Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 424
Filter
1.
Biol Res ; 57(1): 53, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135103

ABSTRACT

BACKGROUND: As a common disabling disease, irreversible neuronal death due to spinal cord injury (SCI) is the root cause of functional impairment; however, the capacity for neuronal regeneration in the developing spinal cord tissue is limited. Therefore, there is an urgent need to investigate how defective neurons can be replenished and functionally integrated by neural regeneration; the reprogramming of intrinsic cells into functional neurons may represent an ideal solution. METHODS: A mouse model of transection SCI was prepared by forceps clamping, and an adeno-associated virus (AAV) carrying the transcription factors NeuroD1 and Neurogenin-2(Ngn2) was injected in situ into the spinal cord to specifically overexpress these transcription factors in astrocytes close to the injury site. 5-bromo-2´-deoxyuridine (BrdU) was subsequently injected intraperitoneally to continuously track cell regeneration, neuroblasts and immature neurons marker expression, neuronal regeneration, and glial scar regeneration. In addition, immunoprotein blotting was used to measure the levels of transforming growth factor-ß (TGF-ß) pathway-related protein expression. We also evaluated motor function, sensory function, and the integrity of the blood-spinal cord barrier(BSCB). RESULTS: The in situ overexpression of NeuroD1 and Ngn2 in the spinal cord was achieved by specific AAV vectors. This intervention led to a significant increase in cell regeneration and the proportion of cells with neuroblasts and immature neurons cell properties at the injury site(p < 0.0001). Immunofluorescence staining identified astrocytes with neuroblasts and immature neurons cell properties at the site of injury while neuronal marker-specific staining revealed an increased number of mature astrocytes at the injury site. Behavioral assessments showed that the intervention did not improve The BMS (Basso mouse scale) score (p = 0.0726) and gait (p > 0.05), although the treated mice had more sensory sensitivity and greater voluntary motor ability in open field than the non-intervention mice. We observed significant repair of the BSCB at the center of the injury site (p < 0.0001) and a significant improvement in glial scar proliferation. Electrophysiological assessments revealed a significant improvement in spinal nerve conduction (p < 0.0001) while immunostaining revealed that the levels of TGF-ß protein at the site of injury in the intervention group were lower than control group (p = 0.0034); in addition, P70 s6 and PP2A related to the TGF-ß pathway showed ascending trend (p = 0.0036, p = 0.0152 respectively). CONCLUSIONS: The in situ overexpression of NeuroD1 and Ngn2 in the spinal cord after spinal cord injury can reprogram astrocytes into neurons and significantly enhance cell regeneration at the injury site. The reprogramming of astrocytes can lead to tissue repair, thus improving the reduced threshold and increasing voluntary movements. This strategy can also improve the integrity of the blood-spinal cord barrier and enhance nerve conduction function. However, the simple reprogramming of astrocytes cannot lead to significant improvements in the striding function of the lower limbs.


Subject(s)
Astrocytes , Basic Helix-Loop-Helix Transcription Factors , Disease Models, Animal , Nerve Tissue Proteins , Spinal Cord Injuries , Animals , Spinal Cord Injuries/therapy , Spinal Cord Injuries/physiopathology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Astrocytes/physiology , Nerve Tissue Proteins/metabolism , Mice , Nerve Regeneration/physiology , Neurons , Female , Mice, Inbred C57BL , Spinal Cord/metabolism
2.
J Cell Biochem ; : e30637, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150066

ABSTRACT

Glioblastoma (GBM) aggressiveness is partly driven by the reactivation of signaling pathways such as Sonic hedgehog (SHH) and the interaction with its microenvironment. SHH pathway activation is one of the phenomena behind the glial transformation in response to tumor growth. The reactivation of the SHH signaling cascade during GBM-astrocyte interaction is highly relevant to understanding the mechanisms used by the tumor to modulate the adjacent stroma. The role of reactive astrocytes considering SHH signaling during GBM progression is investigated using a 3D in vitro model. T98G GBM spheroids displayed significant downregulation of SHH (61.4 ± 9.3%), GLI-1 (6.5 ± 3.7%), Ki-67 (33.7 ± 8.1%), and mutant MTp53 (21.3 ± 10.6%) compared to the CONTROL group when incubated with conditioned medium of reactive astrocytes (CM-AST). The SHH pathway inhibitor, GANT-61, significantly reduced previous markers (SHH = 43.0 ± 12.1%; GLI-1 = 9.5 ± 3.4%; Ki-67 = 31.9 ± 4.6%; MTp53 = 6.5 ± 7.5%) compared to the CONTROL, and a synergistic effect could be observed between GANT-61 and CM-AST. The volume (2.0 ± 0.2 × 107 µm³), cell viability (80.4 ± 3.2%), and migration (41 ± 10%) of GBM spheroids were significantly reduced in the presence of GANT-61 and CM-AST when compared to CM-AST after 72 h (volume = 2.3 ± 0.4 × 107 µm³; viability = 92.2 ± 6.5%; migration = 102.5 ± 14.6%). Results demonstrated that factors released by reactive astrocytes promoted a neuroprotective effect preventing GBM progression using a 3D in vitro model potentiated by SHH pathway inhibition.

3.
Neurobiol Dis ; 200: 106612, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39032798

ABSTRACT

Astrocytes play key roles in the brain. When astrocyte support fails, neurological disorders follow, resulting in disrupted synaptic communication, neuronal degeneration, and cell death. We posit that astrocytes overexpressing neurotrophic factors, such as Insulin Like Growth Factor 1 (IGF1), prevent the onset of neurodegeneration. We overexpressed IGF1 and the reporter TdTomato (TOM) in hippocampal astrocytes with bicistronic Adeno-Associated Virus (AAV) harboring the Glial Fibrillary Acidic Protein (GFAP) promoter and afterwards induced neurodegeneration by the intracerebroventricular (ICV) injection of streptozotocin (STZ), a rat model of behavioral impairment, neuroinflammation and shortening of hippocampal astrocytes. We achieved a thorough transgene expression along the hippocampus with a single viral injection. Although species typical behavior was impaired, memory deficit was prevented by IGF1. STZ prompted astrocyte shortening, albeit the length of these cells in animals injected with GFP and IGF1 vectors did not statistically differ from the other groups. In STZ control animals, hippocampal microglial reactive cells increased dramatically, but this was alleviated in IGF1 rats. We conclude that overexpression of IGF1 in astrocytes prevents neurodegeneration onset. Hence, individuals with early neurotrophic exhaustion would be vulnerable to age-related neurodegeneration.


Subject(s)
Astrocytes , Dependovirus , Hippocampus , Insulin-Like Growth Factor I , Animals , Astrocytes/metabolism , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/genetics , Hippocampus/metabolism , Dependovirus/genetics , Rats , Male , Rats, Wistar , Glial Fibrillary Acidic Protein/metabolism
4.
Glia ; 72(10): 1746-1765, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38856177

ABSTRACT

Cholesterol is crucial for the proper functioning of eukaryotic cells, especially neurons, which rely on cholesterol to maintain their complex structure and facilitate synaptic transmission. However, brain cells are isolated from peripheral cholesterol by the blood-brain barrier and mature neurons primarily uptake the cholesterol synthesized by astrocytes for proper function. This study aimed to investigate the effect of aging on cholesterol trafficking in astrocytes and its delivery to neurons. We found that aged astrocytes accumulated high levels of cholesterol in the lysosomal compartment, and this cholesterol buildup can be attributed to the simultaneous occurrence of two events: decreased levels of the ABCA1 transporter, which impairs ApoE-cholesterol export from astrocytes, and reduced expression of NPC1, which hinders cholesterol release from lysosomes. We show that these two events are accompanied by increased microR-33 in aged astrocytes, which targets ABCA1 and NPC1. In addition, we demonstrate that the microR-33 increase is triggered by oxidative stress, one of the hallmarks of aging. By coculture experiments, we show that cholesterol accumulation in astrocytes impairs the cholesterol delivery from astrocytes to neurons. Remarkably, we found that this altered transport of cholesterol could be alleviated through treatment with endocannabinoids as well as cannabidiol or CBD. Finally, according to data demonstrating that aged astrocytes develop an A1 phenotype, we found that cholesterol buildup is also observed in reactive C3+ astrocytes. Given that reduced neuronal cholesterol affects synaptic plasticity, the ability of cannabinoids to restore cholesterol transport from aged astrocytes to neurons holds significant implications in aging and inflammation.


Subject(s)
ATP Binding Cassette Transporter 1 , Astrocytes , Cannabinoids , Cholesterol , Lysosomes , Neurons , Astrocytes/metabolism , Astrocytes/drug effects , Animals , Cholesterol/metabolism , Neurons/metabolism , Neurons/drug effects , Lysosomes/metabolism , Lysosomes/drug effects , ATP Binding Cassette Transporter 1/metabolism , Cannabinoids/pharmacology , Cannabinoids/metabolism , Cells, Cultured , Niemann-Pick C1 Protein , Mice , Aging/metabolism , Coculture Techniques , Mice, Inbred C57BL
5.
Neurochem Res ; 49(9): 2505-2518, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38886329

ABSTRACT

Sulforaphane is a natural compound with neuroprotective activity, but its effects on hypothalamus remain unknown. In line with this, astrocytes are critical cells to maintain brain homeostasis, and hypothalamic astrocytes are fundamental for sensing and responding to environmental changes involved in a variety of homeostatic functions. Changes in brain functionality, particularly associated with hypothalamic astrocytes, can contribute to age-related neurochemical alterations and, consequently, neurodegenerative diseases. Thus, here, we investigated the glioprotective effects of sulforaphane on hypothalamic astrocyte cultures and hypothalamic cell suspension obtained from aged Wistar rats (24 months old). Sulforaphane showed anti-inflammatory and antioxidant properties, as well as modulated the mRNA expression of astroglial markers, such as aldehyde dehydrogenase 1 family member L1, aquaporin 4, and vascular endothelial growth factor. In addition, it increased the expression and extracellular levels of trophic factors, such as glia-derived neurotrophic factor and nerve growth factor, as well as the release of brain-derived neurotrophic factor and the mRNA of TrkA, which is a receptor associated with trophic factors. Sulforaphane also modulated the expression of classical pathways associated with glioprotection, including nuclear factor erythroid-derived 2-like 2, heme oxygenase-1, nuclear factor kappa B p65 subunit, and AMP-activated protein kinase. Finally, a cell suspension with neurons and glial cells was used to confirm the predominant effect of sulforaphane in glial cells. In summary, this study indicated the anti-aging and glioprotective activities of sulforaphane in aged astrocytes.


Subject(s)
Aging , Astrocytes , Hypothalamus , Isothiocyanates , Neuroprotective Agents , Rats, Wistar , Sulfoxides , Animals , Isothiocyanates/pharmacology , Aging/drug effects , Aging/metabolism , Neuroprotective Agents/pharmacology , Astrocytes/drug effects , Astrocytes/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Rats , Male , Cells, Cultured , Antioxidants/pharmacology
6.
Cells ; 13(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38891053

ABSTRACT

The astrocyte population, around 50% of human brain cells, plays a crucial role in maintaining the overall health and functionality of the central nervous system (CNS). Astrocytes are vital in orchestrating neuronal development by releasing synaptogenic molecules and eliminating excessive synapses. They also modulate neuronal excitability and contribute to CNS homeostasis, promoting neuronal survival by clearance of neurotransmitters, transporting metabolites, and secreting trophic factors. Astrocytes are highly heterogeneous and respond to CNS injuries and diseases through a process known as reactive astrogliosis, which can contribute to both inflammation and its resolution. Recent evidence has revealed remarkable alterations in astrocyte transcriptomes in response to several diseases, identifying at least two distinct phenotypes called A1 or neurotoxic and A2 or neuroprotective astrocytes. However, due to the vast heterogeneity of these cells, it is limited to classify them into only two phenotypes. This review explores the various physiological and pathophysiological roles, potential markers, and pathways that might be activated in different astrocytic phenotypes. Furthermore, we discuss the astrocyte heterogeneity in the main neurodegenerative diseases and identify potential therapeutic strategies. Understanding the underlying mechanisms in the differentiation and imbalance of the astrocytic population will allow the identification of specific biomarkers and timely therapeutic approaches in various neurodegenerative diseases.


Subject(s)
Astrocytes , Neurodegenerative Diseases , Astrocytes/metabolism , Astrocytes/pathology , Humans , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Animals , Phenotype
7.
Heliyon ; 10(9): e30427, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38694029

ABSTRACT

Maladaptive avoidance behaviour is often observed in patients suffering from anxiety and trauma- and stressor-related disorders. The prefrontal-amygdala-hippocampus network is implicated in learning and memory consolidation. Neuroinflammation in this circuitry alters network dynamics, resulting in maladaptive avoidance behaviour. The two-way active avoidance test is a well-established translational model for assessing avoidance responses to stressful situations. While some animals learn the task and show adaptive avoidance (AA), others show strong fear responses to the test environment and maladaptive avoidance (MA). Here, we investigated if a distinct neuroinflammation pattern in the prefrontal-amygdala-hippocampus network underlies the behavioural difference observed in these animals. Wistar rats were tested 8 times and categorized as AA or MA based on behaviour. Brain recovery followed for the analysis of neuroinflammatory markers in this network. AA and MA presented distinct patterns of neuroinflammation, with MA showing increased astrocyte, EAAT-2, IL-1ß, IL-17 and TNF-ɑ in the amygdala. This neuroinflammatory pattern may underlie these animals' fear response and maladaptive avoidance. Further studies are warranted to determine the specific contributions of each inflammatory factor, as well as the possibility of treating maladaptive avoidance behaviour in patients with psychiatric disorders with anti-inflammatory drugs targeting the amygdala.

8.
Pharmaceuticals (Basel) ; 17(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794218

ABSTRACT

Astrocytes play a pivotal role in maintaining brain homeostasis. Recent research has highlighted the significance of palmitic acid (PA) in triggering pro-inflammatory pathways contributing to neurotoxicity. Furthermore, Genomic-scale metabolic models and control theory have revealed that metabolic switches (MSs) are metabolic pathway regulators by potentially exacerbating neurotoxicity, thereby offering promising therapeutic targets. Herein, we characterized these enzymatic MSs in silico as potential therapeutic targets, employing protein-protein and drug-protein interaction networks alongside structural characterization techniques. Our findings indicate that five MSs (P00558, P04406, Q08426, P09110, and O76062) were functionally linked to nervous system drug targets and may be indirectly regulated by specific neurological drugs, some of which exhibit polypharmacological potential (e.g., Trifluperidol, Trifluoperazine, Disulfiram, and Haloperidol). Furthermore, four MSs (P00558, P04406, Q08426, and P09110) feature ligand-binding or allosteric cavities with druggable potential. Our results advocate for a focused exploration of P00558 (phosphoglycerate kinase 1), P04406 (glyceraldehyde-3-phosphate dehydrogenase), Q08426 (peroxisomal bifunctional enzyme, enoyl-CoA hydratase, and 3-hydroxyacyl CoA dehydrogenase), P09110 (peroxisomal 3-ketoacyl-CoA thiolase), and O76062 (Delta(14)-sterol reductase) as promising targets for the development or repurposing of pharmacological compounds, which could have the potential to modulate lipotoxic-altered metabolic pathways, offering new avenues for the treatment of related human diseases such as neurological diseases.

9.
Adv Clin Chem ; 121: 1-88, 2024.
Article in English | MEDLINE | ID: mdl-38797540

ABSTRACT

The blood-brain barrier (BBB) is a dynamic interface that regulates the exchange of molecules and cells between the brain parenchyma and the peripheral blood. The BBB is mainly composed of endothelial cells, astrocytes and pericytes. The integrity of this structure is essential for maintaining brain and spinal cord homeostasis and protection from injury or disease. However, in various neurological disorders, such as traumatic brain injury, Alzheimer's disease, and multiple sclerosis, the BBB can become compromised thus allowing passage of molecules and cells in and out of the central nervous system parenchyma. These agents, however, can serve as biomarkers of BBB permeability and neuronal damage, and provide valuable information for diagnosis, prognosis and treatment. Herein, we provide an overview of the BBB and changes due to aging, and summarize current knowledge on biomarkers of BBB disruption and neurodegeneration, including permeability, cellular, molecular and imaging biomarkers. We also discuss the challenges and opportunities for developing a biomarker toolkit that can reliably assess the BBB in physiologic and pathophysiologic states.


Subject(s)
Biomarkers , Blood-Brain Barrier , Blood-Brain Barrier/metabolism , Humans , Biomarkers/metabolism , Animals
10.
Behav Brain Res ; 468: 115017, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38679145

ABSTRACT

Growing evidence indicates a critical role of astrocytes in learning and memory. However, little is known about the role of basolateral amygdala complex (BLA-C) astrocytes in contextual fear conditioning (CFC), a paradigm relevant to understand and generate treatments for fear- and anxiety-related disorders. To get insights on the involvement of BLA-C astrocytes in fear memory, fluorocitrate (FLC), a reversible astroglial metabolic inhibitor, was applied at critical moments of the memory processing in order to target the acquisition, consolidation, retrieval and reconsolidation process of the fear memory. Adult Wistar male rats were bilaterally cannulated in BLA-C. Ten days later they were infused with different doses of FLC (0.5 or 1 nmol/0.5 µl) or saline before or after CFC and before or after retrieval. FLC impaired fear memory expression when administered before and shortly after CFC, but not one hour later. Infusion of FLC prior and after retrieval did not affect the memory. Our findings suggest that BLA-C astrocytes are critically involved in the acquisition/early consolidation of fear memory but not in the retrieval and reconsolidation. Furthermore, the extinction process was presumably not affected (considering that peri-retrieval administration could also affect this process).


Subject(s)
Astrocytes , Basolateral Nuclear Complex , Fear , Memory , Rats, Wistar , Animals , Fear/physiology , Fear/drug effects , Astrocytes/drug effects , Astrocytes/physiology , Male , Basolateral Nuclear Complex/drug effects , Basolateral Nuclear Complex/physiology , Rats , Memory/physiology , Memory/drug effects , Citrates/pharmacology , Conditioning, Classical/drug effects , Conditioning, Classical/physiology , Memory Consolidation/physiology , Memory Consolidation/drug effects , Amygdala/drug effects , Amygdala/physiology , Extinction, Psychological/drug effects , Extinction, Psychological/physiology
11.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612385

ABSTRACT

The pathophysiology of many neuropsychiatric disorders is still poorly understood. Identification of biomarkers for these diseases could benefit patients due to better classification and stratification. Exosomes excreted into the circulatory system can cross the blood-brain barrier and carry a cell type-specific set of molecules. Thus, exosomes are a source of potential biomarkers for many diseases, including neuropsychiatric disorders. Here, we investigated exosomal proteins produced from human-induced pluripotent stem cells (iPSCs) and iPSC-derived neural stem cells, neural progenitors, neurons, astrocytes, microglia-like cells, and brain capillary endothelial cells. Of the 31 exosome surface markers analyzed, a subset of biomarkers were significantly enriched in astrocytes (CD29, CD44, and CD49e), microglia-like cells (CD44), and neural stem cells (SSEA4). To identify molecular fingerprints associated with disease, circulating exosomes derived from healthy control (HC) individuals were compared against schizophrenia (SCZ) patients and late-onset Alzheimer's disease (LOAD) patients. A significant epitope pattern was identified for LOAD (CD1c and CD2) but not for SCZ compared to HC. Thus, analysis of cell type- and disease-specific exosome signatures of iPSC-derived cell cultures may provide a valuable model system to explore proteomic biomarkers for the identification of novel disease profiles.


Subject(s)
Extracellular Vesicles , Induced Pluripotent Stem Cells , Humans , Endothelial Cells , Proteomics , Brain
12.
Front Neuroanat ; 18: 1339308, 2024.
Article in English | MEDLINE | ID: mdl-38601797

ABSTRACT

The house wren shows complex song, and the rufous-tailed hummingbird has a simple song. The location of vocal brain areas supports the song's complexity; however, these still need to be studied. The astrocytic population in songbirds appears to be associated with change in vocal control nuclei; however, astrocytic distribution and morphology have not been described in these species. Consequently, we compared the distribution and volume of the vocal brain areas: HVC, RA, Area X, and LMAN, cell density, and the morphology of astrocytes in the house wren and the rufous-tailed hummingbird. Individuals of the two species were collected, and their brains were analyzed using serial Nissl- NeuN- and MAP2-stained tissue scanner imaging, followed by 3D reconstructions of the vocal areas; and GFAP and S100ß astrocytes were analyzed in both species. We found that vocal areas were located close to the cerebral midline in the house wren and a more lateralized position in the rufous-tailed hummingbird. The LMAN occupied a larger volume in the rufous-tailed hummingbird, while the RA and HVC were larger in the house wren. While Area X showed higher cell density in the house wren than the rufous-tailed hummingbird, the LMAN showed a higher density in the rufous-tailed hummingbird. In the house wren, GFAP astrocytes in the same bregma where the vocal areas were located were observed at the laminar edge of the pallium (LEP) and in the vascular region, as well as in vocal motor relay regions in the pallidum and mesencephalon. In contrast, GFAP astrocytes were found in LEP, but not in the pallidum and mesencephalon in hummingbirds. Finally, when comparing GFAP astrocytes in the LEP region of both species, house wren astrocytes exhibited significantly more complex morphology than those of the rufous-tailed hummingbird. These findings suggest a difference in the location and cellular density of vocal circuits, as well as morphology of GFAP astrocytes between the house wren and the rufous-tailed hummingbird.

13.
J Neurosci Res ; 102(4): e25334, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38656648

ABSTRACT

Iron deficiency (ID) has been shown to affect central nervous system (CNS) development and induce hypomyelination. Previous work from our laboratory in a gestational ID model showed that both oligodendrocyte (OLG) and astrocyte (AST) maturation was impaired. To explore the contribution of AST iron to the myelination process, we generated an in vitro ID model by silencing divalent metal transporter 1 (DMT1) in AST (siDMT1 AST) or treating AST with Fe3+ chelator deferoxamine (DFX; DFX AST). siDMT1 AST showed no changes in proliferation but remained immature. Co-cultures of oligodendrocyte precursors cells (OPC) with siDMT1 AST and OPC cultures incubated with siDMT1 AST-conditioned media (ACM) rendered a reduction in OPC maturation. These findings correlated with a decrease in the expression of AST-secreted factors IGF-1, NRG-1, and LIF, known to promote OPC differentiation. siDMT1 AST also displayed increased mitochondrial number and reduced mitochondrial size as compared to control cells. DFX AST also remained immature and DFX AST-conditioned media also hampered OPC maturation in culture, in keeping with a decrease in the expression of AST-secreted growth factors IGF-1, NRG-1, LIF, and CNTF. DFX AST mitochondrial morphology and number showed results similar to those observed in siDMT1 AST. In sum, our results show that ID, induced through two different methods, impacts AST maturation and mitochondrial functioning, which in turn hampers OPC differentiation.


Subject(s)
Astrocytes , Cell Differentiation , Iron Deficiencies , Oligodendroglia , Astrocytes/metabolism , Astrocytes/drug effects , Oligodendroglia/metabolism , Oligodendroglia/drug effects , Animals , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cells, Cultured , Cation Transport Proteins/metabolism , Coculture Techniques , Culture Media, Conditioned/pharmacology , Rats , Oligodendrocyte Precursor Cells/drug effects , Oligodendrocyte Precursor Cells/metabolism , Deferoxamine/pharmacology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Iron/metabolism
14.
J Neurosci Res ; 102(4): e25336, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38656664

ABSTRACT

Chronic neuroinflammation has been implicated in neurodegenerative disease pathogenesis. A key feature of neuroinflammation is neuronal loss and glial activation, including microglia and astrocytes. 4R-cembranoid (4R) is a natural compound that inhibits hippocampal pro-inflammatory cytokines and increases memory function in mice. We used the lipopolysaccharide (LPS) injection model to study the effect of 4R on neuronal density and microglia and astrocyte activation. C57BL/6J wild-type mice were injected with LPS (5 mg/kg) and 2 h later received either 4R (6 mg/kg) or vehicle. Mice were sacrificed after 72 h for analysis of brain pathology. Confocal images of brain sections immunostained for microglial, astrocyte, and neuronal markers were used to quantify cellular hippocampal phenotypes and neurons. Hippocampal lysates were used to measure the expression levels of neuronal nuclear protein (NeuN), inducible nitrous oxide synthase (iNOS), arginase-1, thrombospondin-1 (THBS1), glial cell-derived neurotrophic factor (GDNF), and orosomucoid-2 (ORM2) by western blot. iNOS and arginase-1 are widely used protein markers of pro- and anti-inflammatory microglia, respectively. GDNF promotes neuronal survival, and ORM2 and THBS1 are astrocytic proteins that regulate synaptic plasticity and inhibit microglial activation. 4R administration significantly reduced neuronal loss and the number of pro-inflammatory microglia 72 h after LPS injection. It also decreased the expression of the pro-inflammatory protein iNOS while increasing arginase-1 expression, supporting its anti-inflammatory role. The protein expression of THBS1, GDNF, and ORM2 was increased by 4R. Our data show that 4R preserves the integrity of hippocampal neurons against LPS-induced neuroinflammation in mice.


Subject(s)
Hippocampus , Lipopolysaccharides , Mice, Inbred C57BL , Neuroglia , Neurons , Animals , Lipopolysaccharides/toxicity , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Mice , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neuroglia/drug effects , Neuroglia/metabolism , Neuroglia/pathology , Male , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/drug therapy , Phenotype , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology
15.
Clin Sci (Lond) ; 138(9): 555-572, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38602323

ABSTRACT

Epilepsy, a chronic neurological disorder characterized by recurrent seizures, affects millions of individuals worldwide. Despite extensive research, the underlying mechanisms leading to epileptogenesis, the process by which a normal brain develops epilepsy, remain elusive. We, here, explored the immune system and spleen responses triggered by pilocarpine-induced status epilepticus (SE) focusing on their role in the epileptogenesis that follows SE. Initial examination of spleen histopathology revealed transient disorganization of white pulp, in animals subjected to SE. This disorganization, attributed to immune activation, peaked at 1-day post-SE (1DPSE) but returned to control levels at 3DPSE. Alterations in peripheral blood lymphocyte populations, demonstrated a decrease following SE, accompanied by a reduction in CD3+ T-lymphocytes. Further investigations uncovered an increased abundance of T-lymphocytes in the piriform cortex and choroid plexus at 3DPSE, suggesting a specific mobilization toward the Central Nervous System. Notably, splenectomy mitigated brain reactive astrogliosis, neuroinflammation, and macrophage infiltration post-SE, particularly in the hippocampus and piriform cortex. Additionally, splenectomized animals exhibited reduced lymphatic follicle size in the deep cervical lymph nodes. Most significantly, splenectomy correlated with improved neuronal survival, substantiated by decreased neuronal loss and reduced degenerating neurons in the piriform cortex and hippocampal CA2-3 post-SE. Overall, these findings underscore the pivotal role of the spleen in orchestrating immune responses and neuroinflammation following pilocarpine-induced SE, implicating the peripheral immune system as a potential therapeutic target for mitigating neuronal degeneration in epilepsy.


Subject(s)
Neuroinflammatory Diseases , Pilocarpine , Spleen , Status Epilepticus , Animals , Status Epilepticus/chemically induced , Status Epilepticus/pathology , Spleen/immunology , Spleen/pathology , Male , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/immunology , Splenectomy , Rats, Sprague-Dawley , Hippocampus/pathology , Disease Models, Animal , T-Lymphocytes/immunology , Piriform Cortex/pathology , Neurons/pathology
16.
Biol Res ; 57(1): 19, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689353

ABSTRACT

BACKGROUND: Astrocytes Ca2+ signaling play a central role in the modulation of neuronal function. Activation of metabotropic glutamate receptors (mGluR) by glutamate released during an increase in synaptic activity triggers coordinated Ca2+ signals in astrocytes. Importantly, astrocytes express the Ca2+-dependent nitric oxide (NO)-synthetizing enzymes eNOS and nNOS, which might contribute to the Ca2+ signals by triggering Ca2+ influx or ATP release through the activation of connexin 43 (Cx43) hemichannels, pannexin-1 (Panx-1) channels or Ca2+ homeostasis modulator 1 (CALHM1) channels. Hence, we aim to evaluate the participation of NO in the astrocytic Ca2+ signaling initiated by stimulation of mGluR in primary cultures of astrocytes from rat brain cortex. RESULTS: Astrocytes were stimulated with glutamate or t-ACPD and NO-dependent changes in [Ca2+]i and ATP release were evaluated. In addition, the activity of Cx43 hemichannels, Panx-1 channels and CALHM1 channels was also analyzed. The expression of Cx43, Panx-1 and CALHM1 in astrocytes was confirmed by immunofluorescence analysis and both glutamate and t-ACPD induced NO-mediated activation of CALHM1 channels via direct S-nitrosylation, which was further confirmed by assessing CALHM1-mediated current using the two-electrode voltage clamp technique in Xenopus oocytes. Pharmacological blockade or siRNA-mediated inhibition of CALHM1 expression revealed that the opening of these channels provides a pathway for ATP release and the subsequent purinergic receptor-dependent activation of Cx43 hemichannels and Panx-1 channels, which further contributes to the astrocytic Ca2+ signaling. CONCLUSIONS: Our findings demonstrate that activation of CALHM1 channels through NO-mediated S-nitrosylation in astrocytes in vitro is critical for the generation of glutamate-initiated astrocytic Ca2+ signaling.


Subject(s)
Astrocytes , Calcium Signaling , Nitric Oxide , Animals , Rats , Astrocytes/metabolism , Astrocytes/drug effects , Calcium/metabolism , Calcium Channels/metabolism , Calcium Signaling/physiology , Calcium Signaling/drug effects , Cells, Cultured , Connexin 43/metabolism , Glutamic Acid/metabolism , Nitric Oxide/metabolism , Rats, Wistar
17.
Front Cell Dev Biol ; 12: 1357862, 2024.
Article in English | MEDLINE | ID: mdl-38487272

ABSTRACT

Neurodevelopmental disorders are characterized by alterations in the development of the cerebral cortex, including aberrant changes in the number and function of neural cells. Although neurogenesis is one of the most studied cellular processes in these pathologies, little evidence is known about glial development. Genetic association studies have identified several genes associated with neurodevelopmental disorders. Indeed, variations in the PTPRD gene have been associated with numerous brain disorders, including autism spectrum disorder, restless leg syndrome, and schizophrenia. We previously demonstrated that constitutive loss of PTPRD expression induces significant alterations in cortical neurogenesis, promoting an increase in intermediate progenitors and neurons in mice. However, its role in gliogenesis has not been evaluated. To assess this, we developed a conditional knockout mouse model lacking PTPRD expression in telencephalon cells. Here, we found that the lack of PTPRD in the mouse cortex reduces glial precursors, astrocytes, and oligodendrocytes. According to our results, this decrease in gliogenesis resulted from a reduced number of radial glia cells at gliogenesis onset and a lower gliogenic potential in cortical neural precursors due to less activation of the JAK/STAT pathway and reduced expression of gliogenic genes. Our study shows PTPRD as a regulator of the glial/neuronal balance during cortical neurodevelopment and highlights the importance of studying glial development to understand the etiology of neurodevelopmental diseases.

18.
Metabolites ; 14(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38535311

ABSTRACT

Astrocytes play fundamental roles in the maintenance of brain homeostasis. The dysfunction of these cells is widely associated with brain disorders, which are often characterized by variations in the astrocyte protein markers GFAP and S100B, in addition to alterations in some of its metabolic functions. To understand the role of astrocytes in neurodegeneration mechanisms, we induced some of these metabolic alterations, such as energy metabolism, using methylglyoxal (MG) or fluorocitrate (FC); and neuroinflammation, using lipopolysaccharide (LPS) and streptozotocin (STZ), which is used for inducing Alzheimer's disease (AD) in animal models. We showed that MG, LPS, STZ and FC similarly caused astrocyte dysfunction by increasing GFAP and reducing S100B secretion. In the context of AD, STZ caused an amyloid metabolism impairment verified by increases in Aß1-40 peptide content and decreases in the amyloid degradation enzymes, IDE and NEP. Our data contribute to the understanding of the role of astrocytes in brain injury mechanisms and suggest that STZ is suitable for use in vitro models for studying the role of astrocytes in AD.

19.
Metabolites ; 14(3)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38535321

ABSTRACT

Consumption of high-fat diets (HFD) is associated with brain alterations, including changes in feeding behavior, cognitive decline, and dementia. Astrocytes play a role in HFD-induced neuroinflammation and brain dysfunction; however, this process is not entirely understood. We hypothesized that exposure to saturated fatty acids can compromise astrocyte viability and mitochondrial function. The C6 (astrocytes) cell line was treated with palmitate or stearate (200 µM and 400 µM) for 6 h. Cell viability, morphology, inflammatory markers, and oxidative stress were evaluated. To assess mitochondrial function, various parameters were measured (membrane potential, mass, respiration, and complex activities). We observed that 6 h of treatment with 400 µM palmitate decreased cell viability, and treatment with 200 µM palmitate changed the astrocyte morphology. Palmitate increased inflammatory markers (TNF-α and IL6) but did not induce oxidative stress. Palmitate significantly decreased the mitochondrial membrane potential and mitochondrial mass. Complex I activity also decreased in palmitate-treated cells; however, no changes were observed in mitochondrial respiration. In conclusion, palmitate, a saturated fatty acid, induces inflammation and impairs mitochondrial function, leading to reduced astrocytic cell viability and changes in cellular morphology. Our study provides valuable insights into the potential mechanisms underlying the relationship between saturated fatty acids, astrocytes, and mitochondrial function in obesity-related brain dysfunction.

20.
Basic Clin Pharmacol Toxicol ; 134(5): 614-628, 2024 May.
Article in English | MEDLINE | ID: mdl-38426366

ABSTRACT

The brain extracellular matrix (ECM) has garnered increasing attention as a fundamental component of brain function in a predominantly "neuron-centric" paradigm. Particularly, the perineuronal nets (PNNs), a specialized net-like structure formed by ECM aggregates, play significant roles in brain development and physiology. PNNs enwrap synaptic junctions in various brain regions, precisely balancing new synaptic formation and long-term stabilization, and are highly dynamic entities that change in response to environmental stimuli, especially during the neurodevelopmental period. They are found mainly surrounding parvalbumin (PV)-expressing GABAergic interneurons, being proposed to promote PV interneuron maturation and protect them against oxidative stress and neurotoxic agents. This structural and functional proximity underscores the crucial role of PNNs in modulating PV interneuron function, which is critical for the excitatory/inhibitory balance and, consequently, higher-level behaviours. This review delves into the molecular underpinnings governing PNNs formation and degradation, elucidating their functional interactions with PV interneurons. In the broader physiological context and brain-related disorders, we also explore their intricate relationship with other molecules, such as reactive oxygen species and metalloproteinases, as well as glial cells. Additionally, we discuss potential therapeutic strategies for modulating PNNs in brain disorders.


Subject(s)
Interneurons , Parvalbumins , Parvalbumins/metabolism , Interneurons/metabolism , Extracellular Matrix/metabolism , Neurons/metabolism , Brain/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL