Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 497
Filter
1.
Diagn Microbiol Infect Dis ; 110(3): 116473, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39128207

ABSTRACT

INTRODUCTION: Due to most likely use of Bacillus anthracis in biological terrorism agents, the rapid and sensitive detection of its spores is crucial in both taking prophylactic measures and proper treatment. This study aimed to develop an amperometric electrochemical immunosensor for the detection of B. anthracis spores. METHODS: A new amperometric biosensor was designed using a combination of magnetic beads and multiplex screen-printed electrodes. This method measures changes in current intensity resulting from oxidation and reduction in the working electrode directly to spore concentrations. RESULTS: A standard curve was formed to test the number of live spores between 2 × 102-2 × 104 spores/ml concentrations. LOD and LOQ values were found to be 92 and 272 spores/ml, respectively. No cross-reactions were seen for Bacillus subtilis, Bacillus cereus and Bacillus thuringiencis spores. CONCLUSIONS: It is shown that the designed Anthrax immunosensor has high sensitivity and selectivity with rapid detection results.


Subject(s)
Bacillus anthracis , Biosensing Techniques , Electrochemical Techniques , Spores, Bacterial , Spores, Bacterial/isolation & purification , Bacillus anthracis/isolation & purification , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Immunoassay/methods , Immunoassay/instrumentation , Limit of Detection , Sensitivity and Specificity , Electrodes , Anthrax/diagnosis , Anthrax/microbiology
2.
bioRxiv ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39091886

ABSTRACT

The mesolimbic dopamine (DA) system (MDS) is the canonical "reward" pathway that has been studied extensively in the context of the rewarding properties of sex, food, and drugs of abuse. In contrast, very little is known about the role of the MDS in the processing of the rewarding and aversive properties of social stimuli. Social interactions can be characterized by their salience (i.e., importance) and their rewarding or aversive properties (i.e., valence). Here, we test the novel hypothesis that projections from the medial ventral tegmental area (VTA) to the nucleus accumbens (NAc) core codes for the salience of social stimuli through the phasic release of DA in response to both rewarding and aversive social stimuli. In contrast, we hypothesize that projections from the lateral VTA to the NAc shell codes for the rewarding properties of social stimuli by increasing the tonic release of DA and the aversive properties of social stimuli by reducing the tonic release of DA. Using DA amperometry, which monitors DA signaling with a high degree of temporal and anatomical resolution, we measured DA signaling in the NAc core or shell while rewarding and aversive social interactions were taking place. These findings, as well as additional anatomical and functional studies, provide strong support for the proposed neural circuitry underlying the response of the MDS to social stimuli. Together, these data provide a novel conceptualization of how the functional and anatomical heterogeneity within the MDS detect and distinguish between social salience, social reward, and social aversion. Significance Statement: Social interactions of both positive and negative valence are highly salient stimuli that profoundly impact social behavior and social relationships. Although DA projections from the VTA to the NAc are involved in reward and aversion little is known about their role in the saliency and valence of social stimuli. Here, we report that DA projections from the mVTA to the NAc core signal the salience of social stimuli, whereas projections from the lVTA to the NAc shell signal valence of social stimuli. This work extends our current understanding of the role of DA in the MDS by characterizing its subcircuit connectivity and associated function in the processing of rewarding and aversive social stimuli.

3.
J Physiol ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141801

ABSTRACT

Somatostatin, a peptide hormone that activates G-protein-coupled receptors, inhibits the secretion of many hormones. This study investigated the mechanisms of this inhibition using amperometry recording of Ca2+-triggered catecholamine secretion from mouse chromaffin cells. Two distinct stimulation protocols, high-KCl depolarization and caffeine, were used to trigger exocytosis, and confocal fluorescence imaging was used to monitor the rise in intracellular free Ca2+. Analysis of single-vesicle fusion events (spikes) resolved the action of somatostatin on fusion pores at different stages. Somatostatin reduced spike frequency, and this reduction was accompanied by prolongation of pre-spike feet and slowing of spike rise times. This indicates that somatostatin stabilizes initial fusion pores and slows their expansion. This action on the initial fusion pore impacted the release mode to favour kiss-and-run over full-fusion. During a spike the permeability of a fusion pore peaks, declines and then settles into a plateau. Somatostatin had no effect on the plateau, suggesting no influence on late-stage fusion pores. These actions of somatostatin were indistinguishable between exocytosis triggered by high-KCl and caffeine, and fluorescence imaging showed that somatostatin had no effect on stimulus-induced rises in cytosolic Ca2+. Our findings thus demonstrate that the signalling cascades activated by somatostatin target the exocytotic machinery that controls the initial and expanding stages of fusion pores, while having no effect on late-stage fusion pores. As a result of its stronger inhibition of full-fusion compared to kiss-and-run, somatostatin will preferentially inhibit the secretion of large peptides over the secretion of small catecholamines. KEY POINTS: Somatostatin inhibits the secretion of various hormones by activating G-protein-coupled receptors. In this study, we used amperometry to investigate the mechanism by which somatostatin inhibits catecholamine release from mouse chromaffin cells. Somatostatin increased pre-spike foot lifetime and slowed fusion pore expansion. Somatostatin inhibited full-fusion more strongly than kiss-and-run. Our results suggest that the initial fusion pore is the target of somatostatin-mediated regulation of hormone release. The stronger inhibition of full-fusion by somatostatin will result in preferential inhibition of peptide release.

4.
J Neurochem ; 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39126680

ABSTRACT

Dynamins are large GTPases whose primary function is not only to catalyze membrane scission during endocytosis but also to modulate other cellular processes, such as actin polymerization and vesicle trafficking. Recently, we reported that centronuclear myopathy associated dynamin-2 mutations, p.A618T, and p.S619L, impair Ca2+-induced exocytosis of the glucose transporter GLUT4 containing vesicles in immortalized human myoblasts. As exocytosis and endocytosis occur within rapid timescales, here we applied high-temporal resolution techniques, such as patch-clamp capacitance measurements and carbon-fiber amperometry to assess the effects of these mutations on these two cellular processes, using bovine chromaffin cells as a study model. We found that the expression of any of these dynamin-2 mutants inhibits a dynamin and F-actin-dependent form of fast endocytosis triggered by single action potential stimulus, as well as inhibits a slow compensatory endocytosis induced by 500 ms square depolarization. Both dynamin-2 mutants further reduced the exocytosis induced by 500 ms depolarizations, and the frequency of release events and the recruitment of neuropeptide Y (NPY)-labeled vesicles to the cell cortex after stimulation of nicotinic acetylcholine receptors with 1,1-dimethyl-4-phenyl piperazine iodide (DMPP). They also provoked a significant decrease in the Ca2+-induced formation of new actin filaments in permeabilized chromaffin cells. In summary, our results indicate that the centronuclear myopathy (CNM)-linked p.A618T and p.S619L mutations in dynamin-2 affect exocytosis and endocytosis, being the disruption of F-actin dynamics a possible explanation for these results. These impaired cellular processes might underlie the pathogenic mechanisms associated with these mutations.

5.
Mikrochim Acta ; 191(9): 534, 2024 08 13.
Article in English | MEDLINE | ID: mdl-39136796

ABSTRACT

Screen-printed carbon electrodes (SPCE) functionalized with MXene-based three-dimensional nanomaterials are reported for rapid determination of creatinine. Ti3C2TX MXene with in situ reduced AuNPs (MXene@AuNP) were used as a coreactant accelerator for efficient immobilization of enzymes. Creatinine could be oxidized by chitosan-embedded creatinine amidohydrolase, creatine amidinohydrolase, or sarcosine oxidase to generate H2O2, which could be electrochemically detected enhanced by Prussian blue (PB). The enzyme@CS/PB/MXene@AuNP/SPCE detected creatinine within the range 0.03-4.0 mM, with a limit of detection of 0.01 mM, with an average recovery of 96.8-103.7%. This indicates that the proposed biosensor is capable of detecting creatinine in a short amount of time (4 min) within a ± 5% percentage error, in contrast with the standard clinical colorimetric method. With this approach, reproducible and stable electrochemical responses could be achieved for determination of creatinine in serum, urine, or saliva. These results demonstrated its potential for deployment in resource-limited settings for early diagnosis and tracking the progression of chronic kidney disease (CKD).


Subject(s)
Biosensing Techniques , Carbon , Creatinine , Electrochemical Techniques , Electrodes , Ferrocyanides , Gold , Hydrogen Peroxide , Limit of Detection , Metal Nanoparticles , Sarcosine Oxidase , Ureohydrolases , Creatinine/blood , Creatinine/urine , Carbon/chemistry , Humans , Sarcosine Oxidase/chemistry , Gold/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Ferrocyanides/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Hydrogen Peroxide/chemistry , Metal Nanoparticles/chemistry , Ureohydrolases/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Chitosan/chemistry , Point-of-Care Testing , Amidohydrolases , Titanium
6.
Mikrochim Acta ; 191(9): 540, 2024 08 16.
Article in English | MEDLINE | ID: mdl-39150580

ABSTRACT

For the first time the sensitive determination of carbendatim (CRB) is reported utilizing a well-designed sensing architecture based on vanadium diselenide-multiwalled carbon nanotube (VSMC). FTIR, XRD, FESEM, EDS, and EIS were employed to evaluate the sensor's structural integrity, and the results demonstrated the successful integration of nanomaterials, resulting in a robust and sensitive electrochemical sensor. Cyclic voltammetry (CV) and chronoamperometric (CA) investigations showed that the sensor best performed at pH 8.0 (BRB) with an excellent detection limit of 9.80 nM with a wide linear range of 0.1 to 10.0 µM. A more thermodynamically viable oxidation of CRB was observed at the VSMC/GCE, with a shift of 200 mV in peak potential towards the less positive side compared with the unmodified GCE. In addition, the sensor demonstrated facile heterogeneous electron transfer, favorable anti-fouling traits in the presence of a wide range of interferents, good stability, and reproducible analytical performance. Finally, the developed sensor was validated for real-time quantification of CRB from spiked water, food, and bio-samples, which depicted acceptable recoveries (98.6 to 101.5%) with RSD values between 0.35 and 2.23%. Further, to derive the possible sensing mechanism, the valence orbitals projected density of states (PDOS) for C, H, and N atoms of an isolated CRB molecule, VSe2 + CNT and VSe2 + CNT + CRB were calculated using density functional theory (DFT) calculations. The dominant charge transfer from the valence 2p-orbitals of the C and N atoms of CRB to CNT is responsible for the electrochemical sensing of CRB molecules.


Subject(s)
Benzimidazoles , Carbamates , Electrochemical Techniques , Limit of Detection , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Carbamates/analysis , Carbamates/chemistry , Benzimidazoles/chemistry , Benzimidazoles/analysis , Food Contamination/analysis , Electrodes , Water Pollutants, Chemical/analysis , Animals
7.
Mikrochim Acta ; 191(9): 558, 2024 08 23.
Article in English | MEDLINE | ID: mdl-39177820

ABSTRACT

An innovative supramolecular architecture is reported for bienzymatic glucose biosensing based on the use of a nanohybrid made of multi-walled carbon nanotubes (MWCNTs) non-covalently functionalized with a Schiff base modified with two phenylboronic acid residues (SB-dBA) as platform for the site-specific immobilization of the glycoproteins glucose oxidase (GOx) and horseradish peroxidase (HRP). The analytical signal was obtained from amperometric experiments at - 0.050 V in the presence of 5.0 × 10-4 M hydroquinone as redox mediator. The concentration of GOx and HRP and the interaction time between the enzymes and the nanohybrid MWCNT-SB-dBA deposited at glassy carbon electrodes (GCEs) were optimized through a central composite design (CCD)/response surface methodology (RSM). The optimal concentrations of GOx and HRP were 3.0 mg mL-1 and 1.50 mg mL-1, respectively, while the optimum interaction time was 3.0 min. The bienzymatic biosensor presented a sensitivity of (24 ± 2) × 102 µA dL mg-1 ((44 ± 4) × 102 µA M-1), a linear range between 0.06 mg dL-1 and 21.6 mg dL-1 (3.1 µM-1.2 mM) (R2 = 0.9991), and detection and quantification limits of 0.02 mg dL-1 (1.0 µM) and 0.06 mg dL-1 (3.1 µM), respectively. The reproducibility for five sensors prepared with the same MWCNT-SB-dBA nanohybrid was 6.3%, while the reproducibility for sensors prepared with five different nanohybrids and five electrodes each was 7.9%. The GCE/MWCNT-SB-dBA/GOx-HRP was successfully used for the quantification of glucose in artificial human urine and commercial human serum samples.


Subject(s)
Biosensing Techniques , Boronic Acids , Enzymes, Immobilized , Glucose Oxidase , Horseradish Peroxidase , Nanotubes, Carbon , Schiff Bases , Nanotubes, Carbon/chemistry , Schiff Bases/chemistry , Biosensing Techniques/methods , Boronic Acids/chemistry , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Horseradish Peroxidase/chemistry , Horseradish Peroxidase/metabolism , Humans , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Glucose/analysis , Electrodes , Limit of Detection , Electrochemical Techniques/methods , Blood Glucose/analysis
8.
Talanta ; 279: 126613, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39096788

ABSTRACT

The similar transmission patterns and early symptoms of respiratory viral infections, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza (H1N1), and respiratory syncytial virus (RSV), pose substantial challenges in the diagnosis, therapeutic management, and handling of these infectious diseases. Multiplexed point-of-care testing for detection is urgently needed for prompt and efficient disease management. Here, we introduce an electrochemical paper-based analytical device (ePAD) platform for multiplexed and label-free detection of SARS-CoV-2, H1N1, and RSV infection using immobilized pyrrolidinyl peptide nucleic acid probes. Hybridization between the probes and viral nucleic acid targets causes changes in the electrochemical response. The resulting sensor offers high sensitivity and low detection limits of 0.12, 0.35, and 0.36 pM for SARS-CoV-2 (N gene), H1N1, and RSV, respectively, without showing any cross-reactivities. The amplification-free detection of extracted RNA from 42 nasopharyngeal swab samples was successfully demonstrated and validated against reverse-transcription polymerase chain reaction (range of cycle threshold values: 17.43-25.89). The proposed platform showed excellent clinical sensitivity (100 %) and specificity (≥97 %) to achieve excellent agreement (κ ≥ 0.914) with the standard assay, thereby demonstrating its applicability for the screening and diagnosis of these respiratory diseases.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Influenza A Virus, H1N1 Subtype , Paper , Peptide Nucleic Acids , SARS-CoV-2 , Biosensing Techniques/methods , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H1N1 Subtype/genetics , Electrochemical Techniques/methods , Humans , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Peptide Nucleic Acids/chemistry , COVID-19/diagnosis , COVID-19/virology , RNA, Viral/analysis , RNA, Viral/genetics , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/virology , Limit of Detection , Influenza, Human/diagnosis , Influenza, Human/virology , Respiratory Syncytial Viruses/isolation & purification , Respiratory Syncytial Viruses/genetics , Respiratory Syncytial Virus, Human/isolation & purification , Respiratory Syncytial Virus, Human/genetics
9.
ACS Sens ; 9(8): 4089-4097, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-38997236

ABSTRACT

High-throughput sensors are valuable tools for enabling massive, fast, and accurate diagnostics. To yield this type of electrochemical device in a simple and low-cost way, high-density arrays of vertical gold thin-film microelectrode-based sensors are demonstrated, leading to the rapid and serial interrogation of dozens of samples (10 µL droplets). Based on 16 working ultramicroelectrodes (UMEs) and 3 quasi-reference electrodes (QREs), a total of 48 sensors were engineered in a 3D crossbar arrangement that devised a low number of conductive lines. By exploiting this design, a compact chip (75 × 35 mm) can enable performing 16 sequential analyses without intersensor interferences by dropping one sample per UME finger. In practice, the electrical connection to the sensors was achieved by simply switching the contact among WE adjacent fingers. Importantly, a short analysis time was ensured by interrogating the UMEs with chronoamperometry or square wave voltammetry using a low-cost and hand-held one-channel potentiostat. As a proof of concept, the detection of Staphylococcus aureus in 15 samples was performed within 14 min (20 min incubation and 225 s reading). Additionally, the implementation of peptide-tethered immunosensors in these chips allowed the screening of COVID-19 from patient serum samples with 100% accuracy. Our experiments also revealed that dispensing additional droplets on the array (in certain patterns) results in the overestimation of the faradaic current signals, a phenomenon referred to as crosstalk. To address this interference, a set of analyses was conducted to design a corrective strategy that boosted the testing capacity by allowing using all on-chip sensors to address subsequent analyses (i.e., 48 samples simultaneously dispensed on the chip). This strategy only required grounding the unused rows of QRE and can be broadly adopted to develop high-throughput UME-based sensors. In practice, we could analyze 48 droplets (with [Fe(CN)6]4-) within ∼8 min using amperometry.


Subject(s)
COVID-19 , Electrochemical Techniques , Lab-On-A-Chip Devices , SARS-CoV-2 , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Humans , COVID-19/diagnosis , COVID-19/blood , COVID-19/virology , SARS-CoV-2/isolation & purification , SARS-CoV-2/immunology , Microelectrodes , Staphylococcus aureus/isolation & purification , Gold/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , High-Throughput Screening Assays/instrumentation , High-Throughput Screening Assays/methods
10.
Talanta ; 277: 126365, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38964047

ABSTRACT

Quantification of trace amounts of iron is of great importance in various fields. In the industrial sector, it is crucial to monitor the release of iron out of corrosion, pickling treatment, and steel manufacturing to address potential environmental and economic challenges. In biological systems, despite its indispensability, it is essential to maintain iron concentration below a specific threshold. Electrochemical (EC) methods provide significant analytical capabilities due to their simplicity, ease of use, and cost-effectiveness. This review focuses on the fundamental principles of EC methods for iron detection, including potentiometry, amperometry, coulometry, voltammetry, and electrochemical impedance spectroscopy (EIS). It further explains the process of obtaining calibration curves, and subsequently, determining the concentration of unknown ions. Additionally, technical notes are presented on selecting the initial signal value, reducing the duration of tests, excluding non-faradaic signals, and extending the linear region with the lowest detection limit. These notes are supported by key findings from relevant case studies.

11.
Sci Rep ; 14(1): 15461, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965300

ABSTRACT

This paper introduces a novel solid-state electrolyte-based enzymatic sensor designed for the detection of acetone, along with an examination of its performance under various surface modifications aimed at optimizing its sensing capabilities. To measure acetone concentrations in both liquid and vapor states, cyclic voltammetry and amperometry techniques were employed, utilizing disposable screen-printed electrodes consisting of a platinum working electrode, a platinum counter electrode, and a silver reference electrode. Four different surface modifications, involving different combinations of Nafion (N) and enzyme (E) layers (N + E; N + E + N; N + N + E; N + N + E + N), were tested to identify the most effective configuration for a sensor that can be used for breath acetone detection. The sensor's essential characteristics, including linearity, sensitivity, reproducibility, and limit of detection, were thoroughly evaluated through a range of experiments spanning concentrations from 1 µM to 25 mM. Changes in acetone concentration were monitored by comparing currents readings at different acetone concentrations. The sensor exhibited high sensitivity, and a linear response to acetone concentration in both liquid and gas phases within the specified concentration range, with correlation coefficients ranging from 0.92 to 0.98. Furthermore, the sensor achieved a rapid response time of 30-50 s and an impressive detection limit as low as 0.03 µM. The results indicated that the sensor exhibited the best linearity, sensitivity, and limit of detection when four layers were employed (N + N + E + N).

12.
Talanta ; 278: 126458, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38955102

ABSTRACT

A modified development protocol and concomitant characterisation of a first generation biosensor for the detection of brain extracellular d-serine is reported. Functional parameters important for neurochemical monitoring, including sensor sensitivity, O2 interference, selectivity, shelf-life and biocompatibility were examined. Construction and development involved the enzyme d-amino acid oxidase (DAAO), utilising a dip-coating immobilisation method employing a new extended drying approach. The resultant Pt-based polymer enzyme composite sensor achieved high sensitivity to d-serine (0.76 ± 0.04 nA mm-2. µM-1) and a low µM limit of detection (0.33 ± 0.02 µM). The in-vitro response time was within the solution stirring time, suggesting potential sub-second in-vivo response characteristics. Oxygen interference studies demonstrated a 1 % reduction in current at 50 µM O2 when compared to atmospheric O2 levels (200 µM), indicating that the sensor can be used for reliable neurochemical monitoring of d-serine, free from changes in current associated with physiological O2 fluctuations. Potential interference signals generated by the principal electroactive analytes present in the brain were minimised by using a permselective layer of poly(o-phenylenediamine), and although several d-amino acids are possible substrates for DAAO, their physiologically relevant signals were small relative to that for d-serine. Additionally, changing both temperature and pH over possible in vivo ranges (34-40 °C and 7.2-7.6 respectively) resulted in no significant effect on performance. Finally, the biosensor was implanted in the striatum of freely moving rats and used to monitor physiological changes in d-serine over a two-week period.


Subject(s)
Biosensing Techniques , Brain , D-Amino-Acid Oxidase , Serine , Biosensing Techniques/methods , Serine/analysis , Serine/metabolism , D-Amino-Acid Oxidase/metabolism , Animals , Brain/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Rats , Limit of Detection , Electrochemical Techniques
13.
Mikrochim Acta ; 191(8): 451, 2024 07 06.
Article in English | MEDLINE | ID: mdl-38970693

ABSTRACT

Ti3C2Tx MXene/CuxO composites were prepared by acid etching combined with electrochemical technique. The abundant active sites on the surface of MXene greatly increase the loading of CuxO nanoparticles, and the synergistic effect between the different components of the composite can accelerate the oxidation reaction of glucose. The results indicate that at the working potential of 0.55 V (vs. Ag/AgCl), the glucose sensor based on Ti3C2Tx MXene/CuxO composite presents large linear concentration ranges from 1 µM to 4.655 mM (sensitivity of 361 µA mM-1 cm-2) and from 5.155 mM to 16.155 mM (sensitivity of 133 µA mM-1 cm-2). The limit of detection is 0.065 µM. In addition, the sensor effectively avoids the oxidative interference of common interfering species such as ascorbic acid, dopamine and uric acid. The sensor has good reproducibility, stability and acceptable recoveries for the detection of glucose in human sweat sample (97.5-103.3%) with RSD values less than 4%. Based on these excellent properties it has great potential for the detection of glucose in real samples.


Subject(s)
Copper , Electrochemical Techniques , Glucose , Limit of Detection , Titanium , Copper/chemistry , Humans , Titanium/chemistry , Glucose/analysis , Glucose/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Sweat/chemistry , Electrodes , Oxidation-Reduction , Reproducibility of Results , Biosensing Techniques/methods , Nanocomposites/chemistry
14.
Mikrochim Acta ; 191(7): 369, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834823

ABSTRACT

A trendsetting direct competitive-based biosensing tool has been developed and implemented for the determination of the polyunsaturated fatty acid arachidonic acid (ARA), a highly significant biological regulator with decisive roles in viral infections. The designed methodology involves a competitive reaction between the target endogenous ARA and a biotin-ARA competitor for the recognition sites of anti-ARA antibodies covalently attached to the surface of carboxylic acid-coated magnetic microbeads (HOOC-MµBs), followed by the enzymatic label of the biotin-ARA residues with streptavidin-horseradish peroxidase (Strep-HRP) conjugate. The resulting bioconjugates were magnetically trapped onto the sensing surface of disposable screen-printed carbon transducers (SPCEs) to monitor the extent of the biorecognition reaction through amperometry. The operational functioning of the exhaustively optimized and characterized immunosensing bioplatform was highly convenient for the quantitative determination of ARA in serum samples from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2-) and respiratory syncytial virus (RSV)-infected individuals in a rapid, affordable, trustful, and sensitive manner.


Subject(s)
Arachidonic Acid , Biosensing Techniques , COVID-19 , SARS-CoV-2 , Humans , Arachidonic Acid/blood , COVID-19/blood , COVID-19/diagnosis , COVID-19/immunology , Biosensing Techniques/methods , SARS-CoV-2/immunology , Horseradish Peroxidase/chemistry , Respiratory Syncytial Viruses/immunology , Immunoassay/methods , Streptavidin/chemistry , Biotin/chemistry , Limit of Detection
15.
Mikrochim Acta ; 191(6): 352, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806756

ABSTRACT

Developing convenient and reliable methods for Hg2+ monitoring is highly important. Some precious metal nanomaterials with intriguing peroxidase-like activity have been used for highly sensitive Hg2+ detection. However, H2O2 must be added during these detections, which impedes practical applications of Hg2+ sensors due to its susceptible decomposition by environmental factors. Herein, we discovered that the combination of Hg2+ and palladium metal-organic framework@graphene (Pd-MOF@GNs) exhibits oxidase-like activity (OXD). In the absence of H2O2, this activity not only catalyzes the oxidation of chromogenic substrates such as 3,3',5,5'-tetramethylbenzidine (TMB) or o-phenylenediamine (OPD) to produce a color change but also enhances the electrical signals during OPD oxidation. Based on these properties, an effective and convenient dual-mode colorimetric and electrochemical sensor for Hg2+ has been developed. The colorimetric and amperometric linear relationships for Hg2+ were 0.045 µM-0.25 mM and 0.020 µM-2.0 mM, respectively. The proposed strategy shows good recovery in real sample tests, indicating promising prospects for multiple environmental sample detection of Hg2+ without relying on H2O2. The colorimetric and electrochemical dual-mode Hg2+ sensor is expected to hold great potentials in applications such as environmental monitoring, rapid field detection, and integration into smartphone detection of Hg2+.


Subject(s)
Colorimetry , Electrochemical Techniques , Graphite , Limit of Detection , Mercury , Metal-Organic Frameworks , Palladium , Graphite/chemistry , Colorimetry/methods , Mercury/analysis , Mercury/chemistry , Metal-Organic Frameworks/chemistry , Palladium/chemistry , Electrochemical Techniques/methods , Benzidines/chemistry , Oxidation-Reduction , Water Pollutants, Chemical/analysis , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Phenylenediamines/chemistry
16.
Mikrochim Acta ; 191(6): 314, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720024

ABSTRACT

Single atom catalysts (SACs) have attracted attention due to their excellent catalysis activity under specific reactions and conditions. However, the low density of SACs greatly limits catalytic performance. The three-dimensional graphene hollow nanospheres (GHSs) with very thin shell structure can be used as excellent carrier materials. Not only can its outer surface be used to anchor metal single atoms, but its inner surface can also provide rich sites. Here, a novel step-by-step assembly strategy is reported to anchor nickel single atoms (Ni SAs) on the inner and outer surfaces of GHSs (Ni SAs/GHSs/Ni SAs), which significantly increases the loading capacity of Ni SAs (4.8 wt%). Compared to conventional materials that only anchor Ni SAs to the outer surface of the carrier (Ni SAs/GHSs), Ni SAs/GHSs/Ni SAs exhibits significantly higher electrocatalytic activity toward glucose oxidation in alkaline media. The sensitivity of Ni SAs/GHSs/Ni SAs/GCE is nearly five times higher than that of Ni SAs/GHSs/GCE. Moreover, the sensor based on Ni SAs/GHSs/Ni SAs can detect glucose in a wide concentration range of 0.8 µM-1.1244 mM with a low detection limit of 0.19 µM (S/N = 3). This study not only provides an effective sensing material for glucose detection, but also opens a new avenue to construct high-density metal SACs.

17.
ACS Sens ; 9(5): 2645-2652, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38709872

ABSTRACT

In this work, we present the development of the first implantable aptamer-based platinum microelectrode for continuous measurement of a nonelectroactive molecule, neuropeptide Y (NPY). The aptamer immobilization was performed via conjugation chemistry and characterized using cyclic voltammetry before and after the surface modification. The redox label, methylene blue (MB), was attached at the end of the aptamer sequence and characterized using square wave voltammetry (SWV). NPY standard solutions in a three-electrode cell were used to test three aptamers in steady-state measurement using SWV for optimization. The aptamer with the best performance in the steady-state measurements was chosen, and continuous measurements were performed in a flow cell system using intermittent pulse amperometry. Dynamic measurements were compared against confounding and similar peptides such as pancreatic polypeptide and peptide YY, as well as somatostatin to determine the selectivity in the same modified microelectrode. Our Pt-microelectrode aptamer-based NPY biosensor provides signals 10 times higher for NPY compared to the confounding molecules. This proof-of-concept shows the first potential implantable microelectrode that is selectively sensitive to NPY concentration changes.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Microelectrodes , Neuropeptide Y , Platinum , Neuropeptide Y/analysis , Biosensing Techniques/methods , Platinum/chemistry , Aptamers, Nucleotide/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation
18.
Talanta ; 275: 125963, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38643712

ABSTRACT

This work introduces an innovative gold-leaf flow cell for electrochemical detection in flow injection (FI) analysis. The flow cell incorporates a hammered custom gold leaf electrochemical sensor. Hammered gold leaves consist of pure gold and are readily available in Thailand at affordable prices (approximately $0.085 for a sheet measuring 40 mm × 40 mm). Four sensing devices can be made from a single sheet of this gold leaf, resulting in a production cost of approximately $0.19 per sensor. Each electrochemical sensor has the gold leaf as the working electrode, together with a printed carbon strip, and a printed silver/silver chloride strip as the counter and reference electrodes, respectively. Initial investigations using cyclic voltammetry of a standard 1000 µmol L⁻1 iodide solution in 60 mmol L⁻1 phosphate buffer (PB) solution at pH 5, demonstrated performance comparable to that of a commercial screen-printed gold electrode. The hammered gold leaf electrode was then installed in a commercial flow cell as part of an FI system. A sample or standard iodide solution (100 µL) is injected into the first carrier stream of phosphate buffer (PB) solution, which then merges to mix with the second stream of the same buffer solution before flowing into the flow cell for amperometric detection of iodide. The optimized operating conditions include a fixed potential of +0.39 V (vs Ag/AgCl), and a total flow rate of 3 mL min⁻1. A linear calibration is obtained in the concentration range of 1 to 1000 µmol L⁻1 I- with a typical equation of µA = (0.00299 ± 0.00004) × (µmol L-1 I-) + (0.021 ± 0.020), and R2 = 0.9994. Analysis of iodide using this gold leaf-FI system is rapid with sample throughput of 86 samples h⁻1 and %RSD of a sample of 100 µmol L⁻1 I⁻ of 1.2 (n = 29). The limit of detection, (calculated as 2.78 × SD of regression line/slope), is 27 µmol L⁻1 I-. This method was successfully applied to determine iodide in nuclear emergency tablets.


Subject(s)
Electrochemical Techniques , Electrodes , Gold , Iodides , Tablets , Iodides/analysis , Gold/chemistry , Tablets/analysis , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Flow Injection Analysis/methods , Limit of Detection
19.
Bioelectrochemistry ; 158: 108713, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38688079

ABSTRACT

Boron doped diamond has been considered as a fouling-resistive electrode material for in vitro and in vivo detection of neurotransmitters. In this study, its performance in electrochemical detection of dopamine and serotonin in neuron cultivation media Neurobasal™ before and after cultivation of rat neurons was investigated. For differential pulse voltammetry the limits of detection in neat Neurobasal™ medium of 2 µM and 0.2 µM for dopamine and serotonin, respectively, were achieved on the polished surface, which is comparable with physiological values. On oxidized surface twofold higher values, but increased repeatabilities of the signals were obtained. However, in Neurobasal™ media with peptides-containing supplements necessary for cell cultivation, the voltammograms were notably worse shaped due to biofouling, especially in the medium isolated after neuron growth. In these complex media, the amperometric detection mode at +0.75 V (vs. Ag/AgCl) allowed to detect portion-wise additions of dopamine and serotonin (as low as 1-2 µM), mimicking neurotransmitter release from vesicles despite the lower sensitivity in comparison with neat NeurobasalTM. The results indicate substantial differences in detection on boron doped diamond electrode in the presence and absence of proteins, and the necessity of studies in real media for successful implementation to neuron-electrode interfaces.


Subject(s)
Biofouling , Boron , Culture Media , Diamond , Dopamine , Electrodes , Neurons , Serotonin , Serotonin/analysis , Dopamine/analysis , Boron/chemistry , Diamond/chemistry , Animals , Neurons/cytology , Neurons/metabolism , Rats , Biofouling/prevention & control , Culture Media/chemistry , Electrochemical Techniques/methods
20.
Mikrochim Acta ; 191(5): 267, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38627300

ABSTRACT

A ternary hierarchical hybrid Ni@CoxSy/poly(3,4-ethylenedioxythiophene)-reduced graphene oxide (Ni@CoxSy/PEDOT-rGO) is rationally designed and in situ facilely synthesized as electrocatalyst to construct a binder-free sensing platform for non-enzymatic glucose monitoring through traditional electrodeposition procedure. The as-prepared Ni@CoxSy/PEDOT-rGO presents unique hierarchical structure and multiple valence states as well as strong and robust adhesion between Ni@CoxSy/PEDOT-rGO and GCE. Profiting from the aforementioned merits, the sensing platform constructed under optimal conditions achieved a wide detection range (0.2 µM ~ 2.0 mM) with high sensitivity (1546.32 µA cm-2 mM-1), a rapid response time (5 s), an ultralow detection limit (0.094 µM), superior anti-interference performance, excellent reproducibility and considerable stability. Furthermore, the sensor demonstrates an acceptable accuracy and appreciable recoveries ranging from 90.0 to 102.0% with less than 3.98% RSD in human blood serum samples, indicating the prospect of the sensor for the real samples analysis. It will provide a strategy to rationally design and fabricate ternary hierarchical hybrid as nanozyme for glucose assay.


Subject(s)
Blood Glucose , Bridged Bicyclo Compounds, Heterocyclic , Cobalt , Graphite , Nickel , Polymers , Humans , Nickel/chemistry , Blood Glucose/analysis , Reproducibility of Results , Blood Glucose Self-Monitoring , Glucose/analysis
SELECTION OF CITATIONS
SEARCH DETAIL