Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
1.
Water Res ; 263: 122198, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39098158

ABSTRACT

The cycling processes of elemental manganese (Mn), including the redox reactions of dissolved Mn(III) (dMn(III)), directly and indirectly influences the biogeochemical processes of many elements. Though increasing evidence indicates the widespread presence of dMn(III) mediates the fate of many elements, its role may be currently underestimated. There is both a lack of clear understanding of the historical research framework of dMn(III) and a systematic overview of its geochemical properties and detection methods. Therefore, the primary aim of this review is to outline the understanding of dMn(III) in multiple fields, including soil science, analytical chemistry, biochemistry, geochemistry, and water treatment, and summarize the formation pathways, species forms, and detection methods of dMn(III) in aquatic systems. This review considers how the characteristics of dMn(III), the intermediate formed in the single-electron reaction processes of Mn(II) oxidation and Mn(IV) reduction, determines its participation in environmental geochemical processes. Its widespread presence in diverse water systems and active redox properties coupling with various elements confirm its significant role in natural elemental geochemistry cycle and artificial water treatment processes. Therefore, further investigation into the role of dissolved Mn(III) in aquatic systems is warranted to unravel unexplored coupled elemental redox reaction processes mediated by dissolved Mn(III), filling in the gaps in our understanding of manganese environmental geochemistry, and providing a theoretical basis for recognizing the role of dMn(III) role in water treatment technologies.


Subject(s)
Manganese , Manganese/chemistry , Oxidation-Reduction , Water Pollutants, Chemical/chemistry , Environment
2.
Cancer Commun (Lond) ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087354

ABSTRACT

The intratumoral microbiome (TM) refers to the microorganisms in the tumor tissues, including bacteria, fungi, viruses, and so on, and is distinct from the gut microbiome and circulating microbiota. TM is strongly associated with tumorigenesis, progression, metastasis, and response to therapy. This paper highlights the current status of TM. Tract sources, adjacent normal tissue, circulatory system, and concomitant tumor co-metastasis are the main origin of TM. The advanced techniques in TM analysis are comprehensively summarized. Besides, TM is involved in tumor progression through several mechanisms, including DNA damage, activation of oncogenic signaling pathways (phosphoinositide 3-kinase [PI3K], signal transducer and activator of transcription [STAT], WNT/ß-catenin, and extracellular regulated protein kinases [ERK]), influence of cytokines and induce inflammatory responses, and interaction with the tumor microenvironment (anti-tumor immunity, pro-tumor immunity, and microbial-derived metabolites). Moreover, promising directions of TM in tumor therapy include immunotherapy, chemotherapy, radiotherapy, the application of probiotics/prebiotics/synbiotics, fecal microbiome transplantation, engineered microbiota, phage therapy, and oncolytic virus therapy. The inherent challenges of clinical application are also summarized. This review provides a comprehensive landscape for analyzing TM, especially the TM-related mechanisms and TM-based treatment in cancer.

3.
MethodsX ; 13: 102881, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39176151

ABSTRACT

Our article explores a variety of modern research techniques employed in neuroanatomy and neurophysiology. We highlight the use of computer technologies, image analysis methods, and innovative approaches that expand our understanding of anatomical structures. The techniques we discuss include fractal analysis, the Pickworth method, scanning microscopy, and advanced computer image processing systems. Fractal analysis, in particular, offers a unique perspective on brain structures and functions and is a key tool in neuroanatomical research. We also focus on its application in neuroanatomical studies, particularly in cases of Alzheimer's disease and epilepsy. These modern research methods not only enhance our knowledge but also have significant clinical potential. Their use in diagnosing neurological diseases like Alzheimer's and epilepsy promises faster and more accurate diagnoses. We emphasize the combination of multiple methods for improved quality of anatomical structure imaging.

4.
J Med Virol ; 96(8): e29869, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39165093

ABSTRACT

Epstein-Barr virus (EBV) is a highly successful pathogen that infects ~95% of the adult population and is associated with diverse cancers and autoimmune diseases. The most abundant viral factor in latently infected cells is not a protein but a noncoding RNA called EBV-encoded RNA 1 (EBER1). Even though EBER1 is highly abundant and was discovered over forty years ago, the function of EBER1 has remained elusive. EBER1 interacts with the ribosomal protein L22, which normally suppresses the expression of its paralog L22-like 1 (L22L1). Here we show that when L22 binds EBER1, it cannot suppress L22L1, resulting in L22L1 being expressed and incorporated into ribosomes. We further show that L22L1-containing ribosomes preferentially translate mRNAs involved in the oxidative phosphorylation pathway. Moreover, upregulation of L22L1 is indispensable for growth transformation and immortalization of resting B cells upon EBV infection. Taken together, our results suggest that the function of EBER1 is to modulate host gene expression at the translational level, thus bypassing the need for dysregulating host gene transcription.


Subject(s)
Herpesvirus 4, Human , Oxidative Phosphorylation , RNA, Viral , Ribosomal Proteins , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Humans , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/physiology , RNA, Viral/genetics , RNA, Viral/metabolism , B-Lymphocytes/virology , Host-Pathogen Interactions/genetics , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/metabolism , Ribosomes/metabolism , Ribosomes/genetics , RNA-Binding Proteins
5.
J Med Virol ; 96(7): e29782, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39011762

ABSTRACT

Extracellular vesicles (EVs) are shown to be a novel viral transmission model capable of increasing a virus's tropism. According to our earlier research, cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or transfected with envelope protein plasmids generate a novel type of EVs that are micrometer-sized and able to encase virus particles. Here, we showed the capacity of these EVs to invade various animals both in vitro and in vivo independent of the angiotensin-converting enzyme 2 receptor. First, via macropinocytosis, intact EVs produced from Vero E6 (monkey) cells were able to enter cells from a variety of animals, including cats, dogs, bats, hamsters, and minks, and vice versa. Second, when given to zebrafish with cutaneous wounds, the EVs showed favorable stability in aqueous environments and entered the fish. Moreover, infection of wild-type (WT) mice with heterogeneous EVs carrying SARS-CoV-2 particles led to a strong cytokine response and a notable amount of lung damage. Conversely, free viral particles did not infect WT mice. These results highlight the variety of processes behind viral transmission and cross-species evolution by indicating that EVs may be possible vehicles for SARS-CoV-2 spillover and raising risk concerns over EVs' potential for viral gene transfer.


Subject(s)
COVID-19 , Extracellular Vesicles , SARS-CoV-2 , Animals , Extracellular Vesicles/virology , Extracellular Vesicles/metabolism , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , SARS-CoV-2/genetics , COVID-19/transmission , COVID-19/virology , Mice , Chlorocebus aethiops , Vero Cells , Humans , Cricetinae , Coronavirus Envelope Proteins/metabolism , Coronavirus Envelope Proteins/genetics , Dogs , Zebrafish/virology , Cats , Chiroptera/virology , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics
6.
Food Chem ; 459: 140384, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-38996634

ABSTRACT

Rhodamine, a colorant prohibited in various consumer products due to its demonstrated carcinogenic, mutagenic, and toxic properties, necessitates the development of a straightforward, efficient, sensitive, environmentally friendly, and cost-effective analytical method. This review provides an overview of recent advancements in the pretreatment and determination techniques for rhodamine across diverse sample matrices since 2017. Sample preparation methods encompass both commonly used pretreatment techniques such as filtration, centrifugation, solvent extraction, and cloud point extraction, as well as innovative approaches including solid phase extraction, dispersive liquid-liquid microextraction, hollow fiber liquid phase microextraction, magnetic solid phase extraction, and matrix solid phase dispersion. The analytical techniques encompass high performance liquid chromatography, surface-enhanced Raman scattering, and sensor-based methods. Furthermore, a comprehensive examination is conducted to offer insights for future research on rhodamine regarding the advantages, disadvantages, and advancements in various pretreatment and determination methodologies.


Subject(s)
Food Contamination , Rhodamines , Rhodamines/chemistry , Rhodamines/analysis , Food Contamination/analysis , Chromatography, High Pressure Liquid , Liquid Phase Microextraction/methods , Solid Phase Extraction , Food Coloring Agents/analysis , Food Coloring Agents/chemistry , Food Analysis
7.
J Environ Manage ; 360: 121135, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761623

ABSTRACT

Resilience assessment for urban drainage systems is a fundamental aspect of building resilient cities. Recently, some scholars have proposed the Global Resilience Analysis (GRA) method, which assesses resilience based on the functional performance of different system failure scenarios. Compared to traditional system dynamics methods, the GRA method considers the impact of internal structural failure on resilience but requires a large amount of computation. This research proposed an improved GRA method to enhance computational efficiency and practicality by reducing the number of system scenario simulations. Firstly, a hydrodynamic model of the drainage network of Haidian Island has been constructed using the Storm Water Management Model (SWMM) and Python. Secondly, the GRA method was improved using cluster analysis and convergence analysis to reduce the simulation scenarios. Thirdly, a resilience assessment index was established through system function functions, and two types of resilience enhancement measures, centralized and distributed, were proposed. The results show: (i) resilience assessment increases the computational efficiency by 25% compared to the traditional GRA method; (ii) the resilience index of the existing drainage network within Haidian Island is less than the design value (0.7) in all failure scenarios, indicating a lower level of recovery capability; (iii) compared to the centralized strategy, which is only effective when the system failure level is less than 9%, the distributed strategy enhances the resilience of the urban drainage system at a higher failure level (77%).


Subject(s)
Cities , China , Models, Theoretical , Islands
8.
Front Genet ; 15: 1203577, 2024.
Article in English | MEDLINE | ID: mdl-38818035

ABSTRACT

Cross-sectional data allow the investigation of how genetics influence health at a single time point, but to understand how the genome impacts phenotype development, one must use repeated measures data. Ignoring the dependency inherent in repeated measures can exacerbate false positives and requires the utilization of methods other than general or generalized linear models. Many methods can accommodate longitudinal data, including the commonly used linear mixed model and generalized estimating equation, as well as the less popular fixed-effects model, cluster-robust standard error adjustment, and aggregate regression. We simulated longitudinal data and applied these five methods alongside naïve linear regression, which ignored the dependency and served as a baseline, to compare their power, false positive rate, estimation accuracy, and precision. The results showed that the naïve linear regression and fixed-effects models incurred high false positive rates when analyzing a predictor that is fixed over time, making them unviable for studying time-invariant genetic effects. The linear mixed models maintained low false positive rates and unbiased estimation. The generalized estimating equation was similar to the former in terms of power and estimation, but it had increased false positives when the sample size was low, as did cluster-robust standard error adjustment. Aggregate regression produced biased estimates when predictor effects varied over time. To show how the method choice affects downstream results, we performed longitudinal analyses in an adolescent cohort of African and European ancestry. We examined how developing post-traumatic stress symptoms were predicted by polygenic risk, traumatic events, exposure to sexual abuse, and income using four approaches-linear mixed models, generalized estimating equations, cluster-robust standard error adjustment, and aggregate regression. While the directions of effect were generally consistent, coefficient magnitudes and statistical significance differed across methods. Our in-depth comparison of longitudinal methods showed that linear mixed models and generalized estimating equations were applicable in most scenarios requiring longitudinal modeling, but no approach produced identical results even if fit to the same data. Since result discrepancies can result from methodological choices, it is crucial that researchers determine their model a priori, refrain from testing multiple approaches to obtain favorable results, and utilize as similar as possible methods when seeking to replicate results.

9.
J Med Virol ; 96(5): e29610, 2024 May.
Article in English | MEDLINE | ID: mdl-38654702

ABSTRACT

In 2022, a series of human monkeypox cases in multiple countries led to the largest and most widespread outbreak outside the known endemic areas. Setup of proper genomic surveillance is of utmost importance to control such outbreaks. To this end, we performed Nanopore (PromethION P24) and Illumina (NextSeq. 2000) Whole Genome Sequencing (WGS) of a monkeypox sample. Adaptive sampling was applied for in silico depletion of the human host genome, allowing for the enrichment of low abundance viral DNA without a priori knowledge of sample composition. Nanopore sequencing allowed for high viral genome coverage, tracking of sample composition during sequencing, strain determination, and preliminary assessment of mutational pattern. In addition to that, only Nanopore data allowed us to resolve the entire monkeypox virus genome, with respect to two structural variants belonging to the genes OPG015 and OPG208. These SVs in important host range genes seem stable throughout the outbreak and are frequently misassembled and/or misannotated due to the prevalence of short read sequencing or short read first assembly. Ideally, standalone standard Illumina sequencing should not be used for Monkeypox WGS and de novo assembly, since it will obfuscate the structure of the genome, which has an impact on the quality and completeness of the genomes deposited in public databases and thus possibly on the ability to evaluate the complete genetic reason for the host range change of monkeypox in the current pandemic.


Subject(s)
Genome, Viral , Metagenomics , Monkeypox virus , Mpox (monkeypox) , Nanopore Sequencing , Whole Genome Sequencing , Humans , Genome, Viral/genetics , Metagenomics/methods , Nanopore Sequencing/methods , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/virology , Monkeypox virus/genetics , Monkeypox virus/isolation & purification , Whole Genome Sequencing/methods , Nanopores , DNA, Viral/genetics , High-Throughput Nucleotide Sequencing/methods
10.
J Med Virol ; 96(3): e29545, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38506248

ABSTRACT

A large-scale outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) occurred in Shanghai, China, in early December 2022. To study the incidence and characteristics of otitis media with effusion (OME) complicating SARS-CoV-2, we collected 267 middle ear effusion (MEE) samples and 172 nasopharyngeal (NP) swabs from patients. The SARS-CoV-2 virus was detected by RT-PCR targeting. The SARS-CoV-2 virus, angiotensin-converting enzyme 2 (ACE2), and transmembrane serine protease 2 (TMPRSS2) expression in human samples was examined via immunofluorescence. During the COVID-19 epidemic in 2022, the incidence of OME (3%) significantly increased compared to the same period from 2020 to 2022. Ear symptoms in patients with SARS-CoV-2 complicated by OME generally appeared late, even after a negative NP swab, an average of 9.33 ± 6.272 days after COVID-19 infection. The SARS-CoV-2 virus was detected in MEE, which had a higher viral load than NP swabs. The insertion rate of tympanostomy tubes was not significantly higher than in OME patients in 2019-2022. Virus migration led to high viral loads in MEE despite negative NP swabs, indicating that OME lagged behind respiratory infections but had a favorable prognosis. Furthermore, middle ear tissue from adult humans coexpressed the ACE2 receptor for the SARS-CoV-2 virus and the TMPRSS2 cofactors required for virus entry.


Subject(s)
COVID-19 , Otitis Media with Effusion , Adult , Humans , SARS-CoV-2 , COVID-19/complications , Angiotensin-Converting Enzyme 2 , China/epidemiology
11.
Carbohydr Polym ; 333: 122003, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38494201

ABSTRACT

The occurrence and development of many diseases are closely related to oxidative stress. In this context, accumulating evidence suggests that Nrf2, as the master switch of cellular antioxidant signaling, plays a central role in controlling the expression of antioxidant genes. The core molecular mechanism of polysaccharides treatment of oxidative stress-induced diseases is to activate Keap1/Nrf2/ARE signaling pathway, promote nuclear translocation of Nrf2, and up-regulate the expression of antioxidant enzymes. However, recent studies have shown that other signaling pathways in which polysaccharides exert antioxidant effects, such as PI3K/Akt/GSK3ß, JNK/Nrf2 and NF-κB, have complex crosstalk with Keap1/Nrf2/ARE, may have direct effects on the nuclear translocation of Nrf2. This suggests a new strategy for designing polysaccharides as modulators of Nrf2-dependent pathways to target the antioxidant response. Therefore, in this work, we investigate the crosstalk between Keap1/Nrf2/ARE and other antioxidant signaling pathways of polysaccharides by regulating Nrf2-mediated antioxidant response. For the first time, the structural-activity relationship of polysaccharides, including molecular weight, monosaccharide composition, and glycosidic linkage, is systematically elucidated using principal component analysis and cluster analysis. This review also summarizes the application of antioxidant polysaccharides in food, animal production, cosmetics and biomaterials. The paper has significant reference value for screening antioxidant polysaccharides targeting Nrf2.


Subject(s)
Antioxidants , NF-E2-Related Factor 2 , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , NF-E2-Related Factor 2/genetics , Kelch-Like ECH-Associated Protein 1/genetics , Phosphatidylinositol 3-Kinases/metabolism , Oxidative Stress , Polysaccharides/pharmacology , Structure-Activity Relationship
12.
J Appl Genet ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315405

ABSTRACT

Employing bioinformatics approaches, this investigation pinpointed pivotal differentially expressed genes (DEGs) across the spectrum of Alzheimer's disease (AD), from incipient to severe stages, using the GSE28146 dataset from the GEO repository. Analytical methods included DEG identification via the limma package in R, coupled with GO and KEGG pathway analyses through clusterProfiler, to discern biological processes and pathway involvements. Key findings spotlighted the roles of proteasome subunits PSMB4, PSMB8, PSMC4, and PSMD6 in the early stage, ribosomal proteins RPS3 and RPL11 during moderate AD, and mitochondrial components COX5B, COX6B2, and COX7A2 in severe AD, underscoring their importance in the disease's pathogenesis. Conclusively, these results not only delineate the dynamic genetic shifts accompanying AD progression but also propose critical biomarkers for potential therapeutic targeting, offering a consolidated basis for future AD research and treatment development. This offered a novel idea for analyzing the pathogenesis and development of AD and investigation of targeted drugs.

13.
J Med Virol ; 96(3): e29484, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38402600

ABSTRACT

Antiviral therapy based on neuraminidase (oseltamivir) or polymerase (baloxavir marboxil) inhibitors plays an important role in the management of influenza infections. However, the emergence of drug resistance and the uncontrolled inflammatory response are major limitations in the treatment of severe influenza disease. Protectins D1 (PD1) and DX (PDX), part of a family of pro-resolving mediators, have previously demonstrated anti-influenza activity as well as anti-inflammatory properties in various clinical contexts. Herein, we synthetized a series of simplified PDX analogs and assessed their in vitro antiviral activity against influenza A(H1N1) viruses, including oseltamivir- and baloxavir-resistant variants. In ST6GalI-MDCK cells, the PDX analog AN-137B reduced viral replication in a dose-dependent manner with IC50 values of 23.8 for A/Puerto Rico/8/1934 (H1N1) and between 32.6 and 36.7 µM for susceptible and resistant A(H1N1)pdm09 viruses. In MTS-based cell viability experiments, AN-137B showed a 50% cellular cytotoxicity (CC50 ) of 638.7 µM with a resulting selectivity index of 26.8. Of greater importance, the combination of AN-137B with oseltamivir or baloxavir resulted in synergistic and additive in vitro effects, respectively. Treatment of lipopolysaccharide (LPS)-stimulated macrophages with AN-137B resulted in a decrease of iNOS activity as shown by the reduction of nitrite production, suggesting an anti-inflammatory effect. In conclusion, our results indicate that the protectin analog AN-137B constitutes an interesting therapeutic modality against influenza A virus, warranting further evaluation in animal models.


Subject(s)
Dibenzothiepins , Docosahexaenoic Acids , Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Morpholines , Pyridones , Triazines , Animals , Humans , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Influenza, Human/drug therapy , Anti-Inflammatory Agents/therapeutic use , Drug Resistance, Viral , Neuraminidase
14.
Environ Pollut ; 346: 123623, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38387545

ABSTRACT

Microplastics (MPs), pollutants detected at high frequency in the environment, can be served as carriers of many kinds of pollutants and have typical characteristics of environmental persistence and bioaccumulation. The potential risks of MPs ecological environment and health have been widely concerned by scholars and engineering practitioners. Previous reviews mostly focused on the pollution characteristics and ecological toxicity of MPs, but there were few reviews on MPs analysis methods, aging mechanisms and removal strategies. To address this issue, this review first summarizes the contamination characteristics of MPs in different environmental media, and then focuses on analyzing the detection methods and analyzing the aging mechanisms of MPs, which include physical aging and chemical aging. Further, the ecotoxicity of MPs to different organisms and the associated enhanced removal strategies are outlined. Finally, some unresolved research questions related to MPs are prospected. This review focuses on the ageing and ecotoxic behaviour of MPs and provides some theoretical references for the potential environmental risks of MPs and their deep control.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Microplastics/toxicity , Microplastics/analysis , Plastics/toxicity , Environmental Monitoring/methods , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Environmental Pollutants/toxicity , Environmental Pollutants/analysis
15.
Pathol Res Pract ; 254: 155145, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38277741

ABSTRACT

Claudin-18.2 (CLDN18.2) is a member of the tight junction protein family and is a highly selective biomarker with frequent abnormal expression during the occurrence and development of various primary malignant tumors, including gastric cancer (GC) and esophago-gastric junction adenocarcinomas (EGJA). For these reasons, CLDN18.2 has been investigated as a therapeutic target for GC/EGJA malignancies. Recently, zolbetuximab has been proposed as a new standard of care for patients with CLDN18.2-positive, HER2-negative, locally advanced and metastatic GC/EGJA. The use of CLDN18 IHC assays to select patients who might benefit from anti-CLDN18.2 therapy is currently entering clinical practice. In this setting, pathologists play a central role in therapeutic decision-making. Accurate biomarker assessment is essential to ensure the best therapeutic option for patients. In the present review, we provide a comprehensive overview of available evidence on CLDN18.2 testing and its impact on the therapeutic management of patients with GC/EGJA, as well as some practical suggestions for CLDN18.2 staining interpretation and potential pitfalls in the real-world setting.


Subject(s)
Adenocarcinoma , Stomach Neoplasms , Humans , Expert Testimony , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Cell Adhesion Molecules , Adenocarcinoma/pathology , Claudins/metabolism , Biomarkers
16.
J Orthop Res ; 42(1): 43-53, 2024 01.
Article in English | MEDLINE | ID: mdl-37254620

ABSTRACT

Cartilage thickness change is a well-documented biomarker of osteoarthritis pathogenesis. However, there is still much to learn about the spatial and temporal patterns of cartilage thickness change in health and disease. In this study, we develop a novel analysis method for elucidating such patterns using a functional connectivity approach. Descriptive statistics are reported for 1186 knees that did not develop osteoarthritis during the 8 years of observation, which we present as a model of cartilage thickness change related to healthy aging. Within the control population, patterns vary greatly between male and female subjects, while body mass index (BMI) has a more moderate impact. Finally, several differences are shown between knees that did and did not develop osteoarthritis. Some but not all significance appears to be accounted for by differences in sex, BMI, and knee alignment. With this work, we present the connectome as a novel tool for studying spatiotemporal dynamics of tissue change.


Subject(s)
Cartilage, Articular , Connectome , Osteoarthritis, Knee , Humans , Male , Female , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/pathology , Magnetic Resonance Imaging/methods , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Knee Joint/diagnostic imaging , Knee Joint/pathology
17.
Int J Pharm ; 649: 123633, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37995822

ABSTRACT

The stability of emulsions is a critical concern across multiple industries, including food products, agricultural formulations, petroleum, and pharmaceuticals. Achieving prolonged emulsion stability is challenging and depends on various factors, with particular emphasis on droplet size, shape, and spatial distribution. Addressing this issue necessitates an effective investigation of these parameters and finding solutions to enhance emulsion stability. Image analysis offers a powerful tool for researchers to explore these characteristics and advance our understanding of emulsion instability in different industries. In this review, we highlight the potential of state-of-the-art deep learning-based approaches in computer vision and image analysis to extract relevant features from emulsion micrographs. A comprehensive summary of classic and cutting-edge techniques employed for characterizing spherical objects, including droplets and bubbles observed in micrographs of industrial emulsions, has been provided. This review reveals significant deficiencies in the existing literature regarding the investigation of highly concentrated emulsions. Despite the practical importance of these systems, limited research has been conducted to understand their unique characteristics and stability challenges. It has also been identified that there is a scarcity of publications in multimodal analysis and a lack of a complete automated in-line emulsion characterization system. This review critically evaluates the existing challenges and presents prospective directions for future advancements in the field, aiming to address the current gaps and contribute to the scientific progression in this area.


Subject(s)
Artificial Intelligence , Emulsions , Prospective Studies , Drug Compounding/methods
18.
J Med Virol ; 96(1): e29344, 2024 01.
Article in English | MEDLINE | ID: mdl-38149453

ABSTRACT

Utilizing multiplex real time polymerase chain reaction (RT-PCR) for rapid diagnosis of gastroenteritis, enables simultaneous detection of multiple pathogens. A comparative analysis of disease characteristics was conducted between cases with single and multiple viruses. Rotavirus vaccine was introduced in 2010, reaching a 70% coverage in 2 years. All rectal swabs collected from diarrheic children (<5 years) between December 2017 and March 2022 were included. Detection of the same viruses within 2 months was considered a single episode. Episodes with positive stool bacterial PCR were excluded. A total of 5879 samples were collected, revealing 86.9% (1509) with single virus detection and 13.1% (227) with multiple viruses. The most frequent combination was rotavirus and norovirus (27.8%), these infections followed a winter-spring seasonality akin to rotavirus. Children with multivirus infections exhibited higher immunodeficiency (OR 2.06) rates, but lower food allergy (OR 0.45) and prematurity rates (OR 0.55) compared to single infections. Greater disease severity, evaluated by the Vesikari score, was observed in multivirus episodes (p < 0.001, OR 1.12). Multivirus infections accounted for 13.1% of symptomatic cases in hospitalized young children. Despite vaccination efforts, rotavirus remained prominent, frequently in co-infections with norovirus. Overall, multivirus infections were linked to more severe diseases than single virus cases.


Subject(s)
Gastroenteritis , Norovirus , Rotavirus Infections , Rotavirus , Viruses , Child , Humans , Infant , Child, Preschool , Reverse Transcriptase Polymerase Chain Reaction , Gastroenteritis/diagnosis , Gastroenteritis/epidemiology , Rotavirus/genetics , Rotavirus Infections/diagnosis , Rotavirus Infections/epidemiology , Viruses/genetics , Norovirus/genetics , Multiplex Polymerase Chain Reaction , Diagnostic Techniques and Procedures , Feces
19.
J Med Virol ; 95(12): e29288, 2023 12.
Article in English | MEDLINE | ID: mdl-38054528

ABSTRACT

Human papillomaviruses (HPV) of the genus Betapapillomavirus can infect both cutaneous and mucosal sites, but research on their natural history at mucosal sites remains scarce. We examined the risk factors and co-detection patterns of HPVs of the Betapapillomavirus and Alphapapillomavirus genera in cervical samples of the Ludwig-McGill cohort study. We assessed a subset of 505 women from the Ludwig-McGill cohort study from São Paulo, Brazil. Cervical samples over the first year of follow-up were tested for DNA of over 40 alphapapillomavirus types and 43 betapapillomavirus types using a type-specific multiplex genotyping polymerase chain reaction assay. We assessed the risk factors for prevalent and incident betapapillomavirus type detection, and whether types were detected more frequently together than expected assuming independence using permutation tests, logistic regression, and Cox regression. We observed significant within-genus clustering but not cross-genus clustering. Multiple betapapillomavirus types were co-detected in the same sample 2.24 (95% confidence interval [CI]: 1.65-3.29) times more frequently than expected. Conversely, co-detections of alphapapillomavirus and betapapillomavirus types in the same sample occurred only 0.64 (95% CI: 0.51-0.83) times as often as expected under independence. In prospective analyses, positivity to one HPV genus was associated with a nonsignificant lower incidence of detection of types in the other genus. Lifetime number of sex partners and new sex partner acquisition were associated with lower risks of prevalent and incident betapapillomavirus detection. Betapapillomaviruses are commonly found in the cervicovaginal tract. Results suggest potentially different mechanisms of transmission for betapapillomavirus genital infections other than vaginal sex.


Subject(s)
Alphapapillomavirus , Betapapillomavirus , Papillomavirus Infections , Humans , Adult , Female , Betapapillomavirus/genetics , Alphapapillomavirus/genetics , Cohort Studies , Papillomavirus Infections/epidemiology , Prospective Studies , Brazil/epidemiology , Human Papillomavirus Viruses
20.
Sud Med Ekspert ; 66(6): 55-58, 2023.
Article in Russian | MEDLINE | ID: mdl-38093431

ABSTRACT

An overview of researches, mainly by foreign specialists, on current available approaches for sampling to study the traces of gunshot residue (GSR) is presented. The comparative characteristics of traditional methods of samples (use of cotton and gauze tampons, blotting paper, textile fabrics, adhesive tapes, adhesives and vacuum samplers), as well as advanced technologies, including special devices and sorbents, are given. The characteristics of samplings from hands, scalp, nostrils, clothes of examined persons as well as procedures, that allow to increase the duration of GSR detection, are described in details. The importance of GSR sustainability over time is noted. On average, the most likely detection periods of particles are less than 1 hour for samples, collected from hands, more than 1 hour for samples from clothes and 2-3 hours for face. It is possible to detect the GSR particles in hair up to 24 h., and in nasal mucus after 6 h. of shot. The methods of identification and determination for analytes of inorganic and organic nature are discussed. The most common methods for determining heavy metal particles are atomic spectrometry, namely atomic absorption with electrothermal atomization and atomic emission. The combination of scanning laser ablation and mass-spectrometry with inductively coupled plasma makes it possible to detect more than 15 analytes in a single sample. Scanning electron microscopy with X-ray detectors is effective for the examination of powder particles. The described methods of sampling complement each other increasing the possibility of evidence base for court proceedings.


Subject(s)
Firearms , Wounds, Gunshot , Humans , Hair/chemistry , Hand , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL