Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 647
Filter
1.
J Agric Food Chem ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39316703

ABSTRACT

Banana anthracnose, caused by Colletotrichum fructicola, significantly reduced the postharvest fruit quality. Employing biocontrol strategies offers a sustainable approach to enhance agricultural practices. The Burkholderia sp. strain BX1 hinders the growth and appressorium formation of C. fructicola, and its sterile filtrate lowers the anthracnose incidence while preserving the fruit quality. Scanning electron microscopy and genomic analyses confirmed BX1 as Burkholderia pyrrocinia. AntiSMASH analysis identified three siderophores with high similarity, and improved MALDI-TOF IMS confirmed the presence of the siderophore pyochelin. Furthermore, the BX1 filtrate suppressed the expression of virulence genes in C. fructicola and induced the expression of disease resistance genes in banana. However, the presence of 80 µM iron ions notably mitigated BX1's inhibitory effects and reversed the changes in related gene expression. These results underscore BX1's robust efficacy as a biocontrol agent in managing banana anthracnose, highlight the effective antifungal compounds, and elucidate the influence of environmental factors on biocontrol effectiveness.

2.
Plant Dis ; 2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39342962

ABSTRACT

Strawberry anthracnose, caused by Colletotrichum spp., is a devastating disease that significantly reduces strawberry yield and quality. This study aimed to develop a simple diagnostic method to detect infection by the Colletotrichum gloeosporioides complex (CGSC), the most predominant and virulent Colletotrichum species complex causing strawberry anthracnose in China. In this study, a Cas12aVIP diagnostic method was developed for the rapid detection of CGSC in strawberry seedlings. This method targets the ß-tubulin gene and combines recombinase polymerase amplification (RPA), the CRISPR/Cas12a system, and a cationic-conjugated polythiophene derivative [poly(3-(3'-N,N,N-triethylamino-1'-propyloxy)-4-methyl-2,5-thiophene hydrochloride) (PMNT)] mixed with single-stranded DNA (ssDNA). This method shows high sensitivity (ten copies per reaction) and no cross-reactivity against related pathogens. The entire procedure, from sample to result, can be completed within 50 min, including simplified DNA extraction (15 min), RPA reaction (37°C for 20 min), CRISPR/Cas12a detection (37°C for 10 min), and visual detection by the naked eye (1-2 min). Furthermore, the Cas12aVIP assay successfully detected CGSC in naturally infected strawberry seedling samples in field conditions. Asymptomatic infected plants and plant residues have been identified as primary inoculum sources for CGSC. This method enables visible detection without the need for expensive equipment or specialized technical skills, thereby offering an efficient and straightforward approach for detecting CGSC in strawberries. The newly developed detection method can be used to promote healthier strawberry production.

3.
Plant Dis ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254850

ABSTRACT

Chili (Capsicum annuum L.) is an economically important crop worldwide, valued for its culinary uses. In South Korea, anthracnose caused by Colletotrichum spp. including C. truncatum, C. gloeosporioides, C. coccodes, C. acutatum, and C. scovillei incurs on substantial economic loss (Kim et al. 2008; Oo and Oh 2020). In August 2022, somewhat different types of symptoms that was not typical on chilli fruits were observed in a field in Yereonggwang (GPS: 35.2579° N, 126.4742° E), South Korea. The disease symptoms appeared as sunken, necrotic lesions with dense black spore masses forming in concentric rings. The estimated disease incidence the 0.2 ha field showing up to 1% of fruits affected. To isolate the pathogen, six symptomatic chilli fruits were collected. Small pieces (5 mm²) were cut from the margins of the lesions, surface-sterilized in 70% ethanol for 30 sec, followed by 1% sodium hypochlorite for 1 minute, and then rinsed three times in sterile distilled water. The tissue pieces were placed on potato dextrose agar (PDA) plates and incubated at 25°C in the dark. After 3 to 5 days, emerging fungal colonies were sub-cultured to obtain pure isolates. A total of five isolates were obtained and initially identified as Colletotrichum spp. based on morphological characteristics. Seven-day old colonies were initially white, turning light orange with age on PDA. Setae (observed on lesion) were dark brown, verruculose and septate. Conidia were cylindrical, hyaline, and measured 14.8 to 19.9 × 4.2 to 6.5 µm (mean 16.7 × 5.6 µm, n = 70) in size; appressoria were brown to dark brown and irregularly shaped. These morphological characteristics of the isolates agree with those reported for the morphology of C. sojae by Damm et al. (2019). To confirm the identity of the isolates, DNA was extracted and specific gene regions were amplified and sequenced using the following primer sets: ITS (ITS1 and ITS4), GAPDH (GDF1 and GDR1), ACT (ACT-512F and ACT-783R), TUB (T1 and Bt2b), HIS3 (CYLH3F and CYLH3R), and CHS-1 (CHS-79F and CHS-345R). The resulting sequences were deposited in the NCBI GenBank with accession numbers (LC830742 to LC830766). Maximum likelihood phylogenetic analysis using combine sequences of ITS, GAPDH, ACT, TUB, HIS3 and CHS-1 in MEGA X confirmed the isolates as C. sojae, marking the first report of this pathogen on chilli in South Korea, previously known to infect soybean. Pathogenicity tests were conducted on wound and nonwounded healthy and mature-green chili fruits (cv. Bicksita) to confirm the pathogenicity of the isolated C. sojae. The fruits were surface-sterilized using 70% ethanol and then rinsed with sterile distilled water. The fruits were wounded using a sterile needle to facilitate infection. A conidial suspension (1x106 conidia/mL) was prepared from 7-day-old PDA cultures. Each fruit was inoculated by placing a 10 µL drop of the conidial suspension onto the wounded and nonwounded sites (4 to 5) of the wound and unwound fruits, respectively. Control fruits were inoculated with sterile water. A total of 40 fruits per treatment were used and the experiment repeated twice. The fruits were placed in plastic box lined with moist paper towels to maintain high humidity and incubated at 25°C. Anthracnose symptoms developed on the inoculated fruits within 7 days, while control and unwounded fruits remained symptom-free. Colletotrichum sojae was successfully reisolated from the symptomatic fruits, fulfilling Koch's postulates and confirming its role as the causal agent of the disease. Colletotrichum sojae is known to infect Fabaceae species worldwide such as Glycine max, Medicago sativa, Phaseolus vulgaris, Atractylodes ovata and Vigna unguiculata (Damm et al. 2019; Talhinhas and Baroncelli 2021), Atractylodes ovata in South Korea (Hassan et al. 2021) and chili pepper in China (Zhanget al. 2023). The first report of C. sojae causing chili anthracnose in South Korea represents a new challenge for chili growers. Integrated disease management strategies need to be developed and implemented to mitigate its impact.

4.
Pestic Biochem Physiol ; 204: 106087, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39277400

ABSTRACT

Anthracnose, a fungal disease, commonly infects tea plants and severely impacts the yield and quality of tea. One method for controlling anthracnose is the application of citronellol, a plant extract that exhibits broad-spectrum antimicrobial activity. Herein, the physiological and biochemical mechanism by which citronellol controls anthracnose caused by Colletotrichum camelliae was investigated. Citronellol exhibited excellent antifungal activity based on direct and indirect mycelial growth inhibition assays, with EC50 values of 76.88 mg/L and 29.79 µL/L air, respectively. Citronellol also exhibited good control effects on C. camelliae in semi-isolated leaf experiments. Optical and scanning electron microscopy revealed that citronellol caused C. camelliae mycelia to thin, fracture, fold and deform. Transmission electron microscopy revealed that the mycelial cell walls collapsed inward and separated, and the organelles became blurred after treatment with citronellol. The sensitivity of C. camelliae to calcofluor white staining was significantly enhanced by citronellol, while PI staining showed minimal fluorescence, and the relative conductivity of mycelia were not significantly different. Under citronellol treatment, the expression levels of ß-1,3-glucanase, chitin synthase, and chitin deacetylase-related genes were significantly decreased, while the expression levels of chitinase genes were increased, leading to lower chitinase activity and increased ß-1,3-glucanase activity. Therefore, citronellol disrupted the cell wall integrity of C. camelliae and inhibited normal mycelial growth.


Subject(s)
Acyclic Monoterpenes , Cell Wall , Colletotrichum , Colletotrichum/drug effects , Cell Wall/drug effects , Cell Wall/ultrastructure , Acyclic Monoterpenes/pharmacology , Antifungal Agents/pharmacology , Monoterpenes/pharmacology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Mycelium/drug effects , Mycelium/growth & development , Mycelium/ultrastructure , Fungicides, Industrial/pharmacology
5.
J Fungi (Basel) ; 10(9)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39330365

ABSTRACT

Colletotrichum lini is a fungal pathogen of flax that can cause significant yield and quality losses. In this work, we obtained the first complete annotated genome assembly of the highly virulent C. lini strain #394-2. The nuclear genome consisted of ten core and two accessory chromosomes and had a length of 53.7 Mb. The mitochondrial genome was 39.1 kb. The assembly was obtained by the Canu-Racon ×2-Medaka-Polca algorithm using Oxford Nanopore Technologies and Illumina data. As a result of the annotation with the Illumina RNA-Seq data, 12,449 genes were identified. Potential signaling proteins were tested for effector functions and 550 effector proteins were predicted using EffectorP. The visualization of the effector protein localization revealed that the presence of effector proteins was associated with repeat-rich regions. A comparison of the genomic structure of C. lini with chromosome-level and complete assemblies of the genus Colletotrichum representatives revealed that the genomes of Colletotrichum species differed by the presence of chromosomal rearrangements. The obtained assembly expands the knowledge of the genomic structure of Colletotrichum species and provides the basis for further studies of C. lini, which will help to understand the virulence mechanisms and protect flax from anthracnose.

6.
J Fungi (Basel) ; 10(9)2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39330412

ABSTRACT

Anthracnose is one of the destructive diseases of pitaya that seriously affects the plant growth and fruit quality and causes significant yield and economic losses worldwide. However, information regarding the species of pathogens that cause anthracnose in pitaya (Hylocereus undatus) fruits in Gansu Province, China, and its pathogenic mechanism is unknown. Thus, the purposes of our present study were to identify the species of pathogens causing H. undatus fruits anthracnose based on the morphological and molecular characteristics and determine its pathogenic mechanism by physiological and biochemical methods. In our present study, forty-six isolates were isolated from the collected samples of diseased H. undatus fruits and classified as three types (named as H-1, H-2, and H-3), according to the colony and conidium morphological characteristics. The isolation frequencies of H-1, H-2, and H-3 types were 63.04%, 21.74%, and 15.22%, respectively. The representative single-spore isolate of HLGTJ-1 in H-1 type has significant pathogenicity, and finally we identified Colletotrichum truncatum as the pathogen based on the morphological characteristics as well as multi-locus sequence analysis. Moreover, the H. undatus fruits inoculated with C. truncatum had a significantly increased activity of cell wall-degrading enzymes (CWDEs) cellulase (Cx), ß-glucosidase (ß-Glu), polygalacturonase (PG), and pectin methylgalacturonase (PMG), while having a decreased level of cell wall components of original pectin and cellulose in comparison to control. The average increased activities of Cx, ß-Glu, PG, and PMG were 30.73%, 40.40%, 51.55%, and 32.23% from day 0 to 6 after inoculation, respectively. In contrast, the average decreased contents of original pectin and cellulose were 1.82% and 16.47%, respectively, whereas the average increased soluble pectin content was 38.31% in comparison to control. Our results indicate that C. truncatum infection increased the activities of CWDEs in H. undatus fruits to disassemble their cell wall components, finally leading to the fruits' decay and deterioration. Thus, our findings will provide significant evidence in the controlling of pitaya anthracnose in the future.

7.
Sci Rep ; 14(1): 21978, 2024 09 20.
Article in English | MEDLINE | ID: mdl-39304668

ABSTRACT

Sorghum is the world's fifth-largest cereal crop, and anthracnose (Colletotrichum sublineola) is the main disease affecting sorghum. However, systematic research on the cellular structure, physiological and biochemical, and genes related to anthracnose resistance and disease resistance evaluation in sorghum is lacking in the field. Upon inoculation with anthracnose (C. sublineola) spores, disease-resistant sorghum (gz93) developed a relative lesion area (RLA) that was significantly smaller than that of the disease-susceptible sorghum (gz234). The leaf thickness, length and profile area of leaf mesophyll cells, upper and lower epidermal cells decreased in the lesion area, with a greater reduction observed in gz234 than in gz93. The damage caused by C. sublineola resulted in a greater decrease in the net photosynthetic rate (Pn) in gz234 than in gz93, with early-stage reduction due to stomatal limitation and late-stage reduction caused by lesions. Overall, the activities of superoxide dismutase (SOD) and catalase (CAT), the content of proline (Pro), abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), and gibberellic acid (GA3), are higher in gz93 than in gz234 and may be positively correlated with disease resistance. While malondialdehyde (MDA) may be negatively correlated with disease resistance. Disease-resistant genes are significantly overexpressed in gz93, with significant expression changes in gz234, which is related to disease resistance in sorghum. Correlation analysis indicates that GA3, MDA, peroxidase (POD), and disease-resistance genes can serve as reference indicators for disease severity. The regression equation RLA = 0.029 + 8.02 × 10-6 JA-0.016 GA3 can predict and explain RLA. Principal component analysis (PCA), with the top 5 principal components for physiological and biochemical indicators and the top 2 principal components for disease-resistant genes, can explain 82.37% and 89.11% of their total variance, reducing the number of evaluation indicators. This study provides a basis for research on the mechanisms and breeding of sorghum with resistance to anthracnose.


Subject(s)
Colletotrichum , Disease Resistance , Plant Diseases , Seedlings , Sorghum , Sorghum/microbiology , Sorghum/genetics , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Colletotrichum/physiology , Seedlings/microbiology , Plant Leaves/microbiology , Stress, Physiological , Gene Expression Regulation, Plant , Photosynthesis
8.
Talanta ; 281: 126908, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39303325

ABSTRACT

Ensuring the detection sensitivity of both RNA-derived and DNA-derived target genes in a single reaction has posed a significant challenge for on-site detection of plant pathogens. This challenge was addressed by developing a one-tube dual RT-RAA assay combined with LFS for the rapid on-site detection of pepper mild mottle virus (PMMoV) and four Colletotrichum species causing anthracnose in Solanaceous crops. By testing four different combinations of primer groups, two combinations were precisely adjusted within the dual RT-RAA system to balance amplification efficiency and maintain consistent levels of amplification in crude plant samples. Utilizing commercially accessible small-scale equipment and following a streamlined optimization strategy, the assay achieved a limit of detection of 0.32 copies/µL of target genes in the reaction. Importantly, it demonstrated no cross-reactivity with other plant pathogens, thereby affirming the high sensitivity and specificity of the developed dual RT-RAA-LFS detection assay. Moreover, the entire process took only 25 min from sample collection to the visible presentation of results. The assay was validated with 60 field samples and 10 seed samples, producing results consistent with reverse transcription quantitative polymerase chain reaction (RT-qPCR). Notably, it successfully detected PMMoV in systemic leaves without visible symptoms three days post-inoculation, underscoring its effectiveness in early disease detection. This streamlined strategy offers a valuable approach for rapid, low-cost, and highly sensitive on-site simultaneous detection of RNA genome-contained PMMoV and DNA genome-contained Colletotrichum species.

9.
Front Fungal Biol ; 5: 1437344, 2024.
Article in English | MEDLINE | ID: mdl-39220294

ABSTRACT

In warm and humid regions, the productivity of sorghum is significantly limited by the fungal hemibiotrophic pathogen Colletotrichum sublineola, the causal agent of anthracnose, a problematic disease of sorghum (Sorghum bicolor (L.) Moench) that can result in grain and biomass yield losses of up to 50%. Despite available genomic resources of both the host and fungal pathogen, the molecular basis of sorghum-C. sublineola interactions are poorly understood. By employing a dual-RNA sequencing approach, the molecular crosstalk between sorghum and C. sublineola can be elucidated. In this study, we examined the transcriptomes of four resistant sorghum accessions from the sorghum association panel (SAP) at varying time points post-infection with C. sublineola. Approximately 0.3% and 93% of the reads mapped to the genomes of C. sublineola and Sorghum bicolor, respectively. Expression profiling of in vitro versus in planta C. sublineola at 1-, 3-, and 5-days post-infection (dpi) indicated that genes encoding secreted candidate effectors, carbohydrate-active enzymes (CAZymes), and membrane transporters increased in expression during the transition from the biotrophic to the necrotrophic phase (3 dpi). The hallmark of the pathogen-associated molecular pattern (PAMP)-triggered immunity in sorghum includes the production of reactive oxygen species (ROS) and phytoalexins. The majority of effector candidates secreted by C. sublineola were predicted to be localized in the host apoplast, where they could interfere with the PAMP-triggered immunity response, specifically in the host ROS signaling pathway. The genes encoding critical molecular factors influencing pathogenicity identified in this study are a useful resource for subsequent genetic experiments aimed at validating their contributions to pathogen virulence. This comprehensive study not only provides a better understanding of the biology of C. sublineola but also supports the long-term goal of developing resistant sorghum cultivars.

10.
Mycoscience ; 65(1): 19-27, 2024.
Article in English | MEDLINE | ID: mdl-39239118

ABSTRACT

An endophytic fungus, Phoma sp. NG-25, produces a set of structurally related polyketides including cercosporamide, phomodione, and usnic acid, among which, cercosporamide has been reported to have strong antifungal and anticancer activities. In this study, Phoma sp. NG-25 was grown in seven growth media to determine the optimal culture condition conducive for cercosporamide production. Cercosporamide production peaked on the eighteenth day of incubation in beef peptone dextrose (BPD) broth media. The cercosporamide titer reached to an average of 77.5 µg/mL in BPD. Paper disk diffusion assay revealed that culture filtrate containing cercosporamide as a major constituent inhibited the growth of taxonomically diverse plant pathogens, including ascomycetous, basidiomycetous, and oomycete fungi. Cercosporamide exhibited strong antifungal activities against two pepper anthracnose pathogens, Colletotrichum gloeosporioides and C. scovillei with EC50 values of 3.8 and 7.0 µg/mL, respectively. This study suggests the potential application of cercosporamide as an effective antifungal agent in controlling anthracnose in pepper.

11.
Food Microbiol ; 124: 104613, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39244365

ABSTRACT

Anthracnose caused by Colletotrichum scovillei is a significant disease of pepper, including in postharvest stage. Bacillus species represent a potential microbial resource for controlling postharvest plant diseases. Here, a strain HG-8-2 was obtained and identified as Bacillus velezensis through morphological, biochemical, physiological, and molecular analyses. The culture filtrate showed highly antifungal activity against C. scovillei both in vitro and on pepper fruit. Crude lipopeptide extracts, which had excellent stability, could effectively inhibit mycelial growth of C. scovillei with an EC50 value of 28.48 ± 1.45 µg mL-1 and inhibited conidial germination. Pretreatment with the extracts reduced the incidence and lesion size of postharvest anthracnose on pepper fruit. Analysis using propidium iodide staining, malondialdehyde content detection and scanning electron microscope observation suggested that the crude lipopeptide extracts harbored antifungal activity by damaging cell membranes and mycelial structures. The RNA-seq analysis conducted on C. scovillei samples treated with the extracts, as compared to untreated samples, revealed significant alterations in the expression of multiple genes involved in protein biosynthesis. Overall, these results demonstrated that B. velezensis HG-8-2 and its crude lipopeptide extracts exhibit highly antagonistic ability against C. scovillei, thereby offering an effective biological agent for the control of anthracnose in pepper fruit.


Subject(s)
Bacillus , Capsicum , Colletotrichum , Fruit , Plant Diseases , Colletotrichum/drug effects , Colletotrichum/growth & development , Capsicum/microbiology , Bacillus/genetics , Bacillus/metabolism , Bacillus/physiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Fruit/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Lipopeptides/pharmacology , Lipopeptides/metabolism , Mycelium/growth & development , Mycelium/drug effects , Biological Control Agents/pharmacology
12.
Plant Dis ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39238250

ABSTRACT

Winter squash (Cucurbita maxima) is rich in vitamins C and B6 and is also a source of beta-carotene, a provitamin A carotenoid. About 13,000 tons have been produced annually in South Korea over the past 10 years. In the summer of 2022, severe rot was observed in winter squash for sale at a wholesale market in Jinju, South Korea, with approximately 10% of the 500 squashes observed affected. White fungal hyphae and dark orange spore masses were observed on the surface of the decayed squash. To isolate the causal agents, symptomatic tissues (3 × 3 mm) between diseased and healthy tissues per squash from 3 diseased squashes were excised, disinfested with 1% sodium hypochlorite for 20 s and 70% ethanol for 10 s, washed twice in sterilized distilled water, dried on sterilized filter paper, transferred to water agar, and incubated at 25°C for 2 days. Agar blocks (3 mm2) containing fungal colonies were transferred to potato dextrose agar (PDA) plates and incubated at 25°C until fungal colonies grew. Three isolates (GNU F137a‒c) with similar morphology were subcultured using the single-spore method. In PDA, the colonies looked like gray cotton when viewed from the front, were pale orange from the back, and numerous small black sclerotia-like grains could be observed on both sides. Setae were pale to medium brown, verrucose, 40-120 µm long, and 3-6 septated. Conidiophores were hyaline to pale brown, smooth-walled, septate, branched, and up to 45 µm long. Conidia were hyaline, smooth walled, aseptate, straight, cylindrical, the apex and base rounded, and 14-18 × 5-7 µm (n = 30). Appressoria were single, brown, aseptate, ellipsoidal to irregular in outline, with crenate margins, and 3.5-5 × 3-5 µm (n = 30). The morphological features of the fungal isolates matched descriptions of Colletotrichum species. To confirm the identity of the isolated fungus, genomic DNA of all three isolates was extracted using the Phire Plant Direct PCR Kit (Thermo Fisher Scientific, Baltics, UAB). The internal transcribed spacers (ITS) of the ribosomal RNA gene region, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), chitin synthase 1 (CHS-1), histone H3 (HIS3), actin (ACT), and beta-tubulin (TUB2) genes were amplified and sequenced using the primer pairs ITS1/ITS4, GDF/GDR, CHS-79F/CHS-354R, CYLH3F/CYLH3R, ACT-512F/ACT-783R, and T1/T2, respectively. The sequences were deposited in GenBank (acc. nos., PP504320 and PP555649-PP555653). Concatenated sequences of the six genes obtained from isolates GNU F137a‒c and ex-types from each accepted taxon in previous studies were used to conduct a phylogenetic analysis using the maximum likelihood method in MEGA 11. The fungus isolated from winter squash was in the same clade as C. liaoningense. Therefore, the isolates were identified as C. liaoningense. For pathogenicity tests, three winter squash were wounded with a sterilized needle and inoculated with each isolate by injecting 100 µl conidial suspension (105 conidia/ml). Control squash were injected with sterilized distilled water. All treated squash were incubated at 25°C in the dark. The test was performed three times. All inoculated winter squash reproduced symptoms within 15 days, whereas the control squash were symptomless. The morphological characteristics and ITS sequence of the re-isolated strain matched those of the inoculated strain. To the best of our knowledge, this is the first report of fruit rot of winter squash in Korea and is even the first report on C. liaoningense in Korea. This disease is considered a post-harvest disease because no cases have yet been discovered in the field in Korea. This report will facilitate epidemiological research and the development of effective disease control strategies.

13.
MycoKeys ; 108: 95-113, 2024.
Article in English | MEDLINE | ID: mdl-39246550

ABSTRACT

Colletotrichum species can function as plant pathogens, saprobes or endophytes on a wide variety of plant hosts and are considered amongst the ten most significant genera of plant pathogens globally. China contributes almost half the walnut production in the world. However, Colletotrichum species occurring on walnut remain largely unresolved in China. To explore the Colletotrichum species found on walnut in China, 470 walnut fruit or leaf samples with anthracnose were collected from 14 main walnut-producing regions across seven provinces. A total of 165 Colletotrichum strains were isolated from these samples. The Colletotrichum isolates were identified, based on morphological characteristics and sequence analyses of ACT, CHS-1, GAPDH, ITS and TUB2. Twelve species, including 11 known Colletotrichum species (C.boninense, C.citrulli, C.fioriniae, C.fructicola, C.godetiae, C.juglandicola, C.karsti, C.mengyinense, C.pandanicola, C.peakense and C.siamense) and a novel species (C.chinensis sp. nov.) were identified. The species distribution revealed regional prevalence as follows: C.mengyinense was the most dominant species in Gansu, C.mengyinense and C.siamense in Shandong, C.chinensis in Beijing, C.pandanicola in Shaanxi and C.godetiae in Yunnan. Colletotrichumsiamense was the sole species isolated in Sichuan and Xinjiang Provinces. Koch's postulates were fulfilled, demonstrating that all 12 species cause anthracnose on walnut. This is the first report of C.boninense, C.citrulli and C.karsti as pathogens of walnut anthracnose worldwide.

14.
Plant Physiol ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39250752

ABSTRACT

Colletotrichum brevisporum is an important fungal pathogen that causes anthracnose and has led to serious postharvest losses of papaya (Carica papaya L.) fruit in recent years. WRKY transcription factors play vital roles in regulating plant resistance to pathogens, but their functions in papaya anthracnose resistance need further exploration. In this study, we identified a WRKY transcription factor, CpWRKY50, which belongs to the WRKY IIc subfamily. During infection with C. brevisporum, expression of CpWRKY50 in anthracnose-resistant papaya cultivars was significantly higher than that in susceptible cultivars. CpWRKY50 was induced by methyl jasmonate, and CpWRKY50 localized in the nucleus. In yeast, full-length CpWRKY50 had transactivation activity, but CpWRKY50 variants truncated at the N or C termini did not. CpWRKY50 positively regulated papaya resistance to C. brevisporum, as demonstrated by transient overexpression of CpWRKY50 in papaya and heterologous expression of CpWRKY50 in tomato. Moreover, endogenous jasmonic acid (JA) and JA-isoleucine levels in the fruits of transgenic tomato OE lines were higher than in wild type both before and after inoculation with C. brevisporum, indicating that increased CpWRKY50 expression promotes JA accumulation. Furthermore, our results revealed CpWRKY50 directly binds to W-box motifs (TTGACC) in the promoters of two JA signaling-related genes, CpMYC2 and pathogenesis-related 4 CpPR4, thereby activating their expression. Our data support that CpWRKY50 positively regulates anthracnose resistance in papaya by promoting JA signaling. These results broaden our understanding of papaya disease resistance mechanisms and will facilitate the genetic improvement of papaya through molecular breeding.

15.
mBio ; : e0066724, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248570

ABSTRACT

Colletotrichum species are notorious for causing anthracnose on many fruits, leading to significant economic losses worldwide. As a model, we functionally characterized cys2-his2 (C2H2) zinc finger proteins (CsCZFs) in Colletotrichum scovillei, a major causal agent of pepper fruit anthracnose in many countries. In all, 62 CsCZFs were identified by in silico genomic analysis. Twelve were selected based on their expression profiles to generate targeted deletion mutants for functional investigation. ΔCsczf1 markedly reduced conidiation and constitutive expression of CsCZF1 partially recovered conidiation in an asexual reproduction-defective mutant, ΔCshox2. Deletion of CsCZF12, orthologous to the calcineurin-responsive transcription factor Crz1, impaired autophagy in C. scovillei. ΔCsczf9 was defective in surface recognition, appressorium formation, and suppression of host defenses. CsCZF9 was identified as an essential and novel regulator under the control of the mitogen-activated protein kinase (CsPMK1) in an early step of appressorium development in C. scovillei. This study provides novel insights into CsCZF-mediated regulation of differentiation and pathogenicity in C. scovillei, contributing to understanding the regulatory mechanisms governing fruit anthracnose epidemics.IMPORTANCEThe phytopathogenic fungus Colletotrichum scovillei is known to cause serious anthracnose on chili pepper. However, the molecular mechanism underlying anthracnose caused by this fungus remains largely unknown. Here, we systematically analyzed the functional roles of cys2-his2 zinc finger proteins (CsCZFs) in the dissemination and pathogenic development of this fungus. Our results showed that CsCZF1 plays an important role in conidiation and constitutive expression of CsCZF1 restored conidiation in an asexual reproduction-defective mutant, ΔCshox2. The CsCZF9, a novel target of the mitogen-activated protein kinase (CsPMK1), is essential for surface recognition to allow appressorium formation and suppression of host defenses in C. scovillei. The CsCZF12, orthologous to the calcineurin-responsive transcription factor Crz1, is involved in the autophagy of C. scovillei. Our findings reveal a comprehensive mechanism underlying CsCZF-mediated regulation of differentiation and pathogenicity of C. scovillei, which contributes to the understanding of fruit anthracnose epidemics and the development of novel strategies for disease management.

16.
Heliyon ; 10(16): e36602, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39258202

ABSTRACT

Objectives: To enhance the utilization of reclaimed land, Sanyeqing (SYQ) has been extensively cultivated in Zhejiang province, China. However, the prevalence of anthracnose has significantly hindered SYQ growth, emerging as a primary obstacle to its production. This study aimed to elucidate SYQ's responses to anthracnose in reclaimed land environments by comprehensively analyzing root-zone bacterial community structure, metabolites, and soil properties. Methods: The experiment was conducted on reclaimed land in Chun'an, China. In order to evaluate the responses of SYQ to anthracnose, the fresh and dry weight of SYQ tubes, the soil properties, the high-throughput sequencing, and metabolomics assay were carried out. Results: Significant differences were observed between an anthracnose-resistant variety (A201714) and an anthracnose-susceptibile variety (B201301). Fresh and dry weight increased 131.53 % and 144.82 % for A201714 compared to B201301.Lacibacterium (39.85 %), Gp6 (21.83 %), Gp5 (21.49 %), and Sphingomonas (18.84 %) were more prevalent, whereas Gp3 (22.71 %), WPS-1 (18.88 %), Gp4 (15.60 %), Subdivision3 (14.70 %), Chryseolinea (14.37 %), and Nitrospira (0.76 %) were less prevalent in A201714 than B201301. A total of 24 bacterial biomarkers were detected in all soil samples, while the network suggests a more stable soil bacterial community in A201714 than in B201301. Eight differentially expressed metabolites (DEMs) that belonged to lipids and lipid-like molecules, organic acids and derivatives, benzenoids, nucleosides, nucleotides, and analogues were found between two soil samples, and all these eight DEMs were downregulated in A201714 and had a strong correlation with 12 genera of bacteria. Moreover, the data from the redundancy analysis indicated that the main variables affecting changes in the bacterial communities were pH, available phosphorus (AP), available potassium (AK), microbial biomass carbon (MBC), and microbial biomass nitrogen (MBN). Conclusion: This research offers new insights into the SYQ response to anthracnose in reclaimed land and provides valuable recommendations for the high-quality SYQ cultivation and production.

17.
Compr Rev Food Sci Food Saf ; 23(5): e13427, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39137002

ABSTRACT

Colletotrichum spp. is a phytopathogen causing anthracnose in a variety of tropical fruits. Strategies used to control postharvest diseases in tropical fruits typically rely on the use of synthetic fungicides, which have stimulated the emergence of resistant pathogens. Safer alternative strategies to control anthracnose in tropical fruits have been described in the literature. This review presents and discusses the main innovative interventions concerning the application of sustainable alternative strategies in the postharvest control of pathogenic Colletotrichum species in tropical fruits, with a particular emphasis on the studies published in the last 5 years. The available studies have shown the use of various methods, including physical barriers, natural antimicrobials, and biological control with antagonistic microorganisms, to reduce anthracnose lesion severity and incidence in tropical fruits. The available literature showed high inhibitory activity in vitro, reduced anthracnose incidence and lesion diameter, and total disease inhibition in tropical fruits. Most studies focused on the inhibition of Colletotrichum gloeosporioides on avocado, papaya, and mango, as well as of Colletotrichum musae on banana; however, the inhibition of other Colletotrichum species was also demonstrated. The application of emerging sustainable alternative methods, including natural antimicrobial substances, also stimulated the induction of defense systems in tropical fruits, including enzymatic activity, such as polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase. The retrieved data helped to understand the current state of the research field and reveal new perspectives on developing efficient and sustainable intervention strategies to control pathogenic Colletotrichum species and anthracnose development in tropical fruits.


Subject(s)
Colletotrichum , Fruit , Plant Diseases , Fruit/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Food Preservation/methods , Tropical Climate , Fungicides, Industrial/pharmacology
18.
Plant Dis ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143816

ABSTRACT

Heliconia subulata is a common ornamental plant, it has been widely planted in southern China for greening parks, roads, and residential areas. H. subulata plants with spots on their leaves were observed in East Coast Wetland Park (18°16'53.37″N, 109°30'19.36″E), Sanya City, Hainan Province, China on Aug. 31, 2023. The symptoms of the leaves are irregular gray-white, spots, that develop into brown and black, with yellow halos at the disease-health junction. Following an on-the-spot investigation, it was found that the incidence of the disease was 40 to 50%. The leaves were disinfected with 70% ethanol for 1 min, rinsed with sterile water 3 times, disinfected for 1 min with 0.1% HgCl2, rinsed with sterile water 3 times, dried, put on potato dextrose agar (PDA) and incubated at 28℃ for 7 days. The red conidia pile was selected from the culture, dispersed in sterile water and diluted to 20 µL containing 1 to 2 conidia. After absorbing 20 µL spore suspension for many times and inoculating it on the new PDA plate, five pure cultures of single spore, J-1-1 to J-1-5, were obtained. After 7 days of growth, the colonies were grayish aerial mycelium on the front and light orange conidia on the reverse. The white aerial mycelia, conidia, acervulus, and appressorium were observed (Supplementary Fig. S1). The morphological characteristics showed that the isolate had the same characteristics as the previously described Colletotrichum spp. (Wang et al. 2021). The genomic DNA of isolates J-1-1 and J-1-5 were extracted by Fungal DNA Kit (OMEGA bio-tek, Guangzhou, China). The internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (GADPH), and ß-tubulin 2 genes (TUB2) were amplified by primers ITS1/ITS4, GDF/GDR, and Bt2a/Bt2b, respectively (Weir et al. 2012). Based on sequencing and gene sequence alignment analysis, it was found that the consistency between the ITS sequences of isolates J-1-1 and J-1-5 was 99.82%. The consistency between GADPH and TUB2 sequences was 100%. The gene sequences of isolates J-1-1 and J-1-5 were submitted to GenBank with accession numbers PP455510/PP455511 (ITS), PP510210/PP510211 (GADPH) and PP510212/PP510213 (TUB2) respectively. Based on the BLAST analysis, the three sequences were more than 99% identical to those of the C. tropicale strain FC1 (ITS: MT192648, GAPDH: MT155819, TUB2: MT199874; Duan et al. 2022). A phylogenetic tree was constructed by MEGA 11 based on the ITS, GADPH, and TUB2 gene sequence by the maximum-likelihood method. The results showed that the isolates J-1-1 and J-1-5 were clustered with C. tropicale CBS:124949 (Supplementary Fig. S2). Based on morphological and molecular biological analysis, two isolates were identified as C. tropicale. To further test the pathogenicity of isolates J-1-1 and J-1-5, spore suspensions (1×106 conidia/mL) were prepared and 20 µL spore suspensions were inoculated on the leaves of healthy H. subulata potted plants stabbed with sterile toothpicks. Three leaves were inoculated in each treatment, and sterile water was inoculated as a control. The treated plants were placed in an incubator with a temperature of 28℃, relative humidity of 90%, and light/dark (12h/12h). After 15 days, the spore suspension treatment showed the same symptoms as the naturally diseased H. subulata plants in the field, but the leaves treated with sterile water were not infected (Supplementary Fig. S1). The morphology of the isolates obtained from diseased leaves was the same as that of isolates J-1-1 and J-1-5 on the PDA plate. To our knowledge, this is the first report of H. subulata, a new host of C. tropicale causing anthracnose in China.

19.
Plant Dis ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39146007

ABSTRACT

Anthracnose caused by Colletotrichum spp. is a widespread fungal disease that is detrimental to tobacco growth and inflicts economic damage up to 100 million in tobacco-growing regions in China. An early diagnostic tool is vital for the accurate determination and management of anthracnose in the field. This study investigated the diversity of Colletotrichum spp. on tobacco leaves with anthracnose and developed a recombinase polymerase amplification-lateral flow dipstick (RPA-LFD) diagnostic method for the rapid and equipment-independent detection of the main Colletotrichum spp. causing tobacco anthracnose. This assay targeted the chitin synthase gene (chs1) and could be performed in a few minutes (6-10 min). All isolates of C. kastii, C. fructicola and C. gloeosporioides yielded positive results using the RPA-LFD assay, and no cross-reaction occurred with other fungal species from tobacco or other hosts. The detection threshold was 1 pg of genomic DNA under optimal reaction conditions. The entire RPA-LFD assay enabled the detection of pathogen visualization within 30 min without specialized equipment by combining a polyethylene glycol-KOH method for extracting DNA rapidly from tobacco leaves infected with C. kastii, C. fructicola and C. gloeosporioides. Based on these results, the RPA-LFD assay is easy to operate, rapid and equipment independent and is promising for development as a kit to diagnose tobacco anthracnose in resource-limited settings at point-of-care.

20.
Metabolites ; 14(8)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39195513

ABSTRACT

This study aimed to explore the effects of Bacillus amyloliquefaciens GSBa-1 treatment on anthracnose disease resistance and the metabolism of reactive oxygen species (ROS) and phenylpropanoids in mangoes during storage. Mangoes were soaked in a solution containing 1 × 108 CFU/mL of B. amyloliquefaciens GSBa-1. The anthracnose disease incidence, disease index, respiration intensity, ethylene release, reactive oxygen species content, and the activities of related metabolic enzymes, phenylpropanoid-related metabolic enzymes, and phenolic acids in the skin and pulp of mangoes were investigated under normal temperature storage conditions. The results showed that the antagonistic bacterial treatment (ABT) did not significantly inhibit the growth of Colletotrichum gloeosporioides in vitro. However, it significantly reduced the incidence of mango anthracnose disease when applied to the mango peel. ABT enhanced the latent resistance of mango to anthracnose disease by activating its reactive oxygen and phenylpropanoid metabolism. It maintained higher levels of ROS production and elimination in the peel. Moreover, it rapidly activated manganese superoxide dismutase, induced the accumulation of H2O2, and enhanced the activity of manganese superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase in the mango peel. Furthermore, ABT activated phenylalanine ammonia-lyase, cinnamic acid-4-hydroxylase, 4-coumaroyl-CoA ligase, and cinnamyl alcohol dehydrogenase in the mango peel and pulp, promoting the accumulation of antifungal phenolic acids such as gallic acid, catechins, and ellagic acid. Bacillus amyloliquefaciens GSBa-1 may be a potent inhibitor of mango anthracnose, primarily enhancing the resistance of mangoes to anthracnose by synergistically activating ROS in the peel and phenylpropanoid metabolism in the pulp, thereby reducing the incidence of anthracnose effectively.

SELECTION OF CITATIONS
SEARCH DETAIL