Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Cell Metab ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39116884

ABSTRACT

Urea cycle impairment and its relationship to obesity and inflammation remained elusive, partly due to the dramatic clinical presentation of classical urea cycle defects. We generated mice with hepatocyte-specific arginase 2 deletion (Arg2LKO) and revealed a mild compensated urea cycle defect. Stable isotope tracing and respirometry revealed hepatocyte urea and TCA cycle flux defects, impaired mitochondrial oxidative metabolism, and glutamine anaplerosis despite normal energy and glucose homeostasis during early adulthood. Yet during middle adulthood, chow- and diet-induced obese Arg2LKO mice develop exaggerated glucose and lipid derangements, which are reversible by replacing the TCA cycle oxidative substrate nicotinamide adenine dinucleotide. Moreover, serum-based hallmarks of urea, TCA cycle, and mitochondrial derangements predict incident fibroinflammatory liver disease in 106,606 patients nearly a decade in advance. The data reveal hierarchical urea-TCA cycle control via ARG2 to drive oxidative metabolism. Moreover, perturbations in this circuit may causally link urea cycle compromise to fibroinflammatory liver disease.

2.
BMC Infect Dis ; 24(1): 800, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118006

ABSTRACT

Liver injury with marked elevation of aspartate aminotransferase enzyme (AST) is commonly observed in dengue infection. To understand the pathogenesis of this liver damage, we compared the plasma levels of hepatic specific, centrilobular predominant enzymes (glutamate dehydrogenase, GLDH; glutathione S transferase-α, αGST), periportal enriched 4-hydroxyphenylpyruvate dioxygenase (HPPD), periportal predominant arginase-1 (ARG-1), and other non-specific biomarkers (paraoxonase-1, PON-1) in patients with different outcomes of dengue infection. This hospital-based study enrolled 87 adult dengue patients, stratified into three groups based on plasma AST levels (< 80, 80-400, > 400 U/L) in a 1:1:1 ratio (n = 40, n = 40, n = 40, respectively. The new liver enzymes in the blood samples from the 4th to 6th days of their illness were measured by commercial enzyme-linked immunosorbent assay (ELISA) or colorimetric kits. Based on the diagnosis at discharge days, our patients were classified as 40 (46%) dengue without warning signs (D), 35 (40.2%) dengue with warning signs (DWS), and 11 (12.6%) severe dengue (SD) with either shock (two patients) or AST level over 1000 U/L (nine patients), using the 2009 WHO classification. The group of high AST (> 400 U/L) also had higher ALT, GLDH, ARG-1, and HPPD than the other groups, while the high (> 400 U/L) and moderate (80-400 U/L) AST groups had higher ALT, αGST, ARG-1, and HPPD than the low AST group (< 80 U/L). There was a good correlation between AST, alanine aminotransferase enzyme (ALT), and the new liver biomarkers such as GLDH, αGST, ARG-1, and HPPD. Our findings suggest that dengue-induced liver damage initiates predominantly in the centrilobular area toward the portal area during the dengue progression. Moreover, these new biomarkers should be investigated further to explain the pathogenesis of dengue and to validate their prognostic utility.


Subject(s)
Aspartate Aminotransferases , Biomarkers , Dengue , Liver , Humans , Male , Biomarkers/blood , Female , Adult , Dengue/blood , Dengue/diagnosis , Dengue/complications , Case-Control Studies , Middle Aged , Aspartate Aminotransferases/blood , Vietnam , Liver/pathology , Young Adult , Liver Diseases/blood , Glutathione Transferase/blood , Aged , Southeast Asian People
3.
Invest New Drugs ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39160429

ABSTRACT

The rapid increase in cancer cases worldwide necessitates the development of novel therapeutic approaches. Therapies targeting cancer's altered metabolism, especially those that deplete critical amino acids, have emerged as promising ones, some of which are already being used in clinical practice and many others are under development. This study reports the anti-cancer activity of two novel fused human arginase I (FHA) variants, FHA-3 and FHA-12, assessed using the NCI-60 human tumor cell line panel. Both variants have demonstrated a range of potencies in a single-dose assay (10 µM), but FHA-3 was found to be more potent with significant growth inhibition in most tested cell lines. To calculate 50% growth inhibition (GI50), FHA-3 was further evaluated in a five-dose assay, where notable anti-cancer activity was observed across the nine cancer types of the NCI-60 panel. Our results demonstrated the broad-spectrum anti-cancer activity of novel FHA variants, with FHA-3 being the most potent. Further studies elucidating its efficacy in animal models will help explore its therapeutic potential.

4.
Front Immunol ; 15: 1389551, 2024.
Article in English | MEDLINE | ID: mdl-38966642

ABSTRACT

Introduction: Pathogenesis of cutaneous leishmaniases involves parasite growth, persistent inflammation, and likely participation of lipoproteins (LP). The cholesteryl ester transfer protein (CETP), involved in LP remodeling, has been shown to participate in the inflammatory response and the evolution of infectious conditions. Methods: We evaluated the impact of the presence of CETP on infection by Leishmania (L.) amazonensis in an experimental model of cutaneous leishmaniasis using C57BL6/J mice transgenic for human CETP (CETP), having as control their littermates that do not express the protein, wild-type (WT) mice. The progression of the lesion after infection in the footpad was monitored for 12 weeks. Two groups of animals were formed to collect the plantar pad in the 4th and 12th week post-infection. Results: The lesion increased from the 3rd week onwards, in both groups, with a gradual decrease from the 10th week onwards in the CETP group compared to the WT group, showing a reduction in parasitism and an improvement in the healing process, a reduction in CD68+ cells, and an increase in CD163+ and CD206, characterizing a population of M2 macrophages. A reduction in ARG1+ cells and an increase in INOS+ cells were observed. During infection, the LP profile showed an increase in triglycerides in the VLDL fraction in the CETP group at 12 weeks. Gene expression revealed a decrease in the CD36 receptor in the CETP group at 12 weeks, correlating with healing and parasite reduction. In vitro, macrophages derived from bone marrow cells from CETP mice showed lower parasite load at 48 h and, a reduction in arginase activity at 4 h accompanied by increased NO production at 4 and 24 h compared to WT macrophages, corroborating the in vivo findings. Discussion: The data indicate that the presence of CETP plays an important role in resolving Leishmania (L.) amazonensis infection, reducing parasitism, and modulating the inflammatory response in controlling infection and tissue repair.


Subject(s)
Cholesterol Ester Transfer Proteins , Leishmaniasis, Cutaneous , Macrophages , Mice, Inbred C57BL , Mice, Transgenic , Animals , Cholesterol Ester Transfer Proteins/genetics , Cholesterol Ester Transfer Proteins/metabolism , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/metabolism , Mice , Macrophages/immunology , Macrophages/metabolism , Macrophages/parasitology , Humans , Disease Progression , Disease Models, Animal
5.
Eur J Pharmacol ; 979: 176852, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39067565

ABSTRACT

Macrophages polarize into alternatively activated M2 macrophages through interleukin (IL)-4, and they express high levels of arginase-1, which promotes anti-inflammatory responses. Several studies have confirmed the anti-inflammatory effects of cyclin-dependent kinase (CDK) 8/19 inhibition, and hence, numerous CDK8/19 inhibitors, such as BRD6989, have been developed. However, the effects of CDK8/19 inhibitors on arginase-1 expression in macrophages have not yet been elucidated. This study investigated the effects of CDK8/19 inhibitor on arginase-1 expression in IL-4-activated macrophages. The results showed that BRD6989 increased arginase-1 expression transcriptionally in murine peritoneal macrophages and the murine macrophage cell line RAW264.7 in an IL-4-dependent manner. In addition, the results indicated that BRD6989 enhances signal transducer and activator of transcription (STAT) 6 phosphorylation. Meanwhile, BRD6989 exhibited the capability to activate p38 mitogen-activated protein kinase (MAPK) even in the absence of IL-4 stimulation. Moreover, we observed that a p38 MAPK inhibitor suppressed the BRD6989-induced increase in arginase-1 expression. Besides, BRD6989 increased the surface expression of CD206, an M2 macrophage marker. Thus, this study demonstrated for the first time that CDK8/19 inhibition increases arginase-1 expression, suggesting that this mechanism involves the activation of STAT6 and p38 MAPK. This finding implies that CDK8/19 inhibition may facilitate the production of anti-inflammatory M2 macrophages.


Subject(s)
Arginase , Cyclin-Dependent Kinase 8 , Cyclin-Dependent Kinases , Interleukin-4 , STAT6 Transcription Factor , p38 Mitogen-Activated Protein Kinases , Animals , Arginase/metabolism , Arginase/antagonists & inhibitors , STAT6 Transcription Factor/metabolism , Mice , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , RAW 264.7 Cells , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Interleukin-4/metabolism , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinase 8/metabolism , Protein Kinase Inhibitors/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Phosphorylation/drug effects , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Enzyme Activation/drug effects , Flavonoids , Piperidines , Cyclin-Dependent Kinase 9
6.
Clin Sci (Lond) ; 138(15): 975-985, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39037711

ABSTRACT

The mechanisms underlying endothelial dysfunction in Type 1 and Type 2 diabetes (T1DM and T2DM) are unresolved. The red blood cells (RBCs) with increased arginase activity induce endothelial dysfunction in T2DM, but the implications of RBCs and the role of arginase inhibition in T1DM are unexplored. We aimed to investigate the differences in endothelial function in patients with T1DM and T2DM, with focus on RBCs and arginase. Thirteen patients with T1DM and twenty-six patients with T2DM, matched for HbA1c and sex were included. In vivo endothelium-dependent and -independent vasodilation (EDV and EIDV) were assessed by venous occlusion plethysmography before and after administration of an arginase inhibitor. RBCs were co-incubated with rat aortic segments for 18h followed by evaluation of endothelium-dependent (EDR) and -independent relaxation (EIDR) in isolated organ chambers. In vivo EDV, but not EIDV, was significantly impaired in patients with T2DM compared with patients with T1DM. Arginase inhibition resulted in improved EDV only in T2DM. RBCs from patients with T2DM induced impaired EDR but not EIDR in isolated aortic segments, whereas RBCs from patients with T1DM did not affect EDR nor EIDR. The present study demonstrates markedly impaired EDV in patients with T2DM in comparison with T1DM. In addition, it highlights the divergent roles of RBCs and arginase in mediating endothelial dysfunction in T1DM and T2DM. While endothelial dysfunction is mediated via RBCs and arginase in T2DM, these phenomena are not prominent in T1DM thereby indicating distinct differences in underlying mechanisms.


Subject(s)
Arginase , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Endothelium, Vascular , Erythrocytes , Vasodilation , Humans , Arginase/metabolism , Arginase/antagonists & inhibitors , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/blood , Male , Erythrocytes/enzymology , Erythrocytes/metabolism , Female , Diabetes Mellitus, Type 1/physiopathology , Diabetes Mellitus, Type 1/blood , Middle Aged , Endothelium, Vascular/physiopathology , Animals , Adult , Aged , Aorta/physiopathology , Enzyme Inhibitors/pharmacology
7.
J Infect Dev Ctries ; 18(6): 932-936, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38990998

ABSTRACT

INTRODUCTION: L. arginase refers to the enzyme arginase found in the genus Lactobacillus, it plays a crucial role in the urea cycle, and has implications in various biological applications. This study aimed to purify arginase from Pseudomonas aeruginosa, isolated from soil, and apply it as an anticancer. METHODOLOGY: 28 soil samples of P. aeruginosa were collected from different places of Baghdad, and rice lands in Najaf and Diwaniyah governorates. Different standard laboratory and biochemical assays, and Vitik system were used in diagnosis and growth of arginase enzyme under certain pH, temperature, incubation period. RESULTS: The purified enzyme was precipitated by ammonium sulfite (60-80%), dialyses bag 8000-1000KD, ion exchange by DEAE cellulose and sephadex G100 in gel filtration. Cytotoxicity of arginase against breast t cancer AJM-13 and rat embryo fibroblast REF normal cell line was evaluated for (48 and 72 hours). The inhibition rate increased in the low concentration of abnormal cell (AMJ-13) while decreased in the normal cell (REF), this study takes different concentration (0.392-12.5mg/mL), and low concentration (1562-0.048 mg/mL), the result in high concentration was IR 54.7% during 72 hours for AJM-13 and 14.3% for REF in the same time, while the low concentration was IR 91% in the 1562 mg/mL in the AMJ-13, and 51% in ERF, LD50 of arginase enzyme was 0.781 mg/mL that 41% during 72 hours for ERF, its save to normal cells. CONCLUSIONS: Arginase enzyme, at low concentrations, may have an inhibitory effect on cancer cells, and simultaneously, protect normal cell lines.


Subject(s)
Antineoplastic Agents , Arginase , Pseudomonas aeruginosa , Soil Microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/isolation & purification , Arginase/metabolism , Animals , Rats , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , Hydrogen-Ion Concentration , Cell Line , Temperature , Cell Survival/drug effects , Fibroblasts/drug effects
8.
Bull Exp Biol Med ; 177(1): 68-73, 2024 May.
Article in English | MEDLINE | ID: mdl-38955855

ABSTRACT

Substances of silver nanoparticles dialyzed through a 13 kDa membrane, synthesized in a medium of humic ligands modified with hydroquinone and 2-hydroxynaphthoquinone from PowHumus brown coal, specifically enhance the M2 properties of peritoneal macrophages due to inhibition of NO synthase and significant activation of arginase, thus enhancing anti-inflammatory properties of cells. In small, but effective concentrations, they do not have cytotoxic properties and do not contain pyrogenic impurities. The studied humates are able to influence the mechanisms of immune response formation and are an effective means for correcting inflammation and regeneration.


Subject(s)
Arginase , Arginine , Humic Substances , Macrophages, Peritoneal , Silver , Animals , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Mice , Arginine/pharmacology , Arginine/chemistry , Arginase/metabolism , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Hydroquinones/pharmacology , Hydroquinones/chemistry , Male , Nitric Oxide/metabolism , Nitric Oxide Synthase/metabolism , Naphthoquinones/pharmacology , Naphthoquinones/chemistry
9.
Inflammation ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39044002

ABSTRACT

Toll-like receptors (TLRs) are activated by endogenous molecules released from damaged cells and contribute to neuroinflammation following traumatic brain injury (TBI) and epilepsy. TLR1/2 agonist tri-palmitoyl-S-glyceryl-cysteine (Pam3cys) is a vaccine adjuvant with confirmed safety in humans. We assessed impact of TLR1/2 postconditioning by Pam3cys on epileptogenesis and neuroinflammation in male rats, 6, 24, and 48 h after mild-to-moderate TBI. Pam3cys was injected into cerebral ventricles 30 min after controlled cortical impact (CCI) injury. After 24 h, rats underwent chemical kindling by once every other day injections of pentylenetetrazole (PTZ) 35 mg/kg until development of generalized seizures. Number of intact neurons, brain expression of proinflammatory cytokine TNF-α, anti-inflammatory cytokine IL-10, and marker of anti-inflammatory microglia arginase1 (Arg1) were determined by immunoblotting. Astrocytes and macrophage/microglia activation/polarization at the contused area was assessed by double immunostaining with Iba1/Arg1, Iba1/iNOS and GFAP/iNOS, specific antibodies. The CCI-injured rats became kindled by less number of PTZ injections than sham-operated rats (9 versus 14 injections, p < 0.0001). Pam3cys treatment returned the accelerated rate of epileptogenesis in TBI state to the sham level. Pam3cys decreased neural death 48 h after TBI. It decreased TNF-α (6 h post-TBI, p < 0.01), and up-regulated IL-10 (p < 0.01) and Arg1 (p < 0.05) 48 h after TBI. The iNOS-positive cells decreased (p < 0.001) whereas Iba1/Arg1-positive cells enhanced (p < 0.01) after Pam3cys treatment. Pam3cys inhibits TBI-accelerated acquisition of seizures. Pam3cys reprograms microglia and up-regulates anti-inflammatory cytokines during the first few days after TBI. This capacity along with the clinical safety, makes Pam3cys a potential candidate for development of effective medications against posttraumatic epilepsy.

10.
Comput Biol Chem ; 111: 108112, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38843583

ABSTRACT

Venous leg ulcers (VLUs) pose a growing healthcare challenge due to aging, obesity, and sedentary lifestyles. Despite various treatments available, addressing the complex nature of VLUs remains difficult. In this context, this study investigates repurposing boronated drugs to inhibit arginase 1 activity for VLU treatment. The molecular docking study conducted by Schrodinger GLIDE targeted the binuclear manganese cluster of arginase 1 enzyme (2PHO). Further, the ligand-protein complex was subjected to molecular dynamic studies at 500 ns in Gromacs-2019.4. Trajectory analysis was performed using the GROMACS simulation package of protein RMSD, RMSF, RG, SASA, and H-Bond. The docking study revealed intriguing results where the tavaborole showed a better docking score (-3.957 Kcal/mol) compared to the substrate L-arginine (-3.379 Kcal/mol) and standard L-norvaline (-3.141 Kcal/mol). Tavaborole interaction with aspartic acid ultimately suggests that the drug molecule binds to the catalytic site of arginase 1, potentially influencing the enzyme's function. The dynamics study revealed the compounds' stability and compactness of the protein throughout the simulation. The RMSD, RMSF, SASA, RG, inter and intra H-bond, PCA, FEL, and MMBSA studies affirmed the ligand-protein and protein complex flexibility, compactness, binding energy, van der waals energy, and solvation dynamics. These results revealed the stability and the interaction of the ligand with the catalytic site of arginase 1 enzyme, triggering the study towards the VLU treatment.


Subject(s)
Arginase , Molecular Docking Simulation , Arginase/antagonists & inhibitors , Arginase/metabolism , Arginase/chemistry , Humans , Varicose Ulcer/drug therapy , Boron Compounds/chemistry , Boron Compounds/pharmacology , Drug Repositioning , Molecular Dynamics Simulation , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/metabolism , Molecular Structure
11.
Talanta ; 277: 126389, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38852346

ABSTRACT

Ammonia is a prevalent aquatic pollutant that disrupts cellular functions and energy metabolism in fish, posing significant environmental and health threats. This research investigates the critical role of arginase 2 (ARG2) in mitigating ammonia toxicity in fish cells and its implications in adapting to nitrogen metabolism under high ammonia exposure. Through a CRISPR-Cas9 engineered ARG2 knockdown (KD) in the Epithelioma Papulosum Cyprini (EPC) cell line, we first investigated the biochemical responses of ARG2 KD and wild-type (WT) EPC cells to ammonia stress (NH4Cl treatment), showing diminished urea production and decreased cell viability in ARG2 KD cells. Subsequently, single-cell Raman spectroscopy analysis revealed that ARG2 KD cells exhibited profound metabolic shifts, including changes in protein, nucleic acids, lipid and sugar levels, showing the adjusting role of ARG2 in the balance of carbohydrate and nitrogen metabolism. Furthermore, the upregulated responses of various amino acids, such as glutamine, arginine, alanine, glutamic acid, glycine, histidine, phenylalanine and valine, in WT cells after NH4Cl treatment diminished in ARG2 KD cells except for the decrease in aspartic acid, indicating a switching effect of ARG2 in nitrogen metabolism under ammonia stress. This study highlights ARG2's essential role in ammonia detoxification and emphasizes ARG2's protective function and its importance in metabolism, shedding light on the adaptive mechanisms fish cells deploy against high ammonia environments. These insights contribute to deep understanding of aquatic organisms' molecular responses to environmental ammonia pollution, offering potential strategies for their protection.


Subject(s)
Ammonia , Arginase , Nitrogen , Spectrum Analysis, Raman , Animals , Ammonia/metabolism , Nitrogen/metabolism , Spectrum Analysis, Raman/methods , Arginase/metabolism , Single-Cell Analysis , Cell Line
12.
Trop Med Infect Dis ; 9(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38922041

ABSTRACT

L-arginine metabolism is strongly linked with immunity to mycobacteria, primarily through the antimicrobial activity of nitric oxide (NO). The potential to modulate tuberculosis (TB) outcomes through interventions that target L-arginine pathways are limited by an incomplete understanding of mechanisms and inadequate in vivo modeling. These gaps in knowledge are compounded for HIV and Mtb co-infections, where activation of arginase-1 due to HIV infection may promote survival and replication of both Mtb and HIV. We utilized in vitro and in vivo systems to determine how arginase inhibition using Nω-hydroxy-nor-L-arginine (nor-NOHA) alters L-arginine pathway metabolism relative to immune responses and disease outcomes following Mtb infection. Treatment with nor-NOHA polarized murine macrophages (RAW 264.7) towards M1 phenotype, increased NO, and reduced Mtb in RAW macrophages. In Balb/c mice, nor-NOHA reduced pulmonary arginase and increased the antimicrobial metabolite spermine in association with a trend towards reduced Mtb CFU in lung. In humanized immune system (HIS) mice, HIV infection increased plasma arginase and heightened the pulmonary arginase response to Mtb. Treatment with nor-NOHA increased cytokine responses to Mtb and Mtb/HIV in lung tissue but did not significantly alter bacterial burden or viral load. Our results suggest that L-arginine pathway modulators may have potential as host-directed therapies to augment antibiotics in TB chemotherapy.

13.
Chem Pharm Bull (Tokyo) ; 72(6): 540-546, 2024.
Article in English | MEDLINE | ID: mdl-38866475

ABSTRACT

Three neo-clerodane diterpenoids, including two new tinocordifoliols A (1) and B (2) and one known tinopanoid R (3), were isolated from the ethyl acetate-soluble fraction of the 70% ethanol extract of Tinospora cordifolia stems. The structures were elucidated by various spectroscopic methods, including one dimensional (1D) and 2D-NMR, high resolution-electrospray ionization (HR-ESI)-MS, and electronic circular dichroism (ECD) data. The T. cordifolia extract and all isolated compounds 1-3 possessed arginase I inhibitory activities. Among them, 3 exhibited moderate competitive inhibition of human arginase I (IC50 = 61.9 µM). Furthermore, docking studies revealed that the presence of a ß-substituted furan in 3 may play a key role in the arginase I inhibitory activities.


Subject(s)
Arginase , Diterpenes, Clerodane , Enzyme Inhibitors , Molecular Docking Simulation , Plant Stems , Tinospora , Tinospora/chemistry , Arginase/antagonists & inhibitors , Arginase/metabolism , Diterpenes, Clerodane/pharmacology , Diterpenes, Clerodane/chemistry , Diterpenes, Clerodane/isolation & purification , Humans , Plant Stems/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/isolation & purification , Structure-Activity Relationship , Molecular Structure , Molecular Conformation , Dose-Response Relationship, Drug
14.
Synth Syst Biotechnol ; 9(4): 723-732, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38882181

ABSTRACT

Acetic acid is a common inhibitor present in lignocellulose hydrolysate, which inhibits the ethanol production by yeast strains. Therefore, the cellulosic ethanol industry requires yeast strains that can tolerate acetic acid stress. Here we demonstrate that overexpressing a yeast native arginase-encoding gene, CAR1, renders Saccharomyces cerevisiae acetic acid tolerance. Specifically, ethanol yield increased by 27.3% in the CAR1-overexpressing strain compared to the control strain under 5.0 g/L acetic acid stress. The global intracellular amino acid level and compositions were further analyzed, and we found that CAR1 overexpression reduced the total amino acid content in response to acetic acid stress. Moreover, the CAR1 overexpressing strain showed increased ATP level and improved cell membrane integrity. Notably, we demonstrated that the effect of CAR1 overexpression was independent of the spermidine and proline metabolism, which indicates novel mechanisms for enhancing yeast stress tolerance. Our studies also suggest that CAR1 is a novel genetic element to be used in synthetic biology of yeast for efficient production of fuel ethanol.

15.
Respir Physiol Neurobiol ; 327: 104286, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38825093

ABSTRACT

High-altitude environments present extreme conditions characterized by low barometric pressure and oxygen deficiency, which can disrupt brain functioning and cause edema formation. The objective of the present study is to investigate several biomolecule expressions and their role in the development of High Altitude Cerebral Edema in a rat model. Specifically, the study focuses on analyzing the changes in total arginase, nitric oxide, and lipid peroxidation (MDA) levels in the brain following acute hypobaric hypoxic exposure (7620 m, SO2=8.1 %, for 24 h) along with the histopathological assessment. The histological examination revealed increased TNF-α activity, and an elevated number of mast cells in the brain, mainly in the hippocampus and cerebral cortex. The research findings demonstrated that acute hypobaric hypoxic causes increased levels of apoptotic cells, shrinkage, and swelling of neurons, accompanied by the formation of protein aggregation in the brain parenchyma. Additionally, the level of nitric oxide and MDA was found to have increased (p<0.0001), however, the level of arginase decreased indicating active lipid peroxidation and redox imbalance in the brain. This study provides insights into the pathogenesis of HACE by evaluating some biomolecules that play a pivotal role in the inflammatory response and the redox landscape in the brain. The findings could have significant implications for understanding the neuronal dysfunction and the pathological mechanisms underlying HACE development.


Subject(s)
Altitude Sickness , Brain Edema , Oxidative Stress , Animals , Brain Edema/metabolism , Brain Edema/etiology , Brain Edema/pathology , Oxidative Stress/physiology , Male , Altitude Sickness/metabolism , Altitude Sickness/pathology , Rats , Disease Models, Animal , Lipid Peroxidation/physiology , Brain/metabolism , Brain/pathology , Nitric Oxide/metabolism , Rats, Wistar , Neuroinflammatory Diseases/metabolism , Arginase/metabolism
16.
J Neuroinflammation ; 21(1): 134, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802868

ABSTRACT

BACKGROUND: Since the 1990s, evidence has accumulated that macrophages promote peripheral nerve regeneration and are required for enhancing regeneration in the conditioning lesion (CL) response. After a sciatic nerve injury, macrophages accumulate in the injury site, the nerve distal to that site, and the axotomized dorsal root ganglia (DRGs). In the peripheral nervous system, as in other tissues, the macrophage response is derived from both resident macrophages and recruited monocyte-derived macrophages (MDMs). Unresolved questions are: at which sites do macrophages enhance nerve regeneration, and is a particular population needed. METHODS: Ccr2 knock-out (KO) and Ccr2gfp/gfp knock-in/KO mice were used to prevent MDM recruitment. Using these strains in a sciatic CL paradigm, we examined the necessity of MDMs and residents for CL-enhanced regeneration in vivo and characterized injury-induced nerve inflammation. CL paradigm variants, including the addition of pharmacological macrophage depletion methods, tested the role of various macrophage populations in initiating or sustaining the CL response. In vivo regeneration, measured from bilateral proximal test lesions (TLs) after 2 d, and macrophages were quantified by immunofluorescent staining. RESULTS: Peripheral CL-enhanced regeneration was equivalent between crush and transection CLs and was sustained for 28 days in both Ccr2 KO and WT mice despite MDM depletion. Similarly, the central CL response measured in dorsal roots was unchanged in Ccr2 KO mice. Macrophages at both the TL and CL, but not between them, stained for the pro-regenerative marker, arginase 1. TL macrophages were primarily CCR2-dependent MDMs and nearly absent in Ccr2 KO and Ccr2gfp/gfp KO mice. However, there were only slightly fewer Arg1+ macrophages in CCR2 null CLs than controls due to resident macrophage compensation. Zymosan injection into an intact WT sciatic nerve recruited Arg1+ macrophages but did not enhance regeneration. Finally, clodronate injection into Ccr2gfp KO CLs dramatically reduced CL macrophages. Combined with the Ccr2gfp KO background, depleting MDMs and TL macrophages, and a transection CL, physically removing the distal nerve environment, nearly all macrophages in the nerve were removed, yet CL-enhanced regeneration was not impaired. CONCLUSIONS: Macrophages in the sciatic nerve are neither necessary nor sufficient to produce a CL response.


Subject(s)
Macrophages , Nerve Regeneration , Peripheral Nerve Injuries , Receptors, CCR2 , Wallerian Degeneration , Animals , Macrophages/metabolism , Macrophages/pathology , Mice , Nerve Regeneration/physiology , Wallerian Degeneration/pathology , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Receptors, CCR2/deficiency , Peripheral Nerve Injuries/pathology , Peripheral Nerve Injuries/metabolism , Mice, Inbred C57BL , Mice, Knockout , Sciatic Neuropathy/pathology , Axons/pathology , Mice, Transgenic , Disease Models, Animal , Sciatic Nerve/injuries , Sciatic Nerve/pathology , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism
17.
Curr Issues Mol Biol ; 46(5): 4924-4934, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38785563

ABSTRACT

Humans are persistently exposed to massive amounts of blue light via sunlight, computers, smartphones, and similar devices. Although the positive and negative effects of blue light on living organisms have been reported, its impact on learning and memory remains unknown. Herein, we examined the effects of widespread blue light exposure on the learning and memory abilities of blue light-exposed mice. Ten-week-old male ICR mice were divided into five groups (five mice/group) and irradiated with blue light from a light-emitting diode daily for 6 months. After 6 months of blue light irradiation, mice exhibited a decline in memory and learning abilities, assessed using the Morris water maze and step-through passive avoidance paradigms. Blue light-irradiated mice exhibited a decreased expression of the clock gene brain and muscle arnt-like 1 (Bmal1). The number of microglia and levels of M1 macrophage CC-chemokine receptor 7 and inducible nitric oxide synthase were increased, accompanied by a decrease in M2 macrophage arginase-1 levels. Levels of angiopoietin-like protein 2 and inflammatory cytokines interleukin-6, tumor necrosis factor-α, and interleukin-1ß were elevated. Our findings suggest that long-term blue light exposure could reduce Bmal1 expression, activate the M1 macrophage/Angptl2/inflammatory cytokine pathway, induce neurodegeneration, and lead to a decline in memory.

18.
Life (Basel) ; 14(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38792578

ABSTRACT

Backgound: Type 2 diabetes mellitus (T2DM) is a major cardiovascular risk factor. Nitric oxide (NO) is one of the many molecules that regulate vascular tone, and red blood cells (RBCs) are known to play an important role in adjusting cardiac function through NO export from RBCs. Our study prospectively investigated the L-arginine (L-arg)-nitric oxide (NO) metabolic pathway in the erythrocytes and plasma of subjects with T2DM. Methods: RBCs and plasma were collected from patients with T2DM (n = 10), at first clinical onset (baseline) and after five years of disease evolution (follow-up). L-arg content was assayed by competitive enzyme-linked immunoassay. Arginase activity and nitrate/nitrite levels were measured using spectrophotometry. Results: When compared to baseline, L-arg content decreased in RBCs and remained similar in the plasma; NO production decreased in RBCs and the plasma; and arginase activity was lower in RBCs and increased in plasma. Conclusions: The L-arg/NO metabolic pathway decreases in the RBCs of patients with T2DM five years after the first clinical onset. The persistent decrease in RBCs' arginase activity fails to compensate for the sustained decrease in RBCs' NO production in the diabetic environment. This pilot study indicates that the NO-RBC pool is depleted during the progression of the disease in the same cohort of T2DM patients.

19.
Respir Res ; 25(1): 198, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720340

ABSTRACT

BACKGROUND: The association between tuberculous fibrosis and lung cancer development has been reported by some epidemiological and experimental studies; however, its underlying mechanisms remain unclear, and the role of macrophage (MФ) polarization in cancer progression is unknown. The aim of the present study was to investigate the role of M2 Arg-1+ MФ in tuberculous pleurisy-assisted tumorigenicity in vitro and in vivo. METHODS: The interactions between tuberculous pleural effusion (TPE)-induced M2 Arg-1+ MФ and A549 lung cancer cells were evaluated. A murine model injected with cancer cells 2 weeks after Mycobacterium bovis bacillus Calmette-Guérin pleural infection was used to validate the involvement of tuberculous fibrosis to tumor invasion. RESULTS: Increased CXCL9 and CXCL10 levels of TPE induced M2 Arg-1+ MФ polarization of murine bone marrow-derived MФ. TPE-induced M2 Arg-1+ MФ polarization facilitated lung cancer proliferation via autophagy signaling and E-cadherin signaling in vitro. An inhibitor of arginase-1 targeting M2 Arg-1+ MФ both in vitro and in vivo significantly reduced tuberculous fibrosis-induced metastatic potential of lung cancer and decreased autophagy signaling and E-cadherin expression. CONCLUSION: Tuberculous pleural fibrosis induces M2 Arg-1+ polarization, and M2 Arg-1+ MФ contribute to lung cancer metastasis via autophagy and E-cadherin signaling. Therefore, M2 Arg-1+ tumor associated MФ may be a novel therapeutic target for tuberculous fibrosis-induced lung cancer progression.


Subject(s)
Arginase , Autophagy , Disease Progression , Lung Neoplasms , Macrophages , Signal Transduction , Animals , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/microbiology , Humans , Mice , Autophagy/physiology , Arginase/metabolism , Signal Transduction/physiology , Macrophages/metabolism , Macrophages/pathology , Tuberculosis, Pleural/pathology , Tuberculosis, Pleural/metabolism , A549 Cells , Mice, Inbred C57BL , Pleural Effusion/metabolism , Pleural Effusion/pathology , Cell Polarity/physiology
20.
J Pharm Biomed Anal ; 246: 116210, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38788624

ABSTRACT

Arginase is an enzyme responsible for converting arginine, a semi-essential amino acid, to ornithine and urea. Arginine depletion suppresses immunity via multiple mechanisms including inhibition of T-cell and NK cell proliferation and activity. Arginase inhibition is therefore an attractive mechanism to potentially reverse immune suppression and thus has been explored as a therapy for oncology and respiratory indications. Small molecules targeting arginase present significant bioanalytical challenges for in vitro and in vivo characterization as inhibitors of arginase are typically hydrophilic in nature. The resulting low or negative LogD characteristics are incompatible with common analytical methods such as RP-ESI-MS/MS. Accordingly, a sensitive, high-throughput bioanalytical method was developed by incorporating benzoyl chloride derivatization to increase the hydrophobic characteristics of these polar analytes. Samples were separated by reversed phase chromatography on a Waters XBridge BEH C18 3.5 µm, 30 × 3 mm column using gradient elution. The mass spec was operated in positive mode using electrospray ionization. The m/z 434.1→176.1, 439.4→181.2, 334.9→150.0 and 339.9→150.0 for AZD0011, AZD0011 IS, AZD0011-PL and AZD0011-PL IS respectively were used for quantitation. The linear calibration range of the assay was 1.00-10,000 ng/mL with QC values of 5, 50 and 500 ng/mL. The qualified method presented herein exhibits a novel, robust analytical performance and was successfully applied to evaluate the in vivo ADME properties of boronic acid-based arginase inhibitor prodrug AZD0011 and its active payload AZD0011-PL.


Subject(s)
Arginase , Tandem Mass Spectrometry , Arginase/antagonists & inhibitors , Tandem Mass Spectrometry/methods , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/analysis , Enzyme Inhibitors/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Chromatography, Reverse-Phase/methods , Animals , Chromatography, Liquid/methods , Humans , Chromatography, High Pressure Liquid/methods , Hydrophobic and Hydrophilic Interactions , Reproducibility of Results , Liquid Chromatography-Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL