the effects of Wnt/ß-catenin inhibitors is a major issue due to the vital role of the Wnt/ß-catenin signaling pathway in adult tissue homeostasis and regeneration. In this review, we provide an up-to-date summary of clinical trials on Wnt/ß-catenin pathway inhibitors, examine their anti-tumor activity and associated adverse events, and explore strategies under development to improve the benefit/risk profile of this therapeutic approach.

14.
BMC Cancer ; 24(1): 898, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060958

ABSTRACT

BACKGROUND: To provide reference for clinical development of ADCs in the industry, we analyzed the landscape and characteristics of clinical trials about antibody-drug conjugates (ADCs). METHOD: Clinical trials to study ADCs used for the pharmacotherapy of cancers initiated by the sponsor were searched in the Cite line Pharma Intelligence (Trialtrove database), and the landscape and characteristics of these clinical trials were analyzed from multiple perspectives, such as the number, phases, status, indications, and targets of the clinical trials. RESULT: As of December 31, 2022, a total of 431 clinical trials have been initiated to study ADCs used for the pharmacotherapy of cancers, and the number of the last 10 years was 5.5 times as large as the first 11 years. These clinical trials involved 47 indications, including breast cancer, lymphoma (lymphoma, non-Hodgkin's and lymphoma, Hodgkin's), unspecified solid tumor, bladder cancer and lung cancer (lung, non-small cell cancer and lung, small cell cancer). As for each of these five indications, 50 + clinical trials have been carried out, accounting for as high as 48.50% (454/936). ADCs involve 38 targets, which are relatively concentrated. Among them, ERBB2 (HER2) and TNFRSF8 (CD30) involve in 100 + registered clinical trials, and TNFRSF17 (BCMA), NECTIN4 and CD19 in 10 + trials. The clinical trials for these five targets account for 79.02% (354/448) of the total number. Up to 93.97% (405/431) of these clinical trials explored the correlation between biomarkers and efficacy. Up to 45.91% (292/636) of Lots (lines of treatment) applied in the clinical trials were the second line. Until December 31, 2022, 54.52% (235/431) of the clinical trials have been completed or terminated. CONCLUSION: ADCs are a hotspot of research and development in oncology clinical trials, but the indications, targets, phases, and Lot that have been registered are seemingly relatively concentrated at present. This study provides a comprehensive analysis which can assist researchers/developer quickly grasp relevant knowledge to assess a product and also providing new clues and ideas for future research.


Subject(s)
Clinical Trials as Topic , Drug Development , Immunoconjugates , Neoplasms , Registries , Humans , Neoplasms/drug therapy , Immunoconjugates/therapeutic use , Antineoplastic Agents/therapeutic use
15.
Bioorg Med Chem ; 110: 117828, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38981219

ABSTRACT

The approval of Trodelvy® validates TROP2 as a druggable but challenging target for antibody-drug conjugates (ADCs) to treat metastatic triple-negative breast cancer (mTNBC). Here, based on the TROP2-targeted antibody sacituzumab, we designed and developed several site-specific ADC candidates, which employ MMAE (monomethyl auristatin E) as the toxin, via IgG glycoengineering or affinity-directed traceless conjugation. Systematic evaluation of these site-specific ADCs in homogeneity, hydrophilicity, stability, and antitumor efficiency was conducted. The results indicate that the site-specific ADCs gsADC 3b made from one-step glycoengineering exhibit good aggregation stability and in vivo efficacy, providing a new format of ADCs that target TROP2.


Subject(s)
Antigens, Neoplasm , Antineoplastic Agents , Cell Adhesion Molecules , Drug Design , Immunoconjugates , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacology , Antigens, Neoplasm/immunology , Antigens, Neoplasm/metabolism , Cell Adhesion Molecules/antagonists & inhibitors , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/immunology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Mice , Female , Molecular Structure , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Cell Line, Tumor , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/pharmacology , Oligopeptides
16.
Biomed Pharmacother ; 177: 117106, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39013223

ABSTRACT

Coupled drugs, especially antibody-coupled drugs (ADCs), are a hot topic in oncology. As the development of ADCs has progressed, different coupling modes have emerged, inspired by their structural design have emerged. Technological advances have led to interweaving and collision of old and new concepts of coupled drugs, and have even challenged the concepts and techniques of coupled drugs at this stage. For example, antibody-oligonucleotide conjugates are a new class of chimeric biomolecules synthesized by coupling oligonucleotides with monoclonal antibodies through linkers, offering precise targeting and improved pharmacokinetic properties. This study aimed to elucidate the mechanism of action of coupled drugs and their current development status in antitumor therapy to provide better strategies for antitumor therapy.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Neoplasms , Precision Medicine , Humans , Neoplasms/drug therapy , Immunoconjugates/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Precision Medicine/methods , Animals , Drug Delivery Systems/methods , Antibodies, Monoclonal/therapeutic use
17.
Genes (Basel) ; 15(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39062682

ABSTRACT

Human epidermal growth factor receptor 2 (HER2), a targetable transmembrane glycoprotein receptor of the epidermal growth factor receptor (EGFR) family, plays a crucial role in cell proliferation, survival, and differentiation. Aberrant HER2 signaling is implicated in various cancers, particularly in breast and gastric cancers, where HER2 overexpression or amplification correlates with aggressive tumor behavior and poor prognosis. HER2-activating mutations contribute to accelerated tumorigenesis and metastasis. This review provides an overview of HER2 biology, signaling pathways, mechanisms of dysregulation, and diagnostic approaches, as well as therapeutic strategies targeting HER2 in cancer. Understanding the intricate details of HER2 regulation is essential for developing effective targeted therapies and improving patient outcomes.


Subject(s)
Neoplasms , Receptor, ErbB-2 , Signal Transduction , Humans , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Signal Transduction/genetics , Gene Expression Regulation, Neoplastic , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Molecular Targeted Therapy
18.
Cancer Drug Resist ; 7: 22, 2024.
Article in English | MEDLINE | ID: mdl-39050884

ABSTRACT

Human epidermal growth factor 2 (HER2)-positive breast cancer (BC) represents nearly 20% of all breast tumors. Historically, these patients had a high rate of relapse and dismal prognosis. The advent of HER2-targeting monoclonal antibodies such as trastuzumab followed by pertuzumab had improved the prognosis of HER2-positive metastatic BC. More recently, antibody-drug conjugates (ADCs) are now reshaping the treatment paradigm of solid tumors, especially breast cancer. Tratsuzumab emtansine (T-DM1) was one of the first ADC developed in oncology and was approved for the management of HER2-positive metastatic BC. In a head-to-head comparison, trastuzumab deruxtecan (T-DXd) defeated T-DM1 as a second-line treatment. The efficacy of ADCs is counterbalanced by the appearance of acquired resistance to these agents. In this paper, we summarize the mechanisms of action and resistance of T-DM1 and T-DXd, as well as their clinical efficacy. Additionally, we also discuss potential strategies for addressing resistance to ADC.

19.
Cureus ; 16(6): e63501, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39081452

ABSTRACT

Background Lumbosacral radiculopathy (LSR) due to lumbar disc herniation (LDH) is a condition caused by mechanical compression of nerve roots. Various physical therapy interventions have been proposed for the conservative management of LSR due to LDH. However, the study of physical therapy interventions in a multimodal form is lacking. Additionally, the effect of physical therapy on diffusion tensor imaging (DTI) parameters of the compressed nerve root has not been studied. This study aimed to investigate the effects of multimodal physical therapy (MPT) on pain, disability, soleus H-reflex, and DTI parameters of the compressed nerve root in patients with chronic unilateral LSR due to LDH. Methods A prospective preliminary pre-post clinical trial with a convenience sample was conducted. A total of 14 patients with chronic unilateral LSR due to paracentral L4-L5 or L5-S1 LDH were recruited for the study. Participants received a total of 18 sessions of a six-week MPT program that consisted of electrophysical agents, manual therapy interventions, and core stability exercises. Electrophysical agents involved interferential current and hot pack. Manual therapy interventions included myofascial release, side posture positional distraction, passive spinal rotation mobilization, and high-velocity low-amplitude manipulation. Visual analog scale (VAS), Roland-Morris Disability Questionnaire (RMDQ), soleus H-reflex amplitude, side-to-side amplitude (H/H) ratio, fractional anisotropy (FA), and apparent diffusion coefficient (ADC) of the compressed nerve root were measured at baseline and post-intervention. Results There were significant improvements in VAS, RMDQ, H/H ratio, FA, and ADC of the compressed nerve root. Furthermore, significant improvement was found in the affected side compared with the contralateral side in H-reflex amplitude. Conclusions The observations of this preliminary trial suggest that MPT is a successful intervention in patients with chronic unilateral LSR due to LDH. Regarding DTI parameters of the compressed nerve root, FA increased and ADC decreased. Future studies with a control group, large sample sizes, and longer follow-up periods are needed.

20.
Mol Pharm ; 21(8): 4098-4115, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39047292

ABSTRACT

Triple-negative breast cancer (TNBC) is the deadliest form of breast cancer with limited treatment options. The persistence of highly tumorigenic CD44-expressing subpopulation referred to as cancer stem cells (CSCs), endowed with the self-renewal capacity, has been associated with therapeutic resistance, hence clinical relapses. To mitigate these undesired events, targeted immunotherapies using antibody-photoconjugate (APC) or antibody-drug conjugate (ADC), were developed to specifically release cytotoxic payloads within targeted cells overexpressing cognate antigen receptors. Therefore, an αCD44(scFv)-SNAP-tag antibody fusion protein was engineered through genetic fusion of a single-chain antibody fragment (scFv) to a SNAPf-tag fusion protein, capable of self-conjugating with benzylguanine-modified light-sensitive near-infrared (NIR) phthalocyanine dye IRDye700DX (BG-IR700) or the small molecule toxin auristatin-F (BG-AURIF). Binding of the αCD44(scFv)-SNAPf-IR700 photoimmunoconjugate to antigen-positive cells was demonstrated by confocal microscopy and flow cytometry. By switching to NIR irradiation, CD44-expressing TNBC was selectively killed through induced phototoxic activities. Likewise, the αCD44(scFv)-SNAPf-AURIF immunoconjugate was able to selectively accumulate within targeted cells and significantly reduced cell viability through antimitotic activities at nano- to micromolar drug concentrations. This study provides an in vitro proof-of-concept for a future strategy to selectively destroy light-accessible superficial CD44-expressing TNBC tumors and their metastatic lesions which are inaccessible to therapeutic light.


Subject(s)
Aminobenzoates , Hyaluronan Receptors , Immunoconjugates , Oligopeptides , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/pathology , Hyaluronan Receptors/metabolism , Immunoconjugates/pharmacology , Cell Line, Tumor , Aminobenzoates/pharmacology , Aminobenzoates/chemistry , Female , Oligopeptides/pharmacology , Oligopeptides/chemistry , Single-Chain Antibodies/pharmacology , Immunotherapy/methods , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL