Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.983
Filter
1.
Nano Lett ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017745

ABSTRACT

Understanding the evolution of local structure and mobility of disordered glassy materials induced by external stress is critical in modeling their mechanical deformation in the nonlinear regime. Several techniques have shown acceleration of molecular mobility of various amorphous glasses under macroscopic tensile deformation, but it remains a major challenge to visualize such a relationship at the nanoscale. Here, we employ a new approach based on atomic force microscopy in nanorheology mode for quantifying the local dynamic responses of a polymer glass induced by nanoscale compression. By increasing the compression level from linear elastic to plastic deformation, we observe an increase in the mechanical loss tangent (tan δ), evidencing the enhancement of polymer mobility induced by large stress. Notably, tan δ images directly reveal the preferential effect of the large compression on the dynamic acceleration of nanoscale heterogeneities with initially slow mobility, which is clearly different from that induced by increasing temperature.

2.
ACS Nano ; 18(28): 18485-18492, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38958189

ABSTRACT

Collagen is the most abundant protein in tissue scaffolds in live organisms. Collagen can self-assemble in vitro, which has led to a number of biotechnological and biomedical applications. To understand the dominant factors that participate in the formation of collagen nanostructures, here we study in real time and with nanoscale resolution the disassembly and reassembly of collagens. We implement a high-speed force microscope, which provides in situ high spatiotemporal resolution images of collagen nanostructures under changing pH conditions. The disassembly and reassembly are dominated by the electrostatic interactions among amino-acid residues of different molecules. Acidic conditions favor disassembly by neutralizing negatively charged residues. The process sets a net repulsive force between collagen molecules. A neutral pH favors the presence of negative and positively charged residues along the collagen molecules, which promotes their electrostatic attraction. Molecular dynamics simulations reproduce the experimental behavior and validate the electrostatic-based model of the disassembly and reassembly processes.


Subject(s)
Collagen , Molecular Dynamics Simulation , Nanostructures , Static Electricity , Collagen/chemistry , Nanostructures/chemistry , Hydrogen-Ion Concentration , Microscopy, Atomic Force , Animals
3.
Article in English | MEDLINE | ID: mdl-38981101

ABSTRACT

Organometallic molecules are promising for molecular electronic devices due to their potential to improve electrical conductance through access to complex orbital covalency that is not available to light-element organic molecules. However, studies of the formation of organometallic monolayers and their charge transport properties are scarce. Here, we report the cluster formation and charge transport properties of gold-triarylbismuthane-gold molecular junctions. We found that triarylbismuthane molecules with -CN anchoring groups form clusters during the creation of self-assembled submonolayers. This clustering is attributed to strong interactions between the bismuth (Bi) center and the nitrogen atom in the -CN group of adjacent molecules. Examination of the influence of -NH2 and -CN anchoring groups on junction conductance revealed that, despite a stronger binding energy between the -NH2 group and gold, the conductance per molecular unit (i.e., molecule for the -NH2 group and cluster for the -CN group) is higher with the -CN anchoring group. Further analysis showed that an increase in the number of -CN groups from one to three within the junctions leads to a decrease in conductance while increasing the size of the cluster. This demonstrates the significant effects of different anchoring groups and the impact of varying the number of -CN groups on both the charge transport and cluster formation. This study highlights the importance of selecting the appropriate anchoring group in the design of molecular junctions. Additionally, controlling the size and formation of clusters can be a strategic approach to engineering charge transport in molecular junctions.

4.
Adv Sci (Weinh) ; : e2403648, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984445

ABSTRACT

Antiferromagnets are competitive candidates for the next generation of spintronic devices owing to their superiority in small-scale and low-power-consumption devices. The electrical manipulation of the magnetization and exchange bias (EB) driven by spin-orbit torque (SOT) in ferromagnetic (FM)/antiferromagnetic (AFM) systems has become focused in spintronics. Here, the realization of a large perpendicular EB field in Co/IrMn and the effective manipulation of the magnetic moments of the magnetic Co layer and EB field by SOT in Pt/Co/IrMn system is reported. During the SOT-driven switching process, an asymmetrically manipulated state is observed. Current pulses with the same amplitude but opposite directions induce different magnetization states. Magneto-optical Kerr measurements reveal that this is due to the coexistence of stable and metastable antiferromagnetic domains in the AFM. Exploiting the asymmetric properties of these FM/AFM structures, five spin logic gates, namely AND, OR, NOR, NAND, and NOT, are realized in a single cell via SOT. This study provides an insight into the special ability of SOT on AFMs and also paves an avenue to construct the logic-in-memory and neuromorphic computing cells based on the AFM spintronic system.

5.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000293

ABSTRACT

Cell mechanics are a biophysical indicator of cell state, such as cancer metastasis, leukocyte activation, and cell cycle progression. Atomic force microscopy (AFM) is a widely used technique to measure cell mechanics, where the Young modulus of a cell is usually derived from the Hertz contact model. However, the Hertz model assumes that the cell is an elastic, isotropic, and homogeneous material and that the indentation is small compared to the cell size. These assumptions neglect the effects of the cytoskeleton, cell size and shape, and cell environment on cell deformation. In this study, we investigated the influence of cell size on the estimated Young's modulus using liposomes as cell models. Liposomes were prepared with different sizes and filled with phosphate buffered saline (PBS) or hyaluronic acid (HA) to mimic the cytoplasm. AFM was used to obtain the force indentation curves and fit them to the Hertz model. We found that the larger the liposome, the lower the estimated Young's modulus for both PBS-filled and HA-filled liposomes. This suggests that the Young modulus obtained from the Hertz model is not only a property of the cell material but also depends on the cell dimensions. Therefore, when comparing or interpreting cell mechanics using the Hertz model, it is essential to account for cell size.


Subject(s)
Elastic Modulus , Liposomes , Microscopy, Atomic Force , Microscopy, Atomic Force/methods , Liposomes/chemistry , Cell Size , Models, Biological , Hyaluronic Acid/chemistry , Biomechanical Phenomena , Humans
6.
ACS Nano ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979949

ABSTRACT

The direct generation of conducting paths within an insulating surface represents a conceptually unexplored approach to single-layer electrical conduction that opens vistas for exciting research and applications fundamentally different from those based on specific layered materials. Herein we report surface channels with single-layer -COOH functionality patterned on insulating n-octadecyltrichlorosilane monolayers on silicon that exhibit unusual ionic-electronic conduction when equipped with ion-releasing silver electrodes. The strong dependence of charge transport in such channels on their lateral dimensions (nanosize, macro-size), the type (p, n) and resistivity (doping level) of the underlying silicon substrate, the nature of the insulating spacer layer between the conducting channel and the silicon surface, and the postpatterning chemical manipulation of channel's -COOH functionality allows designing channels with variable resistivities, ranging from that of a practical insulator to some unexpectedly low values. The unusually low resistivities displayed by channels with nanometric widths and micrometer-millimeter lengths are attributed primarily to enhanced electronic transport within ultrathin nanowire-like silver metal films formed along their conductive paths. Function-structure correlations derived from a comprehensive analysis of electrical, atomic force microscopy, and Fourier transform infrared spectral data suggest an unconventional mode of conduction in these channels, which has yet to be elucidated, apparently involving coupled ionic-electronic transport mediated and enhanced by interfacial electrical interactions with charge carriers located outside the conducting channel and separated from those carrying the measured current. These intriguing findings hint at effects akin to Coulomb pairing in the proposed mechanisms of excitonic superconductivity in interfacial nanosystems structurally related to the present metalized surface channels.

7.
Small ; : e2401979, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011940

ABSTRACT

Van der Waals heterostructures formed by stacked 2D materials show exceptional electronic, mechanical, and optical properties. Superlubricity, a condition where atomically flat, incommensurate planes of atoms result in ultra-low friction, is a prime example enabling, for example, self-assembly of optically visible graphene nanostructures in air via a sliding auto-kirigami process. Here, it is demonstrated that a subtle but ubiquitous adsorbate stripe structure found on graphene and graphitic surfaces in ambient conditions remains stable within the interface between twisted graphene layers as they slide over each other. Despite this contamination, the interface retains an exceptional superlubricious state with an estimated upper bound frictional shear strength of 10 kPa, indicating that direct atomic incommensurate contact is not required to achieve ambient superlubricity for 2D materials. The results suggest that any phenomena depending on 2D heterostructure interfaces such as exotic electronic behavior may need to consider the presence of stripe adsorbate structures that remain intercalated.

8.
J Nanobiotechnology ; 22(1): 406, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987828

ABSTRACT

BACKGROUND: Inclusion bodies (IBs) are well-known subcellular structures in bacteria where protein aggregates are collected. Various methods have probed their structure, but single-cell spectroscopy remains challenging. Atomic Force Microscopy-based Infrared Spectroscopy (AFM-IR) is a novel technology with high potential for the characterisation of biomaterials such as IBs. RESULTS: We present a detailed investigation using AFM-IR, revealing the substructure of IBs and their variation at the single-cell level, including a rigorous optimisation of data collection parameters and addressing issues such as laser power, pulse frequency, and sample drift. An analysis pipeline was developed tailored to AFM-IR image data, allowing high-throughput, label-free imaging of more than 3500 IBs in 12,000 bacterial cells. We examined IBs generated in Escherichia coli under different stress conditions. Dimensionality reduction analysis of the resulting spectra suggested distinct clustering of stress conditions, aligning with the nature and severity of the applied stresses. Correlation analyses revealed intricate relationships between the physical and morphological properties of IBs. CONCLUSIONS: Our study highlights the power and limitations of AFM-IR, revealing structural heterogeneity within and between IBs. We show that it is possible to perform quantitative analyses of AFM-IR maps over a large collection of different samples and determine how to control for various technical artefacts.


Subject(s)
Escherichia coli , Inclusion Bodies , Microscopy, Atomic Force , Single-Cell Analysis , Spectrophotometry, Infrared , Inclusion Bodies/chemistry , Escherichia coli/chemistry , Microscopy, Atomic Force/methods , Spectrophotometry, Infrared/methods , Single-Cell Analysis/methods
9.
J Forensic Leg Med ; 105: 102717, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38996743

ABSTRACT

The primary objective of forensic investigation of a case is to recognize, identify, locate, and examine the evidence. Microscopy is a technique that provides crucial information for resolving a case or advancing the investigation process by analyzing the evidence obtained from a crime scene. It is often used in conjunction with suitable analytical techniques. Various microscopes are employed; scanning probe microscopes are available in diverse forensic analyses and studies. Among these, the atomic force microscope (AFM) is the most commonly used scanning probe technology, offering a unique morphological and physico-chemical perspective for analyzing multiple pieces of evidence in forensic investigations. Notably, it is a non-destructive technique capable of operating in liquid or air without complex sample preparation. The article delves into a detailed exploration of the applications of AFM in the realms of nanomechanical forensics and nanoscale characterization of forensically significant samples.

10.
Article in English | MEDLINE | ID: mdl-38993000

ABSTRACT

Vitrimers are a new class of heterogeneous polymers that combine the best features of thermosets with those of thermoplastics. The introduction of cross-links strongly changes the viscoelastic behavior of vitrimer materials. However, the characterization and understanding of the nanostructures and interfaces in vitrimers resulting from dynamic cross-linking formation remain a major challenge. Here, using dynamic modes of atomic force microscopy (AFM), namely intermodulation AFM (ImAFM) and AFM-based dynamic mechanical analysis (AFM-nDMA), local viscoelastic properties and interfaces at the nanoscale length of high-density polyethylene (HDPE) vitrimer materials are reported. ImAFM imaging in combination with the k-means clustering algorithm clearly reveals two distinct phases in the vitrimer system with highly different viscoelastic properties. AFM-nDMA further provides quantitative nanoviscoelastic properties at the nanoscale to confirm that there is a cross-linking-rich aggregation area forming a nanosize network structure in the cross-linking-poor matrix phase. The cross-linking-rich region shows a similar elastic modulus but much higher adhesion force measured by AFM compared to the cross-linking-poor HDPE matrix. Furthermore, the frequency influence on the local viscoelastic properties of HDPE vitrimer at the nanoscale was initially screened. The observed HDPE vitrimer nanostructures and viscoelastic properties at the nanoscale also provide explanations on the observed bulk HDPE vitrimer crystallinity decrease and dimensional stability increase compared to HDPE. Therefore, probing the viscoelastic properties and interfaces of HDPE vitrimer provides important insights into understanding of the correlations between the vitrimer nanostructure and the bulk mechanical and rheological behaviors.

11.
Small ; : e2403912, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994656

ABSTRACT

Functional organic nanomaterials are nowadays largely spread in the field of nanomedicine. In situ modulation of their morphology is thus expected to considerably impact their interactions with the surroundings. In this context, photoswitchable nanoparticles that are manufactured, amenable to extensive disassembling upon illumination in the visible, and reversible reshaping under UV exposure. Such reversibility turns to be strongly impaired for photochromic nanoparticles in close contact with a substrate. In situ atomic force microscopy investigations at the nanoscale actually reveal progressive disintegration of the organic nanoparticles under successive UV-vis cycles of irradiation, in the absence of intrinsic elastic forces. These results point out the dramatic interactions exerted by surfaces on the cohesion of non-covalently bonded organic nanoparticles. They invite to harness such systems, often used as biomarkers, to also serve as photoactivatable drug delivery nanocarriers.

12.
Nanomaterials (Basel) ; 14(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38998683

ABSTRACT

Neurodegenerative disorders cause most physical and mental disabilities, and therefore require effective treatment. The blood-brain barrier (BBB) prevents drug molecules from crossing from the blood to the brain, making brain drug delivery difficult. Implantable devices could provide sustained and regulated medication to solve this problem. Two electrolytes (0.3 M oxalic acid and 0.3 M sulphuric acid) were used to anodise Al2O3 nanoporous membranes, followed by a third anodisation in concentrated H2SO4 to separate the through-hole membranes from the aluminium substrate. FTIR, AFM, and SEM/EDX were used to characterise the membranes' structure and morphology. The effects of the anodisation time and electrolyte type on the AAO layer pore density, diameter, interpore distance, and thickness were examined. As a model drug for neurodegenerative disorders, donepezil hydrochloride (DHC) was loaded onto thin alumina nanoporous membranes. The DHC release profiles were characterised at two concentrations using a UV-Vis spectrophotometer. Oxalic acid membranes demonstrated an average pore diameter of 39.6-32.5 nm, which was two times larger than sulphuric acid membranes (22.6-19.7 nm). After increasing the anodisation time from 3 to 5 h, all of the membranes showed a reduction in pore diameter that was stable regardless of the electrolyte type or period. Drug release from oxalic acid-fabricated membranes was controlled and sustained for over 2 weeks. Thus, nanoporous membranes as implantable drug delivery systems could improve neurodegenerative disease treatment.

13.
Front Mol Biosci ; 11: 1376411, 2024.
Article in English | MEDLINE | ID: mdl-38948077

ABSTRACT

Introduction: Alzheimer's disease (AD) is a progressive debilitating neurological disorder representing the most common neurodegenerative disease worldwide. Although the exact pathogenic mechanisms of AD remain unresolved, the presence of extracellular amyloid-ß peptide 1-42 (Aß1-42) plaques in the parenchymal and cortical brain is considered one of the hallmarks of the disease. Methods: In this work, we investigated the Aß1-42 fibrillogenesis timeline up to 48 h of incubation, providing morphological and chemo-structural characterization of the main assemblies formed during the aggregation process of Aß1-42, by atomic force microscopy (AFM) and surface enhanced Raman spectroscopy (SERS), respectively. Results: AFM topography evidenced the presence of characteristic protofibrils at early-stages of aggregation, which form peculiar macromolecular networks over time. SERS allowed to track the progressive variation in the secondary structure of the aggregation species involved in the fibrillogenesis and to determine when the ß-sheet starts to prevail over the random coil conformation in the aggregation process. Discussion: Our research highlights the significance of investigating the early phases of fibrillogenesis to better understand the molecular pathophysiology of AD and identify potential therapeutic targets that may prevent or slow down the aggregation process.

14.
Methods Enzymol ; 700: 235-273, 2024.
Article in English | MEDLINE | ID: mdl-38971602

ABSTRACT

Hierarchic self-assembly is the main mechanism used to create diverse structures using soft materials. This is a case for both synthetic materials and biomolecular systems, as exemplified by the non-covalent organization of lipids into membranes. In nature, lipids often assemble into single bilayers, but other nanostructures are encountered, such as bilayer stacks and tubular and vesicular aggregates. Synthetic block copolymers can be engineered to recapitulate many of the structures, forms, and functions of lipid systems. When block copolymers are amphiphilic, they can be inserted or co-assembled into hybrid membranes that exhibit synergistic structural, permeability, and mechanical properties. One example is the emergence of lateral phase separation akin to the raft formation in biomembranes. When higher-order structures, such as hybrid membranes, are formed, this lateral phase separation can be correlated across membranes in the stack. This chapter outlines a set of important methods, such as X-ray Scattering, Atomic Force Microscopy, and Cryo-Electron Microscopy, that are relevant to characterizing and evaluating lateral and correlated phase separation in hybrid membranes at the nano and mesoscales. Understanding the phase behavior of polymer-lipid hybrid materials could lead to innovative advancements in biomimetic membrane separation systems.


Subject(s)
Cryoelectron Microscopy , Lipid Bilayers , Microscopy, Atomic Force , Polymers , Cryoelectron Microscopy/methods , Polymers/chemistry , Lipid Bilayers/chemistry , Microscopy, Atomic Force/methods , X-Ray Diffraction/methods , Phase Separation
15.
ACS Nano ; 18(28): 18683-18692, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38973716

ABSTRACT

The interaction of liquid water with hydrophobic surfaces is ubiquitous in life and technology. Yet, the molecular structure of interfacial liquid water on these surfaces is not known. By using a 3D atomic force microscope, we characterize with angstrom resolution the structure of interfacial liquid water on hydrophobic and hydrophilic silica surfaces. The combination of 3D AFM images and molecular dynamics simulations reveals that next to a hydrophobic silica surface, there is a 1.2 nm region characterized by a very low density of water. In contrast, the 3D AFM images obtained of a hydrophilic silica surface reveal the presence of hydration layers next to the surface. The gap observed on hydrophobic silica surfaces is filled with two-to-three layers of straight-chain alkanes. We developed a 2D Ising model that explains the formation of a continuous hydrocarbon layer on hydrophobic silica surfaces.

16.
ACS Appl Mater Interfaces ; 16(28): 37275-37287, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38959130

ABSTRACT

Titanium dioxide (TiO2) shows significant potential as a self-cleaning material to inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and prevent virus transmission. This study provides insights into the impact of UV-A light on the photocatalytic inactivation of adsorbed SARS-CoV-2 virus-like particles (VLPs) on a TiO2 surface at the molecular and atomic levels. X-ray photoelectron spectroscopy, combined with density functional theory calculations, reveals that spike proteins can adsorb on TiO2 predominantly via their amine and amide functional groups in their amino acids blocks. We employ atomic force microscopy and grazing-incidence small-angle X-ray scattering (GISAXS) to investigate the molecular-scale morphological changes during the inactivation of VLPs on TiO2 under light irradiation. Notably, in situ measurements reveal photoinduced morphological changes of VLPs, resulting in increased particle diameters. These results suggest that the denaturation of structural proteins induced by UV irradiation and oxidation of the virus structure through photocatalytic reactions can take place on the TiO2 surface. The in situ GISAXS measurements under an N2 atmosphere reveal that the virus morphology remains intact under UV light. This provides evidence that the presence of both oxygen and UV light is necessary to initiate photocatalytic reactions on the surface and subsequently inactivate the adsorbed viruses. The chemical insights into the virus inactivation process obtained in this study contribute significantly to the development of solid materials for the inactivation of enveloped viruses.


Subject(s)
SARS-CoV-2 , Titanium , Ultraviolet Rays , Titanium/chemistry , Titanium/radiation effects , SARS-CoV-2/radiation effects , SARS-CoV-2/chemistry , Virus Inactivation/radiation effects , Virus Inactivation/drug effects , Humans , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/virology , COVID-19/prevention & control , Adsorption , Surface Properties
17.
Beilstein J Nanotechnol ; 15: 603-611, 2024.
Article in English | MEDLINE | ID: mdl-38887529

ABSTRACT

Thin silicon oxide films deposited on a polypropylene substrate by plasma-enhanced chemical vapor deposition were investigated using atomic force microscopy-based infrared (AFM-IR) nanospectroscopy in contact and surface-sensitive mode. The focus of this work is the comparison of the different measurement methods (i.e., contact mode and surface-sensitive mode) with respect to the chemical surface sensitivity. The use of the surface-sensitive mode in AFM-IR shows an enormous improvement for the analysis of thin films on the IR-active substrate. As a result, in this mode, the signal of the substrate material could be significantly reduced. Even layers that are so thin that they could hardly be measured in the contact mode can be analyzed with the surface-sensitive mode.

18.
Polymers (Basel) ; 16(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891451

ABSTRACT

This work aimed to investigate the effects of aging on the microstructures and rheological properties of modified asphalt with a GO/SBS composite, since the styrene-butadiene-styrene block copolymer is potentially compatible with graphene oxide (GO). The GO/SBS composites, which were used as a kind of modifier, were prepared via the solution-blending method. GO/SBS composites with varying GO contents were employed to prepare the GO/SBS-compound-modified asphalt (GO/SBS-MA). Then, the GO/SBS-MA underwent PAV (pressure aging vessel) or UV (ultraviolet) aging tests to simulate different aging circumstances. The microstructures of the asphalt binders were studied using FTIR (Fourier-transform infrared spectroscopy) and AFM (atomic force microscope) tests. Moreover, DSR (dynamic shear rheometer) and BBR (bending beam rheometer) experiments were carried out to investigate the rheological properties of the GO/SBS-MA. The results showed that the addition of GO improved the high-temperature stability of the asphalt binder while slightly impairing its performance at low temperatures. GO restrained the formation of carbonyl and sulfoxide groups as well as the breakdown of C=C bonds in the polybutadiene (PB) segment, promoting the anti-aging performance of GO/SBS-MA. Furthermore, the interactions between the GO/SBS and the asphalt binder resulted in the formation of needle-like aggregates, enhancing the stability of the asphalt binder. The asphalt binders with a higher content of graphene oxide (GO) exhibited not only a better high-temperature performance, but also a better aging resistance. It was concluded that the macroscopic properties and microstructures were significantly affected by GO, and a moderate increase in the amount of GO could contribute to a better aging resistance for GO/SBS-MA.

19.
Microsc Res Tech ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877841

ABSTRACT

Atomic force microscopy (AFM) is a kind of high-precision instrument to measure the surface morphology of various conductive or nonconductive samples. However, obtaining a high-resolution image with standard AFM scanning requires more time. Using block compressive sensing (BCS) is an effective approach to achieve rapid AFM imaging. But, the routine BCS-AFM imaging is difficult to balance the image quality of each local area. It is easy to lead to excessive sampling in some flat areas, resulting in time-consuming. At the same time, there is a lack of sampling in some areas with significant details, resulting in poor imaging quality. Thus, an innovative adaptive BCS-AFM imaging method is proposed. The overlapped block is used to eliminate blocking artifacts. Characteristic parameters (GTV, Lu, and SD) are used to predict the local morphological characteristics of the samples. Back propagation neural network is employed to acquire the appropriate sampling rate of each sub-block. Sampling points are obtained by pre-scanning and adaptive supplementary scanning. Afterward, all sub-block images are reconstructed using the TVAL3 algorithm. Each sample is capable of achieving uniform, excellent image quality. Image visual effects and evaluation indicators (PSNR and SSIM) are employed for the purpose of evaluating and analyzing the imaging effects of samples. Compared with two nonadaptive and two other adaptive imaging schemes, our proposed scheme has the characteristics of a high degree of automation, uniformly high-quality imaging, and rapid imaging speed. HIGHLIGHTS: The proposed adaptive BCS method can address the issues of uneven image quality and slow imaging speed in AFM. The appropriate sampling rate of each sub-block of the sample can be obtained by BP neural network. The introduction of GTV, Lu, and SD can effectively reveal the morphological features of AFM images. Seven samples with different morphology are used to test the performance of the proposed adaptive algorithm. Practical experiments are carried out with two samples to verify the feasibility of the proposed adaptive algorithm.

20.
Materials (Basel) ; 17(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38893974

ABSTRACT

Short glass fibers are generally used in posterior dental restorations to enhance the mechanical properties and improve the material microstructure. Two resin-based composites (S0 and SF) were formulated and characterized to investigate the influence of zirconium in their characteristics and properties. The organic part of the investigated materials was the same (BisGMA, TEGDMA, and a photochemical polymerization system), and in the inorganic part, besides quart, glassA, and hydroxylapatite with Zn, sample S0 contained strontium glass with zirconium and sample SF contained fiber powder of chopped zirconium. The samples were characterized by the degree of conversion (DC), mechanical properties, water sorption (WS), scanning electron microscopy (SEM), atomic force microscopy (AFM) before and after the WS test, and antimicrobial properties. The results obtained were subjected to one-way ANOVA and Tukey's statistical tests. Both samples had a high DC. Regarding the mechanical properties, both samples were very similar, except DTS, which was higher for the composite without fibers. After 14 days, the WS value of the SF sample was lower than that of the S0 sample. Water caused significant changes in the topography of the SF sample, but thanks to its antimicrobial properties and the diffusion phenomenon, SF had a more pronounced antimicrobial effect. This study shows that the addition of appropriate amounts of Sr-Zr-glass powder gives the material in which it is added similar properties to material containing chopped zirconium glass fiber powder. According to the antimicrobial test results, resin composites containing experimental zirconia fillings can be considered in future in vitro clinical studies for posterior reconstructions with significantly improved mechanical properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...