Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.177
1.
Front Vet Sci ; 11: 1394113, 2024.
Article En | MEDLINE | ID: mdl-38872792

The irreproducibility in scientific research has become a critical issue. Despite the essential role of rigorous methodology in constructing a scientific article, more than half of publications, on average, are considered non-reproducible. The implications of this irreproducibility extend to reliability problems, hindering progress in technological production and resulting in substantial financial losses. In the context of laboratory animal research, this work emphasizes the importance of choosing an appropriate experimental model within the 3R's principle (Refine, Reduce, Replace). This study specifically addresses a deficiency in data specification in scientific articles, revealing inadequacies in the description of crucial details, such as environmental conditions, diet, and experimental procedures. For this purpose, 124 articles from journals with relevant impact factors were analyzed, conducting a survey of data considered important for the reproducibility of studies. Important flaws in the presentation of data were identified in most of the articles evaluated. The results of this study highlight the need to improve the description of essential information, standardizing studies, and ensuring the reproducibility of experiments in areas such as metabolism, immunity, hormones, stress, among others, to enhance the reliability and reproduction of experimental results, aligning with international guidelines such as ARRIVE and PREPARE.

2.
Autoimmunity ; 57(1): 2361745, 2024 Dec.
Article En | MEDLINE | ID: mdl-38850571

Immune-mediated demyelinating polyneuropathies (IMDPs) are rare disorders in which dysregulated adaptive immune responses cause peripheral nerve demyelinating inflammation and axonal injury in susceptible individuals. Despite significant advances in understanding IMDP pathogenesis guided by patient data and representative mammalian models, specific therapies are lacking. Significant knowledge gaps in IMDP pathogenesis still exist, e.g. precise antigen(s) and mechanisms that initially trigger immune system activation and identification of large population disease susceptibility factors. The initial directional cues for antigen-specific effector or autoreactive leukocyte trafficking into peripheral nerves are also unknown. An overview of current animal models, with emphasis on the experimental autoimmune neuritis and spontaneous autoimmune peripheral polyneuropathy models, is provided. Insights on the initial directional cues for peripheral nerve tissue specific autoimmunity using a novel Major Histocompatibility Complex class II conditional knockout mouse strain are also discussed, suggesting an essential research tool to study cell- and time-dependent adaptive immunity in autoimmune diseases.


Disease Models, Animal , Animals , Humans , Mice , Neuritis, Autoimmune, Experimental/immunology , Mice, Knockout , Autoimmunity , Polyneuropathies/immunology , Polyneuropathies/etiology , Adaptive Immunity , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism
3.
Exp Ther Med ; 28(1): 287, 2024 Jul.
Article En | MEDLINE | ID: mdl-38827473

Ischemic stroke is a common occurrence worldwide, posing a severe threat to human health and leading to negative financial impacts. Currently available treatments still have numerous limitations. As research progresses, extracellular vesicles are being found to have therapeutic potential in ischemic stroke. In the present study, the literature on extracellular vesicle therapy in animal studies of ischemic stroke was screened by searching databases, including PubMed, Embase, Medline, Web of Science and the Cochrane Library. The main outcomes of the present study were the neurological function score, apoptotic rate and infarct volumes. The secondary outcomes were pro-inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß and IL-6. The study quality was assessed using the CAMARADES Checklist. Subgroup analyses were performed to evaluate factors influencing extracellular vesicle therapy. Review Man3ager5.3 was used for data analysis. A total of 20 relevant articles were included in the present meta-analysis. The comprehensive analysis revealed that extracellular vesicles exerted a significant beneficial effect on neurobehavioral function, reducing the infarct volume and decreasing the apoptotic rate. Moreover, extracellular vesicles were found to promote nerve recovery by inhibiting pro-inflammatory factors (TNF-α, IL-1ß and IL-6). On the whole, the present meta-analysis examined the combined effects of extracellular vesicles on nerve function, infarct volume, apoptosis and inflammation, which provides a foundation for the clinical study of extracellular vesicles.

5.
Antimicrob Agents Chemother ; : e0033824, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38837364

The human malaria-Aotus monkey model has served the malaria research community since its inception in 1966 at the Gorgas Memorial Laboratory (GML) in Panama. Spanning over five decades, this model has been instrumental in evaluating the in vivo efficacy and pharmacokinetics of a wide array of candidate antimalarial drugs, whether used singly or in combination. The animal model could be infected with drug-resistant and susceptible Plasmodium falciparum and Plasmodium vivax strains that follow a characteristic and reproducible course of infection, remarkably like human untreated and treated infections. Over the years, the model has enabled the evaluation of several synthetic and semisynthetic endoperoxides, for instance, artelinic acid, artesunate, artemether, arteether, and artemisone. These compounds have been evaluated alone and in combination with long-acting partner drugs, commonly referred to as artemisinin-based combination therapies, which are recommended as first-line treatment against uncomplicated malaria. Further, the model has also supported the evaluation of the primaquine analog tafenoquine against blood stages of P. vivax, contributing to its progression to clinical trials and eventual approval. Besides, the P. falciparum/Aotus model at GML has also played a pivotal role in exploring the biology, immunology, and pathogenesis of malaria and in the characterization of drug-resistant P. falciparum and P. vivax strains. This minireview offers a historical overview of the most significant contributions made by the Panamanian owl monkey (Aotus lemurinus lemurinus) to malaria chemotherapy research.

6.
Animal Model Exp Med ; 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38837635

Diabetes mellitus is one of the world's most prevalent and complex metabolic disorders, and it is a rapidly growing global public health issue. It is characterized by hyperglycemia, a condition involving a high blood glucose level brought on by deficiencies in insulin secretion, decreased activity of insulin, or both. Prolonged effects of diabetes include cardiovascular problems, retinopathy, neuropathy, nephropathy, and vascular alterations in both macro- and micro-blood vessels. In vivo and in vitro models have always been important for investigating and characterizing disease pathogenesis, identifying targets, and reviewing novel treatment options and medications. Fully understanding these models is crucial for the researchers so this review summarizes the different experimental in vivo and in vitro model options used to study diabetes and its consequences. The most popular in vivo studies involves the small animal models, such as rodent models, chemically induced diabetogens like streptozotocin and alloxan, and the possibility of deleting or overexpressing a specific gene by knockout and transgenic technologies on these animals. Other models include virally induced models, diet/nutrition induced diabetic animals, surgically induced models or pancreatectomy models, and non-obese models. Large animals or non-rodent models like porcine (pig), canine (dog), nonhuman primate, and Zebrafish models are also outlined. The in vitro models discussed are murine and human beta-cell lines and pancreatic islets, human stem cells, and organoid cultures. The other enzymatic in vitro tests to assess diabetes include assay of amylase inhibition and inhibition of α-glucosidase activity.

7.
Article En | MEDLINE | ID: mdl-38828012

Recent shifts in societal attitudes towards cannabis have led to a dramatic increase in consumption rates in many Western countries, particularly among young people. This trend has shed light on a significant link between cannabis use disorder (CUD) and pathological reactive aggression, a condition involving disproportionate aggressive and violent reactions to minor provocations. The discourse on the connection between cannabis use and aggression is frequently enmeshed in political and legal discussions, leading to a polarized understanding of the causative relationship between cannabis use and aggression. However, integrative analyses from both human and animal research indicate a complex, bidirectional interplay between cannabis misuse and pathological aggression. On the one hand, emerging research reveals a shared genetic and environmental predisposition for both cannabis use and aggression, suggesting a common underlying biological mechanism. On the other hand, there is evidence that cannabis consumption can lead to violent behaviors while also being used as a self-medication strategy to mitigate the negative emotions associated with pathological reactive aggression. This suggests that the coexistence of pathological aggression and CUD may result from overlapping vulnerabilities, potentially creating a self-perpetuating cycle where each condition exacerbates the other, escalating into externalizing and violent behaviors. This article aims to synthesize existing research on the intricate connections between these issues and propose a theoretical model to explain the neurobiological mechanisms underpinning this complex relationship.

8.
Photodermatol Photoimmunol Photomed ; 40(4): e12978, 2024 Jul.
Article En | MEDLINE | ID: mdl-38845020

BACKGROUND: Infections are complications in the wound healing process, and their treatment can lead to antibiotic overuse and bacterial resistance. Antimicrobial photodynamic therapy (aPDT) is used to treat infectious diseases caused by fungi, viruses, or bacteria. Methylene blue (MB) and its derivatives are commonly used dyes in antimicrobial photodynamic therapy (aPDT-MB). METHODS: This study is a PRISMA systematic review of animal models used to discuss the usefulness and therapeutic parameters of aPDT-MB or its derivatives for treating infected skin wounds. RESULTS: After an extensive literature review, 13 controlled trials totaling 261 animals were selected to evaluate skin infection by leishmaniasis and cutaneous bacterial and fungal infections. All studies found results favoring the use of aPDT-MB. Great variability in parameters was found for radiant exposure from 12 to 360 J/cm2, MB diluted in saline solution or distilled water, irradiation time from 40 to 3600 s, irradiance most commonly at a maximum of 100 mW/cm2, and wavelength used mainly in the 630-670 nm range. CONCLUSION: MB is a safe and promising agent used as a photosensitizer in aPDT for skin-infected lesions. There is great variability in the parameters found. Comparisons concerning concentration, irradiation time, and light intensity need to be performed.


Methylene Blue , Photochemotherapy , Photosensitizing Agents , Animals , Disease Models, Animal , Methylene Blue/pharmacology , Methylene Blue/therapeutic use , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use
9.
ACS Infect Dis ; 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38866389

The misuse of antibiotics has led to the global spread of drug-resistant bacteria, especially multi-drug-resistant (MDR) ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). These opportunistic bacteria pose a significant threat, in particular within hospitals, where they cause nosocomial infections, leading to substantial morbidity and mortality. To comprehensively explore ESKAPE pathogenesis, virulence, host immune response, diagnostics, and therapeutics, researchers increasingly rely on necessitate suitable animal infection models. However, no single model can fully replicate all aspects of infectious diseases. Notably when studying opportunistic pathogens in immunocompetent hosts, rapid clearance by the host immune system can limit the expression of characteristic disease symptoms. In this study, we examine the critical role of animal infection models in understanding ESKAPE pathogens, addressing limitations and research gaps. We discuss applications and highlight key considerations for effective models. Thoughtful decisions on disease replication, parameter monitoring, and data collection are crucial for model reliability. By meticulously replicating human diseases and addressing limitations, researchers maximize the potential of animal infection models. This aids in targeted therapeutic development, bridges knowledge gaps, and helps combat MDR ESKAPE pathogens, safeguarding public health.

10.
Sci Rep ; 14(1): 13081, 2024 06 07.
Article En | MEDLINE | ID: mdl-38844477

Extracorporeal cardiopulmonary resuscitation (ECPR) is emerging as a feasible and effective rescue strategy for prolonged cardiac arrest (CA). However, prolonged total body ischemia and reperfusion can cause microvascular occlusion that prevents organ reperfusion and recovery of function. One hypothesized mechanism of microvascular "no-reflow" is leukocyte adhesion and formation of neutrophil extracellular traps. In this study we tested the hypothesis that a leukocyte filter (LF) or leukocyte modulation device (L-MOD) could reduce NETosis and improve recovery of heart and brain function in a swine model of prolonged cardiac arrest treated with ECPR. Thirty-six swine (45.5 ± 2.5 kg, evenly distributed sex) underwent 8 min of untreated ventricular fibrillation CA followed by 30 min of mechanical CPR with subsequent 8 h of ECPR. Two females were later excluded from analysis due to CPR complications. Swine were randomized to standard care (Control group), LF, or L-MOD at the onset of CPR. NET formation was quantified by serum dsDNA and citrullinated histone as well as immunofluorescence staining of the heart and brain for citrullinated histone in the microvasculature. Primary outcomes included recovery of cardiac function based on cardiac resuscitability score (CRS) and recovery of neurologic function based on the somatosensory evoked potential (SSEP) N20 cortical response. In this model of prolonged CA treated with ECPR we observed significant increases in serum biomarkers of NETosis and immunohistochemical evidence of microvascular NET formation in the heart and brain that were not reduced by LF or L-MOD therapy. Correspondingly, there were no significant differences in CRS and SSEP recovery between Control, LF, and L-MOD groups 8 h after ECPR onset (CRS = 3.1 ± 2.7, 3.7 ± 2.6, and 2.6 ± 2.6 respectively; p = 0.606; and SSEP = 27.9 ± 13.0%, 36.7 ± 10.5%, and 31.2 ± 9.8% respectively, p = 0.194). In this model of prolonged CA treated with ECPR, the use of LF or L-MOD therapy during ECPR did not reduce microvascular NETosis or improve recovery of myocardial or brain function. The causal relationship between microvascular NETosis, no-reflow, and recovery of organ function after prolonged cardiac arrest treated with ECPR requires further investigation.


Cardiopulmonary Resuscitation , Disease Models, Animal , Heart Arrest , Animals , Heart Arrest/therapy , Cardiopulmonary Resuscitation/methods , Swine , Female , Male , Extracorporeal Membrane Oxygenation/methods , Leukocytes , Extracellular Traps/metabolism , Leukocyte Reduction Procedures/methods
11.
J Biomech ; 171: 112159, 2024 May 17.
Article En | MEDLINE | ID: mdl-38852480

Degenerative disc disease (DDD), regardless of its phenotype and clinical grade, is widely associated with low back pain (LBP), which remains the single leading cause of disability worldwide. This work provides a quantitative methodology for comparatively investigating artificial IVD degeneration via two popular approaches: enzymatic denaturation and fatigue loading. An in-vitro animal study was used to study the time-dependent responses of forty fresh juvenile porcine thoracic IVDs in conjunction with inverse and forward finite element (FE) simulations. The IVDs were dissected from 6-month-old-juvenile pigs and equally assigned to 5 groups (intact, denatured, low-level, medium-level, high-level fatigue loading). Upon preloading, a sinusoid cyclic load (Peak-to-peak/0.1-to-0.8 MPa) was applied (0.01-10 Hz), and dynamic-mechanical-analyses (DMA) was performed. The DMA outcomes were integrated with a robust meta-model analysis to quantify the poroelastic IVD characteristics, while specimen-specific FE models were developed to study the detailed responses. The results demonstrated that enzymatic denaturation had a more significantly pronounced effect on the resistive strength and shock attenuation capabilities of the intervertebral discs. This can be attributed to the simultaneous disruption of the collagen fibers and water-proteoglycan bonds induced by trypsin digestion. Fatigue loading, on the other hand, primarily influenced the disc's resistance to deformation in a frequency-dependent pattern, where alterations were most noticeable at low loading frequencies. This study confirms the intricate interplay between the biochemical changes induced by enzymatic processes and the mechanical behavior stemming from fatigue loading, suggesting the need for a comprehensive approach to closely mimic the interrelated multifaceted processes of human disc degeneration.

12.
Ann Biomed Eng ; 2024 Jun 14.
Article En | MEDLINE | ID: mdl-38874705

Aortic valve (AV) disease is a common valvular lesion in the United States, present in about 5% of the population at age 65 with increasing prevalence with advancing age. While current replacement heart valves have extended life for many, their long-term use remains hampered by limited durability. Non-surgical treatments for AV disease do not yet exist, in large part because our understanding of AV disease etiology remains incomplete. The direct study of human AV disease remains hampered by the fact that clinical data is only available at the time of treatment, where the disease is at or near end stage and any time progression information has been lost. Large animal models, long used to assess replacement AV devices, cannot yet reproduce AV disease processes. As an important alternative mouse animal models are attractive for their ability to perform genetic studies of the AV disease processes and test potential pharmaceutical treatments. While mouse models have been used for cellular and genetic studies of AV disease, their small size and fast heart rates have hindered their use for tissue- and organ-level studies. We have recently developed a novel ex vivo micro-CT-based methodology to 3D reconstruct murine heart valves and estimate the leaflet mechanical behaviors (Feng et al. in Sci Rep 13(1):12852, 2023). In the present study, we extended our approach to 3D reconstruction of the in vivo functional murine AV (mAV) geometry using high-frequency four-dimensional ultrasound (4DUS). From the resulting 4DUS images we digitized the mAV mid-surface coordinates in the fully closed and fully opened states. We then utilized matched high-resolution µCT images of ex vivo mouse mAV to develop mAV NURBS-based geometric model. We then fitted the mAV geometric model to the in vivo data to reconstruct the 3D in vivo mAV geometry in the closed and open states in n = 3 mAV. Results demonstrated high fidelity geometric results. To our knowledge, this is the first time such reconstruction was ever achieved. This robust assessment of in vivo mAV leaflet kinematics in 3D opens up the possibility for longitudinal characterization of murine models that develop aortic valve disease.

13.
Article En | MEDLINE | ID: mdl-38823432

OBJECTIVE: Synovial pathology has been linked to osteoarthritis (OA) pain in patients. Microscopic grading systems for synovial changes in human OA have been described, but a standardized approach for murine models of OA is needed. We sought to develop a reproducible approach and set of minimum recommendations for reporting of synovial histopathology in mouse models of OA. METHODS: Coronal and sagittal sections from male mouse knee joints subjected to destabilization of medial meniscus (DMM) or partial meniscectomy (PMX) were collected as part of other studies. Stains included Hematoxylin and Eosin (H&E), Toluidine Blue (T-Blue), and Safranin O/Fast Green (Saf-O). Four blinded readers graded pathological features (hyperplasia, cellularity, and fibrosis) at specific anatomic locations. Inter-reader agreement of each feature score was determined. RESULTS: There was acceptable to very good agreement when using 3-4 individual readers. After DMM and PMX, expected medial predominant changes in hyperplasia and cellularity were observed, with fibrosis noted at 12 weeks post-PMX. Synovial changes were consistent from section to section in the mid-joint area. When comparing stains, H&E and T-blue resulted in better agreement compared to Saf-O stain. CONCLUSIONS: To account for the pathologic and anatomic variability in synovial pathology and allow for a more standardized evaluation that can be compared across studies, we recommend evaluating a minimum set of 3 pathological features at standardized anatomic areas. Further, we suggest reporting individual feature scores separately before relying on a single summed "synovitis" score. H&E or T-blue are preferred, inter-reader agreement for each feature should be considered.

14.
Dev Neurosci ; : 1-13, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710171

INTRODUCTION: Our laboratory has been exploring the MRI detection of fetal brain injury, which previously provided a prognostic biomarker for newborn hypertonia in an animal model of cerebral palsy (CP). The biomarker relies on distinct patterns of diffusion-weighted imaging-defined apparent diffusion coefficient (ADC) in fetal brains during uterine hypoxia-ischemia (H-I). Despite the challenges posed by small brains and tissue acquisition, our objective was to differentiate between left and right brain ADC changes. METHODS: A novel aspect involved utilizing three-dimensional rendering techniques to refine ADC measurements within spheroids encompassing fetal brain tissue. 25-day gestation age of rabbit fetuses underwent global hypoxia due to maternal uterine ischemia. RESULTS: Successful differentiation of left and right brain regions was achieved in 28% of the fetal brains. Ordinal analysis revealed predominantly higher ADC on the left side compared to the right at baseline and across the entire time series. During H-I and reperfusion-reoxygenation, the right side exhibited a favored percentage change. Among these fetal brains, 73% exhibited the ADC pattern predictive of hypertonia. No significant differences between left and right sides were observed in patterns predicting hypertonia, except for one timepoint during H-I. This study also highlights a balance between left-sided and right-sided alterations within the population. CONCLUSION: This study emphasizes the importance of investigating laterality and asymmetric hemispheric lesions for early diagnosis of brain injury, leading to CP. The technological limitations in obtaining a clear picture of the entire fetal brain for every fetus mirror the challenges encountered in human studies.

15.
Acta Biomater ; 2024 May 28.
Article En | MEDLINE | ID: mdl-38815684

Osteoarthritis (OA) poses significant therapeutic challenges, particularly OA that affects the hand. Currently available treatment strategies are often limited in terms of their efficacy in managing pain, regulating invasiveness, and restoring joint function. The APRICOT® implant system developed by Aurora Medical Ltd (Chichester, UK) introduces a minimally invasive, bone-conserving approach for treating hand OA (https://apricot-project.eu/). By utilizing polycarbonate urethane (PCU), this implant incorporates a caterpillar track-inspired design to promote the restoration of natural movement to the joint. Surface modifications of PCU have been proposed for the biological fixation of the implant. This study investigated the biocompatibility of PCU alone or in combination with two surface modifications, namely dopamine-carboxymethylcellulose (dCMC) and calcium-phosphate (CaP) coatings. In a rat soft tissue model, native and CaP-coated PCU foils did not increase cellular migration or cytotoxicity at the implant-soft tissue interface after 3 d, showing gene expression of proinflammatory cytokines similar to that in non-implanted sham sites. However, dCMC induced an amplified initial inflammatory response that was characterized by increased chemotaxis and cytotoxicity, as well as pronounced gene activation of proinflammatory macrophages and neoangiogenesis. By 21 d, inflammation subsided in all the groups, allowing for implant encapsulation. In a rat bone model, 6 d and 28 d after release of the periosteum, all implant types were adapted to the bone surface with a surrounding fibrous capsule and no protracted inflammatory response was observed. These findings demonstrated the biocompatibility of native and CaP-coated PCU foils as components of APRICOT® implants. STATEMENT OF SIGNIFICANCE: Hand osteoarthritis treatments require materials that minimize irritation of the delicate finger joints. Differing from existing treatments, the APRICOT® implant leverages polycarbonate urethane (PCU) for minimally invasive joint replacement. This interdisciplinary, preclinical study investigated the biocompatibility of thin polycarbonate urethane (PCU) foils and their surface modifications with calcium-phosphate (CaP) or dopamine-carboxymethylcellulose (dCMC). Cellular and morphological analyses revealed that both native and Ca-P coated PCU elicit transient inflammation, similar to sham sites, and a thin fibrous encapsulation in soft tissues and on bone surfaces. However, dCMC surface modification amplified initial chemotaxis and cytotoxicity, with pronounced activation of proinflammatory and neoangiogenesis genes. Therefore, native and CaP-coated PCU possess sought-for biocompatible properties, crucial for patient safety and performance of APRICOT® implant.

16.
Eur J Immunol ; : e2350949, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778498

Type 1 diabetes (T1D) is characterized by T-cell responses to islet antigens. Investigations in humans and the nonobese diabetic (NOD) mouse model of T1D have revealed that T-cell reactivity to insulin plays a central role in the autoimmune response. As there is no convenient NOD-based model to study human insulin (hIns) or its T-cell epitopes in the context of spontaneous T1D, we developed a NOD mouse strain transgenically expressing hIns in islets under the control of the human regulatory region. Female NOD.hIns mice developed T1D at approximately the same rate and overall incidence as NOD mice. Islet-infiltrating T cells from NOD.hIns mice recognized hIns peptides; both CD8 and CD4 T-cell epitopes were identified. We also demonstrate that islet-infiltrating T cells from HLA-transgenic NOD.hIns mice can be used to identify potentially patient-relevant hIns T-cell epitopes. Besides serving as an antigen, hIns was expressed in the thymus of NOD.hIns mice and could serve as a protector against T1D under certain circumstances, as previously suggested by genetic studies in humans. NOD.hIns mice and related strains facilitate human-relevant epitope discovery efforts and the investigation of fundamental questions that cannot be readily addressed in humans.

17.
Am J Clin Exp Urol ; 12(2): 52-63, 2024.
Article En | MEDLINE | ID: mdl-38736617

Chronic prostatitis/chronic pelvic pain syndrome (CP/CPSS) is a debilitating condition characterized by prostate inflammation, pain and urinary symptoms. The immune system's response to self-antigens is a contributing factor to CP/CPSS. In this review, we examine the use of experimental autoimmune prostatitis (EAP) in rodents to model salient features of autoimmune mediated CP/CPSS. By exploring etiological factors, immunological mechanisms, and emerging therapeutic strategies, our aim is to enhance our understanding of CP/CPSS pathogenesis and promote the development of strategies to test innovative interventions using the EAP pre-clinical model.

18.
Hum Mol Genet ; 33(R1): R61-R79, 2024 May 22.
Article En | MEDLINE | ID: mdl-38779771

Mitochondria are hubs of metabolic activity with a major role in ATP conversion by oxidative phosphorylation (OXPHOS). The mammalian mitochondrial genome encodes 11 mRNAs encoding 13 OXPHOS proteins along with 2 rRNAs and 22 tRNAs, that facilitate their translation on mitoribosomes. Maintaining the internal production of core OXPHOS subunits requires modulation of the mitochondrial capacity to match the cellular requirements and correct insertion of particularly hydrophobic proteins into the inner mitochondrial membrane. The mitochondrial translation system is essential for energy production and defects result in severe, phenotypically diverse diseases, including mitochondrial diseases that typically affect postmitotic tissues with high metabolic demands. Understanding the complex mechanisms that underlie the pathologies of diseases involving impaired mitochondrial translation is key to tailoring specific treatments and effectively targeting the affected organs. Disease mutations have provided a fundamental, yet limited, understanding of mitochondrial protein synthesis, since effective modification of the mitochondrial genome has proven challenging. However, advances in next generation sequencing, cryoelectron microscopy, and multi-omic technologies have revealed unexpected and unusual features of the mitochondrial protein synthesis machinery in the last decade. Genome editing tools have generated unique models that have accelerated our mechanistic understanding of mitochondrial translation and its physiological importance. Here we review the most recent mouse models of disease pathogenesis caused by defects in mitochondrial protein synthesis and discuss their value for preclinical research and therapeutic development.


Disease Models, Animal , Mitochondria , Mitochondrial Diseases , Mitochondrial Proteins , Oxidative Phosphorylation , Protein Biosynthesis , Animals , Mice , Mitochondria/metabolism , Mitochondria/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Humans , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Genome, Mitochondrial , Mutation
19.
Front Pharmacol ; 15: 1379389, 2024.
Article En | MEDLINE | ID: mdl-38783940

Introduction: Curcumin is gaining recognition as an agent for cancer chemoprevention and is presently administered to humans. However, the limited number of clinical trials conducted for the treatment of prostate cancer is noteworthy. Animal models serve as valuable tools for enhancing our understanding of disease mechanisms and etiology in humans. The objective of this study was to examine the anti-prostate cancer effects of curcumin in vivo for comprehending its current research status and potential clinical applicability. Methods: Our methodology involved a systematic exploration of animal studies pertaining to curcumin and prostate cancer, as documented in PubMed, Web of Science, Embase, Cochrane Library, CNKI, Wanfang database, Vip database, and SinoMed, up to 03 September 2023. Risk of bias was assessed using the SYRCLE Animal Study Risk of Bias tool. The results were combined using the RevMan 5.3. Results: A comprehensive analysis was conducted on 17 studies encompassing 263 mouse transplantation tumor models. The findings of this meta-analysis demonstrated that curcumin exhibited a superior inhibitory effect on the volume of prostate cancer tumors in mice compared to the control group (standardized mean difference [SMD]: 1.16, 95% confidence interval [CI]: 0.52, 1.80, p < 0.001). Additionally, curcumin displayed a more effective inhibition of mice prostate cancer tumor weight (SMD: -3.27, 95% CI: -4.70, -1.83, p < 0.001). Furthermore, in terms of tumor inhibition rate, curcumin exhibited greater efficacy (SMD: 0.25, 95% CI: 0.23, 0.27, p < 0.001). Moreover, curcumin more effectively inhibited PCNA mRNA (SMD: -3.11, 95% CI: -4.60, -1.63, p < 0.001) and MMP2 mRNA (SMD: -3.19, 95% CI: 5.85, -0.53, p < 0.001). Conclusion: Curcumin exhibited inhibitory properties towards prostate tumor growth and demonstrated a beneficial effect on prostate cancer treatment, thereby offering substantiation for further clinical investigations. It is important to acknowledge that the included animal studies exhibited considerable heterogeneity, primarily because of the limited number of studies included. Consequently, additional randomized controlled trials are required to comprehensively assess the efficacy of curcumin in humans. Systematic Review Registration: (https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023464661), identifier (CRD42023464661).

20.
Front Pain Res (Lausanne) ; 5: 1405488, 2024.
Article En | MEDLINE | ID: mdl-38784787

Interstitial cystitis (IC) presents as a chronic pain condition with variable combinations of symptoms depending on the species and individual patient. It is diagnosed by the presence of lower urinary tract signs and symptoms in combination with a variety of comorbid health problems, a history of life adversities, and the absence of other conditions that could cause the lower urinary tract signs. IC occurs naturally in humans and cats as a dimensional condition, with patients presenting with mild, moderate, and severe symptoms. Most patients appear to recover without specific treatment. A number of rodent models of IC have been used to study its causes and treatments. Unfortunately, current therapies generally fail to ameliorate IC symptoms long-term. The recent classification of IC as a chronic primary pain disorder calls for a rethinking of current clinical and research approaches to it. Beginning when a patient encounters a clinician, precipitating, perpetuating, and palliating risk factors can be addressed until a cause or reliably effective therapy is identified, and identifying predisposing and preventive factors can inform epidemiological studies and health promotion interventions. Predisposing, precipitating, and perpetuating risk factors, including environmental, psychological, and biological, increase the activity of the central threat response system (CTRS), which plays a clinically important role in IC symptoms. Studies in cats and rodent models have revealed that environmental enrichment (EE), in the absence of bladder-directed therapies, leads to amelioration of IC symptoms, implying a central role for the CTRS in symptom precipitation and perpetuation. Conceptually moving the source of IC pain to the brain as a motivational state rather than one resulting from peripheral nociceptive input offers both clinicians and researchers novel opportunities to improve care for patients with IC and for researchers to use more ecologically valid rodent models. It may even be that IC results from an excess of risk to protective factors, making this imbalance a targetable cause rather than a consequence of IC.

...