Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 459: 140343, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39018621

ABSTRACT

This study investigated the effects of various binary sweetener mixtures on sweetness enhancement and their interactions with sweet or bitter taste receptors, focusing on sensory perception and receptor activity. Acesulfame K or saccharin was mixed with allulose, aspartame, erythritol, fructose, glucose, or sucrose to match a target sucrose sweetness. The effects of the mixtures on sweet and bitter taste receptors (in the human embryonic kidney -293 cells) and sensory taste intensities were evaluated. Sweetness enhancement at the sweet taste receptor level was observed in some cases, with several monosaccharides reducing the acesulfame K- or saccharin-induced bitter taste receptor activity. Combining acesulfame K or saccharin with any of the six sweeteners perceptually enhanced sweetness (60% âˆ¼ 100% in 50:50 ratio), correlating with a reduction in inherent bitterness (-35% âˆ¼ -63% in 50:50 ratio). This finding suggests that sweetness perception likely increased because the monosaccharides mitigate the activation of bitter receptors caused by high-potency sweeteners.

2.
Pharmacol Res ; 204: 107211, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744400

ABSTRACT

Several non-caloric sweeteners exhibit a delay in sweetness onset and a sweetness linger after sampling. These temporal properties are thought to be the result of non-specific interactions with cell membranes and proteins in the oral cavity. Data and analysis presented in this report also support the potential involvement of receptor affinity and binding kinetics to this phenomenon. In general, affected sweeteners exhibit distinctly higher binding affinity compared to carbohydrate sweeteners, which do not have temporal issues. In addition, binding kinetic simulations illustrate much slower receptor binding association and dissociation kinetics for a set of non-caloric sweeteners presenting temporal issues, in comparison to carbohydrate sweeteners. So, the higher affinity of some non-caloric sweeteners, dictating lower use levels, and affecting binding kinetics, could contribute to their delay and linger in sweetness perception. Simple pharmacology principles could explain, at least in part, some of the temporal issues of sweeteners.


Subject(s)
Sweetening Agents , Taste Perception , Animals , Humans , Kinetics , Receptors, G-Protein-Coupled/metabolism , Sweetening Agents/metabolism , Sweetening Agents/pharmacology , Taste
3.
Food Chem ; 372: 131230, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34627088

ABSTRACT

Mentha spicata L. disappears in winter. The lack of fresh mint during the cold season can be a limiting factor for the preparation of mint tea. A fresh taste source that can be kept during winter is mint essential oil. As the oil is not soluble in water, a food-approved, water-soluble essential oil microemulsion was studied, investigating different surfactants, in particular Tween® 60. The challenge was to dissolve an extremely hydrophobic essential oil in a homogeneous, stable, transparent, and spontaneously forming solution of exclusively edible additives without adulterating the original fresh taste of the mint. Making use of the microemulsions' water and oil pseudo-phases, hydrophilic sweeteners and hydrophobic dyes could be incorporated to imitate mint leaf infusions aromatically and visually. The resulting formulation was a concentrate, consisting of ∼ 90% green components, which could be diluted with water or tea to obtain a beverage with a pleasant minty taste.


Subject(s)
Mentha , Oils, Volatile , Emulsions , Surface-Active Agents , Water
4.
Food Chem ; 277: 586-594, 2019 Mar 30.
Article in English | MEDLINE | ID: mdl-30502189

ABSTRACT

A novel and fast salting out liquid-liquid extraction method was developed for simultaneous determination of food additives with different polarities in juices. Chromatographic separation was achieved in less than 6 min using Acquity UPLC BEH C 18 (100 mm × 2.1 mm d.i. × 1.7 µm) column with ammonium acetate with 0.01% of trifluoroacetic acid as eluent A and acetonitrile as eluent B at a flow rate of 0.2 mL min-1. The main factors affecting the extraction efficiency were optimized. The method was validated applying accuracy profile based on total error. The extraction recoveries ranged from 84.97 to 122%. Relative standard deviation ranged from 1.24 to 7.99% for intraday assay and from 1.69 to 9.16% for intermediate precision. The limits of detection for five food additives were from 0.3 to 1.42 µg mL-1. The method was successfully applied to 47 samples of juices from nine brands.


Subject(s)
Food Additives/analysis , Fruit and Vegetable Juices/analysis , Sweetening Agents/analysis , Ammonium Sulfate/chemistry , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Food Additives/isolation & purification , Hydrogen-Ion Concentration , Liquid-Liquid Extraction , Sweetening Agents/isolation & purification
5.
Int J Pharm ; 467(1-2): 27-33, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24680963

ABSTRACT

Piroxicam (PRX) is a non-steroidal anti-inflammatory drug characterized by a poor water solubility and consequently by a low oral bioavailability. In this work, different nanocrystal orally disintegrating tablets (ODT) were prepared to enhance piroxicam dissolution rate and saturation solubility. PRX nanocrystals were prepared by means of high pressure homogenization technique using poloxamer 188 as stabilizer. Three different ODTs were prepared with the same nanosuspension using different excipients in order to study their effect on the PRX dissolution properties. PRX nanocrystal size and zeta potential were determined by photon correlation spectroscopy. Additional characterization of PRX nanocrystal ODT was carried out by infrared spectroscopy, X-ray powder diffractometry, differential scanning calorimetry. Dissolution study was performed in distilled water (pH 5.5) and compared with PRX coarse suspension ODT, PRX/poloxamer 188 physical mixture, bulk PRX samples and a PRX commercial ODT. All PRX nanocrystal ODT formulations showed a higher drug dissolution rate than coarse PRX ODT. PRX nanocrystal ODT prepared using gelatin or croscarmellose as excipient showed a higher PRX dissolution rate compared with the commercial formulation and ODT prepared using xanthan gum. Overall results confirmed that improved PRX dissolution rate is due to the increased surface-to-volume ratio due to the nanosized drug particle but also revealed the important role of different excipients used.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Freeze Drying , Nanoparticles , Piroxicam/chemistry , Technology, Pharmaceutical/methods , Administration, Oral , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Calorimetry, Differential Scanning , Carboxymethylcellulose Sodium/chemistry , Chemistry, Pharmaceutical , Crystallography, X-Ray , Excipients/chemistry , Gelatin/chemistry , Hydrogen-Ion Concentration , Kinetics , Nanotechnology , Particle Size , Piroxicam/administration & dosage , Poloxamer/chemistry , Polysaccharides, Bacterial/chemistry , Powder Diffraction , Solubility , Spectroscopy, Fourier Transform Infrared , Tablets
SELECTION OF CITATIONS
SEARCH DETAIL