Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters











Publication year range
1.
Ecotoxicol Environ Saf ; 280: 116560, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38865941

ABSTRACT

Marine biofouling remains a huge concern for maritime industries and for environmental health. Although the current biocide-based antifouling coatings can prevent marine biofouling, their use has been associated with toxicity for the marine environment, being urgent to find sustainable alternatives. Previously, our research group has identified a prenylated chalcone (1) with promising antifouling activity against the settlement of larvae of the macrofouling species Mytilus galloprovincialis (EC50 = 16.48 µM and LC50 > 200 µM) and lower ecotoxicity when compared to Econea®, a commercial antifouling agent in use. Herein, a series of chalcone 1 analogues were designed and synthesized in order to obtain optimized antifouling compounds with improved potency while maintaining low ecotoxicity. Compounds 8, 15, 24, and 27 showed promising antifouling activity against the settlement of M. galloprovincialis larvae, being dihydrochalcone 27 the most potent. The effect of compound 24 was associated with the inhibition of acetylcholinesterase activity. Among the synthesized compounds, compound 24 also showed potent complementary activity against Navicula sp. (EC50 = 4.86 µM), similarly to the lead chalcone 1 (EC50 = 6.75 µM). Regarding the structure-activity relationship, the overall results demonstrate that the substitution of the chalcone of the lead compound 1 by a dihydrochalcone scaffold resulted in an optimized potency against the settlement of mussel larvae. Marine polyurethane (PU)-based coatings containing the best performed compound concerning anti-settlement activity (dihydrochalcone 27) were prepared, and mussel larvae adherence was reduced compared to control PU coatings.


Subject(s)
Biofouling , Larva , Mytilus , Animals , Biofouling/prevention & control , Larva/drug effects , Mytilus/drug effects , Chalcones/pharmacology , Chalcones/chemistry , Structure-Activity Relationship , Chalcone/pharmacology , Chalcone/analogs & derivatives , Chalcone/chemistry , Disinfectants/toxicity , Disinfectants/pharmacology
2.
Mar Drugs ; 22(2)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38393048

ABSTRACT

Marine biofouling is a major concern for the maritime industry, environment, and human health. Biocides which are currently used in marine coatings to prevent this phenomenon are toxic to the marine environment, and therefore a search for antifoulants with environmentally safe properties is needed. A large number of scientific papers have been published showing natural and synthetic compounds with potential to prevent the attachment of macro- and microfouling marine organisms on submerged surfaces. Flavonoids are a class of compounds which are highly present in nature, including in marine organisms, and have been found in a wide range of biological activities. Some natural and synthetic flavonoids have been evaluated over the last few years for their potential to prevent the settlement and/or the growth of marine organisms on submerged structures, thereby preventing marine biofouling. This review compiles, for the first-time, natural flavonoids as well as their synthetic analogues with attributed antifouling activity against macrofouling and microfouling marine organisms.


Subject(s)
Biofouling , Disinfectants , Humans , Biofouling/prevention & control , Aquatic Organisms , Disinfectants/pharmacology
3.
Chem Biodivers ; 20(2): e202200953, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36567259

ABSTRACT

Antifouling agents with low toxicity are in high demand for sustaining marine industries and the environment. This study aimed to synthesize 15 isothiocyanates derived from ß-citronellol and evaluate their antifouling activities and toxicities against cypris larvae of the barnacle Amphibalanus amphitrite. The synthesized isothiocyanates exhibited effective antifouling activities (EC50 =0.10-3.33 µg mL-1 ) with high therapeutic ratios (LC50 /EC50 >30). Four isothiocyanates with an amide or isocyano group showed great potential as effective antifouling agents (EC50 =0.10-0.32 µg mL-1 , LC50 /EC50 =104-833). The enantiomers of the isothiocyanates only slightly differed in their antifouling activities. These results may serve as a basis for further research and development of ß-citronellol-derived isothiocyanates as effective low-toxic antifouling agents. To the best of our knowledge, this study is the first to report the antifouling activities of isothiocyanates derived from accessible natural products.


Subject(s)
Biofouling , Thoracica , Animals , Cyanides , Structure-Activity Relationship , Acyclic Monoterpenes , Larva
4.
World J Microbiol Biotechnol ; 38(11): 188, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35972591

ABSTRACT

Selenium (SeNPs) and tellurium nanoparticles (TeNPs) were synthesized by green technology using the three new bacterial marine isolates (strains PL 2476, AF 2469 and G 2451). Isolates were classified as Pseudoalteromonas shioyasakiensis according to 16S rRNA sequence analysis, morphological characteristics, and biochemical reactions. The bioreduction processes of isolates were studied in comparison with the previously described Alteromonas macleodii (strain 2328). All strains exhibited significant tolerance to selenite and tellurite up to 1000 µg/mL. A comparative analysis of the bioreduction processes of the isolates demonstrated that the strains have a high rate of reduction processes. Characterization of biogenic red SeNPs and black TeNPs using scanning electron microscopy (SEM), EDX analysis, Dynamic Light Scattering, and micro-Raman Spectroscopy revealed that all the isolates form stable spherical selenium and tellurium nanoparticles whose size as well as elemental composition depend on the producer strain. Nanoparticles of the smallest size (up to 100 nm) were observed only for strain PL 2476. Biogenic SeNPs and TeNPs were also characterized and tested for their antimicrobial, antifouling and cytotoxic activities. Significant antimicrobial activity was shown for nanoparticles at relatively high concentrations (500 and 1000 µg/mL), with the antimicrobial activity of TeNPs being more significant than SeNPs. In contrast, against cell cultures (breast cancer cells (SkBr3) and human dermal fibroblasts (HDF) SeNPs showed greater toxicity than tellurium nanoparticles. Studies have demonstrated the high antifouling effectiveness of selenium and tellurium nanoparticles when introduced into self-polishing coatings. According to the results obtained, the use of SeNPs and TeNPs as antifouling additives can reduce the concentration of leachable biocides used in coatings, reducing the pressure on the environment.


Subject(s)
Nanoparticles , Selenium , Bacteria , Humans , Nanoparticles/chemistry , RNA, Ribosomal, 16S/genetics , Selenium/pharmacology , Tellurium/chemistry , Tellurium/pharmacology
5.
Front Microbiol ; 13: 906345, 2022.
Article in English | MEDLINE | ID: mdl-35875539

ABSTRACT

Marine biofouling caused huge economic losses of maritime industries. We aim to develop high-efficient, less-toxic, and cost-effective antifoulants to solve the problems of biofouling. In this study, we described the antifouling compounds albofungin and its derivatives (albofungin A, chrestoxanthone A, and chloroalbofungin) isolated from the metabolites of bacterium Streptomyces chrestomyceticus BCC 24770, the construction of high-yield strains for albofungin production, and application of albofungin-based antifouling coatings. Results showed that these albofungins have potent antibiofilm activities against Gram-positive and Gram-negative bacteria and anti-macrofouling activities against larval settlement of major fouling organisms with low cytotoxicity. With the best antifouling activity and highest yield in bacterial culture, albofungin was subsequently incorporated with hydrolyzable and degradable copolymer to form antifouling coatings, which altered biofilm structures and prevented the settlement of macrofouling organisms in marine environments. Our results suggested that albofungins were promising antifouling compounds with potential application in marine environments.

6.
Mar Drugs ; 20(2)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35200658

ABSTRACT

Biofouling is the undesirable growth of micro- and macro-organisms on artificial water-immersed surfaces, which results in high costs for the prevention and maintenance of this process (billion €/year) for aquaculture, shipping and other industries that rely on coastal and off-shore infrastructure. To date, there are still no sustainable, economical and environmentally safe solutions to overcome this challenging phenomenon. A computer-aided drug design (CADD) approach comprising ligand- and structure-based methods was explored for predicting the antifouling activities of marine natural products (MNPs). In the CADD ligand-based method, 141 organic molecules extracted from the ChEMBL database and literature with antifouling screening data were used to build the quantitative structure-activity relationship (QSAR) classification model. An overall predictive accuracy score of up to 71% was achieved with the best QSAR model for external and internal validation using test and training sets. A virtual screening campaign of 14,492 MNPs from Encinar's website and 14 MNPs that are currently in the clinical pipeline was also carried out using the best QSAR model developed. In the CADD structure-based approach, the 125 MNPs that were selected by the QSAR approach were used in molecular docking experiments against the acetylcholinesterase enzyme. Overall, 16 MNPs were proposed as the most promising marine drug-like leads as antifouling agents, e.g., macrocyclic lactam, macrocyclic alkaloids, indole and pyridine derivatives.


Subject(s)
Aquatic Organisms , Biofouling/prevention & control , Biological Products/pharmacology , Cholinesterase Inhibitors/pharmacology , Biological Products/chemistry , Cholinesterase Inhibitors/chemistry , Databases, Chemical , Drug Design , Molecular Docking Simulation , Quantitative Structure-Activity Relationship
7.
Chem Biodivers ; 19(2): e202100618, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34964245

ABSTRACT

Two nor-diterpenes, 9,11-dihydrogracilin A (1) and the previously unreported 9,11-dihydrogracillinone A (2), were isolated from the sponge Dendrilla antarctica. The sponge was collected by trawling at a depth of 49 m, from the research vessel Puerto Deseado, near the coast of Tierra del Fuego, farther north than the reported habitat for this species. Since these compounds were particularly abundant and the sponge was free from epibionts, both 1 and 2 were included in soluble-matrix paints and tested for antifouling activity in the ocean. The results obtained from these experiments clearly indicated a potent antifouling activity for both compounds against a variety of colonizing organisms, and established a probable role as natural antifoulants for these abundant secondary metabolites and other structurally related compounds previously isolated from Dendrilla spp.


Subject(s)
Biofouling , Diterpenes , Porifera , Animals , Antarctic Regions , Biofouling/prevention & control , Ecosystem
8.
Int J Mol Sci ; 24(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36613867

ABSTRACT

Nanofibers have become a promising material in many industries in recent years, mainly due to their various properties. The only disadvantage of nanofibers as a potential filtration membrane is their short life due to clogging by bacteria in water treatment. The enrichment of nanofibers with active molecules could prevent these negative effects, represented by essential oils components such as Thymol, Eugenol, Linalool, Cinnamaldehyde and Carvacrol. Our study deals with the preparation of electrospun polyvinylidene difluoride (PVDF)-based nanofibers with incorporated essential oils, their characterization, testing their antibacterial properties and the evaluation of biofilm formation on the membrane surface. The study of the nanofibers' morphology points to the nanofibers' diverse fiber diameters ranging from 570 to 900 nm. Besides that, the nanofibers were detected as hydrophobic material with wettability over 130°. The satisfactory results of PVDF membranes were observed in nanofibers enriched with Thymol and Eugenol that showed their antifouling activity against the tested bacteria Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Therefore, these PVDF membranes could find potential applications as filtration membranes in healthcare or the environment.


Subject(s)
Biofouling , Nanofibers , Oils, Volatile , Oils, Volatile/pharmacology , Eugenol/pharmacology , Thymol/pharmacology , Biofouling/prevention & control , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli
9.
PeerJ ; 9: e12279, 2021.
Article in English | MEDLINE | ID: mdl-34733587

ABSTRACT

Poriferans, as sessile organisms without rigid external covering, use secondary metabolites for protection from predators and fouling organisms. The present study tested the antifouling activity of ethanolic extract of the Mediterranean alien calcareous sponge Paraleucilla magna towards juvenile mussels Mytilus galloprovincialis. Furthermore, toxicity tests on nauplii of brine shrimp Artemia salina and two microalgae strains, Nannochloropsis sp. and Tetraselmis suecica, were also conducted. A total attachment inhibition of M. galloprovincialis was achieved at a concentration of 400 µg/mL of sponge extract. The 50% mortality of A. salina nauplii was recorded at a concentration of 500 µg/mL of ethanolic extract. The growth inhibitory effect on both marine microalgae strains has been registered at a concentration of 300 µg/mL. Our results suggest promising natural antifouling activity and low toxicity of the ethanolic extract of P. magna that could be used as antifouling compound.

10.
ACS Appl Mater Interfaces ; 13(34): 41021-41033, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34405995

ABSTRACT

The efficiency of filtration membranes is substantially lowered by bacterial attachments and potential fouling processes, which reduce their durability and lifecycle. The antibacterial and antifouling properties exhibited by the added materials play a substantial role in their application. We tested a material poly(vinylidene fluoride)-co-hexafluoropropylene (PDVF-co-HFP) based on an electrospun copolymer, where an agent was incorporated with a small amount of ester of glycerol consecutively with caprylic, capric, and lauric acids. Each of these three materials differing in the esters (1-monoacylglycerol, 1-MAG) used was prepared with three weighted concentrations of 1-MAG (1, 2, and 3 wt %). The presence of 1-MAG with an amphiphilic structure resulted in the hydrophilic character of the prepared materials that contributed to the filtration performance. The tested materials (membranes) were characterized with rheological, optical (scanning electron microscopy, SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and other methods to evaluate antibacterial and antifouling activities. The pure water flux was 6 times higher than that of the neat PVDF-co-HFP membrane when the added 1-MAG attained only 1 wt %. It was experimentally shown that the PVDF-co-HFP/1-MAG membrane with high wettability improved antibacterial activity and antifouling ability. This membrane is highly promising for water treatment due to the safety of antibacterial 1-MAG additives.


Subject(s)
Anti-Bacterial Agents/pharmacology , Fluorocarbon Polymers/pharmacology , Monoglycerides/pharmacology , Nanofibers/chemistry , Polyvinyls/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Biofouling/prevention & control , Escherichia coli/drug effects , Escherichia coli/physiology , Filtration/instrumentation , Fluorocarbon Polymers/chemistry , Membranes, Artificial , Microbial Sensitivity Tests , Monoglycerides/chemistry , Polyvinyls/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Wettability
11.
Nat Prod Res ; 35(3): 490-493, 2021 Feb.
Article in English | MEDLINE | ID: mdl-31264460

ABSTRACT

Cochliomycin G (1), a new 14-membered resorcylic acid lactone, together with six known analogues (2-7), was isolated from the culture broth of a marine-derived fungus Cochliobolus lunatus. The planar structure of 1 was established by extensive NMR spectroscopy, and the absolute configuration was elucidated by the combination of empirical rules, CD data, and 13C chemical shift calculations. Compound 1 exhibited potent antifouling activity against Chlorella vulgaris, Chaetoceros socialis, and Navicula exigua, with EC50 values of 1.09, 0.92, and 0.61 µg/mL, respectively.


Subject(s)
Curvularia/chemistry , Diatoms/drug effects , Lactones/chemistry , Lactones/pharmacology , Biofouling/prevention & control , Chlorella vulgaris/drug effects , Circular Dichroism , Lactones/isolation & purification , Magnetic Resonance Spectroscopy , Microalgae/drug effects , Molecular Structure
12.
Mar Drugs ; 20(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35049862

ABSTRACT

Marine biofouling is an epibiotic biological process that affects almost any kind of submerged surface, causing globally significant economic problems mainly for the shipping industry and aquaculture companies, and its prevention so far has been associated with adverse environmental effects for non-target organisms. Previously, we have identified bromosphaerol (1), a brominated diterpene isolated from the red alga Sphaerococcus coronopifolius, as a promising agent with significant antifouling activity, exerting strong anti-settlement activity against larvae of Amphibalanus (Balanus) amphitrite and very low toxicity. The significant antifouling activity and low toxicity of bromosphaerol (1) motivated us to explore its chemistry, aiming to optimize its antifouling potential through the preparation of a number of analogs. Following different synthetic routes, we successfully synthesized 15 structural analogs (2-16) of bromosphaerol (1), decorated with different functional groups. The anti-settlement activity (EC50) and the degree of toxicity (LC50) of the bromosphaerol derivatives were evaluated using cyprids and nauplii of the cirriped crustacean A. amphitrite as a model organism. Derivatives 2, 4, and 6-16 showed diverse levels of antifouling activity. Among them, compounds 9 and 13 can be considered as well-performing antifoulants, exerting their activity through a non-toxic mechanism.


Subject(s)
Biofouling/prevention & control , Diterpenes/pharmacology , Rhodophyta , Animals , Aquatic Organisms , Diterpenes/chemistry , Larva/drug effects , Lethal Dose 50 , Thoracica/drug effects
13.
Nat Prod Res ; 35(14): 2395-2402, 2021 Jul.
Article in English | MEDLINE | ID: mdl-31631686

ABSTRACT

A rare sinulariane-type norcembranoid sinulariadiolide B (1) with a unique cyano group, and a eunicellin-based diterpenoid multifloralin (2), along with two known related analogues, sinulariadiolide (3) and sclerophytin E (4), were isolated from the extract of the South China Sea soft coral Sinularia multiflora. Their structures were elucidated on the basis of detailed spectroscopic analysis and by comparison with previously reported data. Compounds 2 and 4 showed potent antifouling activity against barnacle Balanus albicostatus.


Subject(s)
Anthozoa/chemistry , Terpenes/isolation & purification , Animals , Cell Line , Diterpenes , Molecular Conformation , Terpenes/chemistry , Thoracica/chemistry
14.
Nat Prod Res ; 35(24): 5778-5785, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33107331

ABSTRACT

Two new polyphenols, talaversatilis A (1) and B (2), together with fifteen known compounds (3-17) were isolated from the extract of the culture broth of a soft coral-derived fungus Talaromyces sp. SCSIO 041201. The structures of these compounds were elucidated by the extensive analyses of spectroscopic data and by comparison with the reported literature. Antifouling and antibacterial activities of all purified compounds were tested and evaluated. Compounds 5 and 6 showed antifouling activity towards Bugula neritina larva, with LC50 values of 3.86 µg/mL and 3.05 µg/mL, respectively. Compounds 7, 8, 10 and 13 exhibited significant antibacterial activities against E. coli, MRSA, S. aureus and E. faecalis, with MIC values ranging from 0.45 to 15.6 µg/mL.


Subject(s)
Anthozoa , Talaromyces , Animals , Escherichia coli , Polyphenols/pharmacology , Staphylococcus aureus
15.
Materials (Basel) ; 13(17)2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32825117

ABSTRACT

Monoacylglycerols (MAGs) have proven of great interest to the foodstuffs industry due to the promising antibacterial activity they show for controlling microbial contamination. Prior to this paper, this antibacterial agent had not been incorporated in a nanofibrous membrane. This study details convenient fabrication of nanofibrous membranes based on polyvinyl butyral (PVB) containing various concentrations of monocaprin (MAG 10) by an electrospinning process. Increasing the concentration of MAG 10 caused differences to appear in the shape of the nanofibers, in addition to which the level of wettability was heightened. Besides exhibiting antibacterial properties, the functional membranes demonstrated especially good antifouling activity. The novel and efficient nanofibrous membranes described have the potential to find eventual application in medical or environmental fields.

16.
Biomolecules ; 10(8)2020 07 30.
Article in English | MEDLINE | ID: mdl-32751491

ABSTRACT

The development of alternative ecological and effective antifouling technologies is still challenging. Synthesis of nature-inspired compounds has been exploited, given the potential to assure commercial supplies of potential ecofriendly antifouling agents. In this direction, the antifouling activity of a series of nineteen synthetic small molecules, with chemical similarities with natural products, were exploited in this work. Six (4, 5, 7, 10, 15 and 17) of the tested xanthones showed in vivo activity toward the settlement of Mytilus galloprovincialis larvae (EC50: 3.53-28.60 µM) and low toxicity to this macrofouling species (LC50 > 500 µM and LC50/EC50: 17.42-141.64), and two of them (7 and 10) showed no general marine ecotoxicity (<10% of Artemia salina mortality) after 48 h of exposure. Regarding the mechanism of action in mussel larvae, the best performance compounds 4 and 5 might be acting by the inhibition of acetylcholinesterase activity (in vitro and in silico studies), while 7 and 10 showed specific targets (proteomic studies) directly related with the mussel adhesive structure (byssal threads), given by the alterations in the expression of Mytilus collagen proteins (PreCols) and proximal thread proteins (TMPs). A quantitative structure-activity relationship (QSAR) model was built with predictive capacity to enable speeding the design of new potential active compounds.


Subject(s)
Biofouling/prevention & control , Mytilus/drug effects , Xanthones/chemistry , Xanthones/toxicity , Animals , Biological Products/chemical synthesis , Biological Products/chemistry , Biological Products/toxicity , Larva/drug effects , Larva/physiology , Mytilus/physiology , Xanthones/chemical synthesis
17.
Ecotoxicol Environ Saf ; 187: 109812, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31669574

ABSTRACT

Marine biofouling represents a global economic and ecological challenge. Some marine organisms produce bioactive metabolites, such as steroids, that inhibit the settlement and growth of fouling organisms. The aim of this work was to explore bile acids as a new scaffold with antifouling (AF) activity by using chemical synthesis to produce a series of bile acid derivatives with optimized AF performance and understand their structure-activity relationships. Seven bile acid derivatives were successfully synthesized in moderate to high yields, and their structures were elucidated through spectroscopic methods. Their AF activities were tested against both macro- and microfouling communities. The most potent bile acid against the settlement of Mytilus galloprovincialis larvae was the methyl ester derivative of cholic acid (10), which showed an EC50 of 3.7 µM and an LC50/EC50 > 50 (LC50 > 200 µM) in AF effectiveness vs toxicity studies. Two derivatives of deoxycholic acid (5 and 7) potently inhibited the growth of biofilm-forming marine bacteria with EC50 values < 10 µM, and five bile acids (1, 5, and 7-9) potently inhibited the growth of diatoms, showing EC50 values between 3 and 10 µM. Promising AF profiles were achieved with some of the synthesized bile acids by combining antimacrofouling and antimicrofouling activities. Initial studies on the incorporation of one of these promising bile acid derivatives in polymeric coatings, such as a marine paint, demonstrated the ability of these compounds to generate coatings with antimacrofouling activity.


Subject(s)
Aquatic Organisms/drug effects , Bile Acids and Salts/pharmacology , Biofouling/prevention & control , Disinfectants/pharmacology , Paint , Animals , Aquatic Organisms/growth & development , Bacteria/drug effects , Bacteria/growth & development , Bile Acids and Salts/chemical synthesis , Biofilms/drug effects , Biofilms/growth & development , Disinfectants/chemical synthesis , Microalgae/drug effects , Microalgae/growth & development , Mytilus/drug effects , Polyurethanes/chemistry , Silicones/chemistry
18.
Steroids ; 149: 108414, 2019 09.
Article in English | MEDLINE | ID: mdl-31152827

ABSTRACT

The antifouling activity of peracetylated cholic acid (1), a bile acid derivative which was isolated in a previous work as a natural product from the Patagonian sponge Siphonochalina fortis, was evaluated in laboratory and field trials. Toxicity and settlement assays were performed with the mussel Mytilus edulis platensis, while the field trials were carried out by addition of the compound to experimental soluble-matrix paints, which were then tested in the sea. The results obtained in this work show that 1 has a good antifouling activity and low toxicity, and the paints aditivated with 0,6% Wt showed promissory performances in the field trials at the sea. These results confirm the previous hypothesis that the few acetylated and lipophilic bile acid derivatives isolated from marine invertebrates may act as natural antifoulants. Compound 1 is a natural, biodegradable product that can be easily prepared from cholic acid, which in turn can be isolated in industrial scale from cattle bile. All these facts make cholic acid a good scaffold for the preparation of derivatives, which can be natural product-like, effective and sustainable antifouling additives for marine paints and other applications.


Subject(s)
Biofouling/prevention & control , Cholic Acid/chemistry , Cholic Acid/pharmacology , Acetylation , Animals , Bivalvia/drug effects , Bivalvia/metabolism
19.
Chem Biodivers ; 16(1): e1800451, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30394674

ABSTRACT

Omaezallene derivatives (nor-bromoallene, nor-bromodiene, and bromoenynes) were successfully synthesized. Their antifouling activity and toxicity to the cypris larvae of the barnacle Amphibalanus amphitrite and ecotoxicity to the marine crustacean Tigriopus japonicus were studied. It was revealed that the two side chains of omaezallene were essential to its antifouling activity because the activities of nor-bromoallene and nor-bromodiene were significantly diminished. The bromoenyne was found to exhibit potent antifouling activities comparable to omaezallene with low toxicity and ecotoxicity. Preparation of bromoenyne framework is much easier than that of bromodiene moiety in omaezallene. Based on the antifouling activities of the bromoenynes, the synthesis of fluorescent probes and evaluation of their biological activities were also carried out.


Subject(s)
Crustacea/drug effects , Hydrocarbons, Brominated/chemical synthesis , Thoracica/drug effects , Animals , Chromatography, Thin Layer , Crustacea/genetics , Drug Design , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/pharmacology , Hydrocarbons, Brominated/chemistry , Hydrocarbons, Brominated/pharmacology , Larva/drug effects , Spectrum Analysis/methods , Structure-Activity Relationship , Thoracica/growth & development
20.
World J Microbiol Biotechnol ; 34(7): 90, 2018 Jun 09.
Article in English | MEDLINE | ID: mdl-29886558

ABSTRACT

To search for more microbial resources for screening environment-friendly antifoulants, we investigated the phylogenetic diversity and antifouling potentials of culturable fungi in mangrove sediments from Techeng Isle, China. A total of 176 isolates belonging to 57 fungal taxa were recovered and identified. The high levels of diversity and abundance of mangrove fungi from Techeng Isle were in accordance with previous studies on fungi from other mangrove ecosystems. Fifteen of the 176 isolates demonstrated high divergence (87-93%) from the known fungal taxa in GenBank. Moreover, 26 isolates recorded in mangrove ecosystems for the first time. These results suggested that mangrove sediments from Techeng Isle harbored some new fungal communities compared with other mangrove ecosystems. The antifouling activity of 57 representative isolates (belonging to 57 different fungal taxa) was tested against three marine bacteria (Loktanella hongkongensis, Micrococcus luteus and Pseudoalteromonas piscida) and two marine macrofoulers (bryozoan Bugula neritina and barnacle Balanus amphitrite). Approximately 40% of the tested isolates displayed distinct antifouling activity. Furthermore, 17 fungal isolates were found to display strong or a wide spectrum of antifouling activity in this study, suggesting that these isolates deserve further study as potential sources of novel antifouling metabolites. To our knowledge, this is the first report on the investigation of the phylogenetic diversity and antifouling potential of culturable fungi in mangrove sediments from Techeng Isle, China. These results contribute to our knowledge of mangrove fungi and further increases the pool of fungi available for natural bioactive product screening.


Subject(s)
Biofouling/prevention & control , Biological Products/pharmacology , Fungi/classification , Fungi/isolation & purification , Fungi/metabolism , Geologic Sediments/microbiology , Phylogeny , Anti-Bacterial Agents , Bacteria/drug effects , Biodiversity , China , DNA, Fungal , Ecosystem , Fungi/genetics , Seawater/microbiology , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL