Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.309
Filter
1.
Sci Rep ; 14(1): 18818, 2024 08 13.
Article in English | MEDLINE | ID: mdl-39138281

ABSTRACT

Despite the growing interest in precision medicine-based therapies for Alzheimer's disease (AD), little research has been conducted on how individual AD risk factors influence changes in cognitive function following transcranial direct current stimulation (tDCS). This study evaluates the cognitive effects of sequential tDCS on 63 mild cognitive impairment (MCI) patients, considering AD risk factors such as amyloid-beta deposition, APOE ε4, BDNF polymorphism, and sex. Using both frequentist and Bayesian methods, we assessed the interaction of tDCS with these risk factors on cognitive performance. Notably, we found that amyloid-beta deposition significantly interacted with tDCS in improving executive function, specifically Stroop Word-Color scores, with strong Bayesian support for this finding. Memory enhancements were differentially influenced by BDNF Met carrier status. However, sex and APOE ε4 status did not show significant effects. Our results highlight the importance of individual AD risk factors in modulating cognitive outcomes from tDCS, suggesting that precision medicine may offer more effective tDCS treatments tailored to individual risk profiles in early AD stages.


Subject(s)
Alzheimer Disease , Bayes Theorem , Cognition , Cognitive Dysfunction , Transcranial Direct Current Stimulation , Humans , Alzheimer Disease/therapy , Transcranial Direct Current Stimulation/methods , Male , Female , Cognitive Dysfunction/therapy , Cognitive Dysfunction/etiology , Aged , Risk Factors , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/genetics , Brain-Derived Neurotrophic Factor/metabolism , Middle Aged
2.
J Psychiatr Res ; 178: 180-187, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39146821

ABSTRACT

Schizophrenia is a complex neuropsychiatric disorder with positive, negative, and cognitive symptoms. In rats, sub-chronic administration of ketamine is used for the induction of schizophrenia model. Increased locomotor activity is one of the most important features of psychotic-like symptoms in rodents. On the other hand, risperidone is a potent antipsychotic medication that is approved for the treatment of schizophrenia and bipolar disorder. In the present research, we aimed to investigate the effect of sub-chronic treatment of ketamine on cognitive and behavioral functions, and brain-derived neurotrophic factor (BDNF) expression level in the prefrontal cortex. Also, we assessed the efficacy of risperidone on cognitive and behavioral impairments induced by ketamine. Possible sex differences were also measured. Ketamine was intraperitoneally injected at the dose of 30 mg/kg for five consecutive days. Risperidone was also intraperitoneally injected at the dose of 2 mg/kg. Novel object recognition memory, pain threshold, locomotor activity, rearing behavior, and BDNF level were evaluated. The results showed that ketamine injection for five consecutive days impaired the acquisition of long-term recognition memory and decreased BDNF level in the prefrontal cortex in both sexes. Also, it decreased pain threshold in females, increased rearing behavior in males, and induced hyperlocomotion with greater effect in females. On the other hand, risperidone restored or attenuated the effect of ketamine on all the behavioral effects and BDNF level. In conclusion, we suggested that there were sex differences in the effects of ketamine on pain perception, locomotion, and rearing behavior in a rat model of schizophrenia.

3.
J Med Biochem ; 43(4): 378-386, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-39139152

ABSTRACT

Background: It aims to explore the effect of target task-oriented phase training on fibrinogen (Fbg), angiopoietin (Ang-1), vascular endothelial growth factor (VEGF), serum brain-derived neurotrophic factor (BDNF), and quality of life in post-operative patients with brain trauma. Methods: 142 patients with brain trauma who were operated on in neurosurgery of our hospital from March 2020 to March 2023 were chosen and separated into two groups by random number table. The control group (n=71) received routine post-operative training. The experimental group (n=71) received target task-oriented training based on the control group, and the serum cell levels of nursing for 3, 7, and 14 days were compared. Improvement of limb function and quality of life after 2, 4, and 6 weeks of nursing care is observed.

4.
Neurosci Lett ; : 137934, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39142556

ABSTRACT

OBJECTIVE: To study the effects of resveratrol on heroin addiction-related behaviors and to preliminarily explore the possible intervention mechanism of resveratrol in heroin dependence. METHODS: The effects of resveratrol on heroin withdrawal symptoms were observed by naloxone; The effect of resveratrol on heroin reward memory acquisition was detected by CPP paradigm; The effect of resveratrol on the mental excitability of heroin was tested by open field experiment; The effect of resveratrol on heroin spatial learning and memory was tested by water maze test. Western blot was used to detect Sirtuin 1 (SIRT1) Expression of brain-derived neurotrophic factor (BDNF), glial cell derived neurotrophic factor (GDNF), and postsynaptic density protein (PSD95). RESULTS: The behavioral results showed that the withdrawal behavior of the resveratrol intervention group was reduced compared with the heroin chronic dependence group (P<0.05), and the shift score of the conditioned place preference test of the resveratrol intervention group was reduced compared with the heroin chronic dependence group (P<0.05) The spatial learning and memory ability of the water maze in the resveratrol intervention group was improved compared with the heroin chronic dependence group (P<0.05), and the mental excitability of the resveratrol intervention group was lower than that of the heroin chronic dependence group (P<0.05), but higher than that of the saline group (P<0.05); SIRT1 The expression levels of BDNF, GDNF and PSD95 protein were significantly increased (P<0.05). CONCLUSION: The behavioral results of this study suggest that resveratrol can be used as a potential drug to treat heroin dependence. At the same time, SIRT1 The expression of BDNF, GDNF, and PSD95 increased; SIRT1, BDNF, GDNF, and PSD95 play an essential role in heroin addiction.

5.
Neurobiol Learn Mem ; 214: 107971, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39137861

ABSTRACT

Exercise provides a range of cognitive benefits, including improved memory performance. Previously, we demonstrated that 14 days of continuous voluntary wheel-running exercise enables learning in a hippocampus-dependent Object Location Memory (OLM) task under insufficient, subthreshold training conditions in adult mice. Whether similar exercise benefits can be obtained from consistent intermittent exercise as continuous exercise is unknown. Here, we examine whether intermittent exercise (the weekend warrior effect: 2 days of exercise a week for 7 weeks) displays similar or distinct cognitive benefits as previously examined with 14 days of continuous exercise. We find that both continuous and intermittent exercise parameters similarly enable hippocampus-dependent OLM compared to the 2-day exercise control group. Mice receiving intermittent exercise maintained cognitive benefits following a 7-day sedentary delay, whereas mice that underwent 14 continuous days of exercise showed diminished cognitive benefits as previously reported. Further, compared to continuous exercise, intermittent exercise mice exhibited persistently elevated levels of the genes Acvr1c and Bdnf which we know to be critically involved in hippocampus-dependent long-term memory in the dorsal hippocampus. Together findings suggest that consistent intermittent exercise persistently enables hippocampal-dependent long-term memory. Understanding the optimal parameters for persistent cognitive function and the mechanisms mediating persistent effects will aid in therapeutic pursuits investigating the mitigation of cognitive ailments.

6.
Front Neurol ; 15: 1385042, 2024.
Article in English | MEDLINE | ID: mdl-39148705

ABSTRACT

Background: Neuroplasticity as a mechanism to overcome central nervous system injury resulting from different neurological diseases has gained increasing attention in recent years. However, deficiency of these repair mechanisms leads to the accumulation of neuronal damage and therefore long-term disability. To date, the mechanisms by which remyelination occurs and why the extent of remyelination differs interindividually between multiple sclerosis patients regardless of the disease course are unclear. A member of the neurotrophins family, the brain-derived neurotrophic factor (BDNF) has received particular attention in this context as it is thought to play a central role in remyelination and thus neuroplasticity, neuroprotection, and memory. Objective: To analyse the current literature regarding BDNF in different areas of multiple sclerosis and to provide an overview of the current state of knowledge in this field. Conclusion: To date, studies assessing the role of BDNF in patients with multiple sclerosis remain inconclusive. However, there is emerging evidence for a beneficial effect of BDNF in multiple sclerosis, as studies reporting positive effects on clinical as well as MRI characteristics outweighed studies assuming detrimental effects of BDNF. Furthermore, studies regarding the Val66Met polymorphism have not conclusively determined whether this is a protective or harmful factor in multiple sclerosis, but again most studies hypothesized a protective effect through modulation of BDNF secretion and anti-inflammatory effects with different effects in healthy controls and patients with multiple sclerosis, possibly due to the pro-inflammatory milieu in patients with multiple sclerosis. Further studies with larger cohorts and longitudinal follow-ups are needed to improve our understanding of the effects of BDNF in the central nervous system, especially in the context of multiple sclerosis.

7.
Exp Gerontol ; 195: 112533, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134215

ABSTRACT

Cognitive impairment is a common feature in neurodegenerative diseases such as multiple sclerosis (MS). This study aims to explore the potential of enhancing the beneficial effects of fluoxetine (FLX), a neuroprotective agent known for its ability to increase neural plasticity by utilizing nanoparticles. The study specifically focuses on the synthesis and evaluation of PEGylated chitosan nanoparticles of FLX and its effect on demyelination and the subsequent cognitive impairment (CI) in the hippocampus of rats induced by local injection of lysophosphatidylcholine (LPC). Chitosan/polyethylene glycol nanoparticles were synthesized, and their properties were analyzed. Demyelination was induced in rats via hippocampal injections of lysolecithin. Behavioral assessments included open field maze, elevated plus maze, and novel object recognition memory (NORM) tests. Hippocampal levels of insulin-like growth factor (IGF-1) and brain-derived neurotrophic factor (BDNF) were measured using enzyme-linked immunoassay (ELISA). The extent of remyelination was quantified using Luxol fast blue staining. Nanoparticle size measured 240.2 nm with 53 % encapsulation efficacy. Drug release exhibited a slow pattern, with 76 % released within 4 h. Nanoparticle-treated rats displayed reduced anxiety-like behavior, improved memory, increased BDNF levels, and a reduced extent of demyelination, with no change in IGF- levels. In addition, FLX -loaded chitosan nanoparticles had better effect on cognitive improvement, BDNF levels in the hippocampus that FLX. Altering pharmacokinetics and possibly pharmacodynamics. These findings highlight the potential of innovative drug delivery systems, encouraging further research in this direction.

8.
Front Psychiatry ; 15: 1425681, 2024.
Article in English | MEDLINE | ID: mdl-39135986

ABSTRACT

Introduction: Previous studies in different populations have shown that vitamin D supplementation may reduce depression levels. In adolescents, vitamin D deficiency has been identified as a factor contributing to the onset of depression. This study aimed to establish a model of adolescent depression in mice by using the scientific unpredictable chronic mild stress (UCMS) model and to preliminarily evaluate the effect of vitamin D on the occurrence and development of depression and whether it is related to the protein expression of the BDNF pathway. Methods: The UCMS method was used to establish a model of adolescent depression in 4-week-old C57BL/6 male mice, randomly divided into five groups: Control group, Stress group, Stress+ low-dose group, Stress+ medium-dose group, Stress+ high-dose group. At the same time as chronic stress, the administration groups were given intramuscular injections of different doses of vitamin D. After 8 weeks, behavioral tests, including the forced swimming test (FST) and open field test (OFT), were performed on each group of mice, along with recording of indicators, blood vitamin D level detection, and brain tissue western blot analysis. Results: The results showed a significant difference in vitamin D levels among mice in different groups after 8 weeks (P=0.012). The results of behavioral testing showed a significant difference in the static time of forced swimming among the groups (P<0.001). Compared with the UCMS group, the static time of mice with vitamin D injection was significantly reduced (P<0.001). The total number of times mice entered the central area, the total distance of movement, and the time spent in the central area significantly increased after vitamin D injection compared with the UCMS-only group (all P<0.001). There was no significant difference in the expression of BDNF in the brain tissues of experimental mice (P>0.05). Discussion: In conclusion, in the mouse adolescent depression model, appropriate vitamin D supplementation can reduce the occurrence of stress-induced depression. Furthermore, vitamin D deficiency may also serve as a potential risk factor for depression.

9.
Article in English | MEDLINE | ID: mdl-39141021

ABSTRACT

Previous research have reported that modulating the gut microbiome composition by fecal microbiota transplantation and probiotic administration can alleviate seizure occurrence and severity. Saccharomyces boulardii (SB) is a yeast probiotic that has demonstrated ameliorating effects on anxiety, memory and cognitive deficit, and brain amyloidogenesis. In this research, our goal was to examine the anti-seizure effects of SB on the pentylenetetrazole (PTZ)-kindled male Wistar rats. The animals were randomly categorized into four test groups. The rats were orally administered with saline (control and PTZ groups) or S. boulardii (SB + PTZ and SB groups) for 57 days. From the 29th day of the experiment, the animals received intraperitoneally saline (control and SB groups) or PTZ (PTZ and SB + PTZ groups) on alternate days for 30 days. The administration dose of SB and PTZ was 1010 CFU/ml/day and 35 mg/kg, respectively. We assessed animal seizure behavior, neuroinflammation, oxidative stress, and the levels of matrix metalloproteinase-9 (MMP-9) and brain-derived neurotrophic factor (BDNF) in the hippocampus tissue. S. boulardii hindered the PTZ-induced kindling development. SB treatment elevated glutathione (GSH) and total antioxidant capacity (TAC) and reduced malondialdehyde (MDA) levels. SB also lessened the hippocampal levels of BDNF and MMP-9. Following SB supplementation, proinflammatory cytokines interleukin-1 beta (IL-1ß) and IL-6 were lowered, and anti-inflammatory cytokine IL-10 was enhanced. Overall, our data indicated, for the first time, the positive impact of SB on the PTZ-kindled seizure rat model. The anti-seizure activity of SB was mediated by modulating oxidative stress, neuroinflammation, and MMP-9 and BDNF levels.

10.
Biochem Biophys Res Commun ; 735: 150485, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098273

ABSTRACT

Long-term stress is a significant risk factor for cardiovascular diseases, including atherosclerosis and endothelial dysfunction. Moreover, prolonged stress has shown to negatively regulate central BDNF expression. The role of central BDNF in CNS disorders is well studied until recently the peripheral BDNF was also found to be involved in endothelial function regulation and atherosclerosis. The peripheral BDNF and its role in chronic stress-induced atherosclerosis and endothelial dysfunction remain unclear. Therefore, we aimed to elucidate the role of BDNF and its modulation by the HDAC inhibitor valproic acid (VA) in chronic unpredictable stress (CUS)-induced atherosclerosis and endothelial dysfunction. We demonstrated that a 10-week CUS mouse model substantially decreases central and peripheral BDNF expression, resulting in enhanced serum lipid indices, plaque deposition, fibrosis, and CD68 expression in thoracic aortas. Further, parameters associated with endothelial dysfunction such as increased levels of endothelin-1 (ET-1), adhesion molecules like VCAM-1, M1 macrophage markers, and decreased M2 macrophage markers, eNOS expression, and nitrite levels in aortas, were also observed. VA (50 mg/kg, 14 days, i. p.) was administered to mice following 8 weeks of CUS exposure until the end of the experimental procedure. VA significantly prevented the decrease in BDNF, eNOS and nitrite levels, reduced lesion formation and fibrosis in thoracic aortas and increased ET-1, and VCAM-1 followed by M2 polarization in VA-treated mice. The study highlights the potential of epigenetic modulation of BDNF as a therapeutic target, in stress-induced cardiovascular pathologies and suggests that VA could be a promising agent for mitigating CUS-induced endothelial dysfunction and atherosclerosis by BDNF modulation.

11.
Article in English | MEDLINE | ID: mdl-39102007

ABSTRACT

Parkinson's disease (PD) is the second most frequent neurodegenerative disorder, affecting millions of people and rapidly increasing over the last decades. Even though there is no intervention yet to stop the neurodegenerative pathology, many efficient treatment methods are available, including for patients with advanced PD. Neuroplasticity is a fundamental property of the human brain to adapt both to external changes and internal insults and pathological processes. In this paper we examine the current knowledge and concepts concerning changes at network level, cellular level and molecular level as parts of the neuroplastic response to protein aggregation pathology, synapse loss and neuronal loss in PD. We analyse the beneficial, compensatory effects, such as augmentation of nigral neurons efficacy, as well as negative, maladaptive effects, such as levodopa-induced dyskinesia. Effects of physical activity and different treatments on neuroplasticity are considered and the opportunity of biomarkers identification and use is discussed.

12.
Article in Russian | MEDLINE | ID: mdl-39113447

ABSTRACT

OBJECTIVE: To evaluate the frequency and severity of various clinical symptoms of Parkinson's disease (PD) depending on the BDNF rs6265 polymorphism. MATERIAL AND METHODS: The study included 533 patients with PD. The stage of PD was assessed using the Hoehn and Yahr scale (1967), motor symptoms were evaluated with MDS-UPDRS. Assessment of non-motor symptoms (NMS) in PD was conducted using the Beck Depression Inventory II (BDI-II); the Hospital Anxiety and Depression Scale (HADS); the Apathy Scale; the Montreal Cognitive Assessment (MoCA test); the Questionnaire for Impulsive-Compulsive Disorders in PD -Rating Scale (QUIP-RS). Genotyping of the BDNF variant (rs6265) was performed using real-time PCR with TaqMan probes. RESULTS: Most PD patients have a combination of NMS increasing as the disease progresses and is determined by molecular-genetic individual characteristics. There are significant differences in the severity of motor symptoms and NMS: individuals with the AA genotype showed significantly pronounced motor symptoms (p<0.0001); emotional-affective symptoms (p<0.0001); cognitive and impulsive behavioral disorders (p<0.0001). CONCLUSION: The rs6265 BDNF allele A is associated with a wide range of NMS, increasing the risk of their development in patients with PD, thus playing the important role in the etiopathogenesis of this pathology.


Subject(s)
Brain-Derived Neurotrophic Factor , Parkinson Disease , Polymorphism, Single Nucleotide , Humans , Brain-Derived Neurotrophic Factor/genetics , Parkinson Disease/genetics , Female , Male , Middle Aged , Aged , Genotype , Severity of Illness Index , Depression/genetics
13.
J Ethnopharmacol ; 335: 118647, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39094756

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Jiawei-Xiaoyao Pill (JWX), a classic formula in traditional Chinese medicine, is derived from Xiaoyao Pill by adding significant amounts of Gardeniae Fructus (GF) and Moutan Cortex (MC). It is frequently used for the treatment of depression. JWX has been demonstrated to uniquely elicit rapid antidepressant-like effects within the prescribed dosage range. To date, GF has been shown to have rapid antidepressant-like effects, but a much higher dose is required than its proportion in JWX. It is assumed that the synergism of GF with a minimum number of other herbs in JWX serves as a refined formula that exerts these rapid antidepressant-like effects. Identification of a refined formula is important for prioritizing the herbs and ingredients to optimize the quality control of JWX. However, such a refined formula for JWX has not been identified yet. AIM OF THE STUDY: Here we aimed to identify a refined formula derived from JWX for optimized rapid antidepressant-like effects. Since the neuroinflammation mechanism involving in depression treatment has not been previously investigated for JWX, we tested the mechanism for both JWX and the refined formula. MATERIALS AND METHODS: Individual herbs (MC; ASR, Angelica Sinensis Radix; Bupleuri Radix; Paeonia Radix Alba) that show antidepressant-like responses were mixed with GF at the proportional dosage in JWX to identify the refined formula. Rapid antidepressant-like effects were assessed by using NSF (Novelty Suppressed Feeding Test) and other behavioral tests following a single administration. The identified formula was further tested in a lipopolysaccharide (LPS)-induced depressive model, and the molecular signaling mechanisms were investigated using Western blot analysis, immunofluorescence, and pharmacological inhibition of mTOR signaling. Scopolamine (Scop) was used as a positive control for induction of rapid antidepressant effects. RESULTS: A combination of GF, MC and ASR (GMA) at their dosages proportional to JWX induced behavioral signs of rapid antidepressant-like responses in both normal and LPS-treated mice, with the antidepressant-like effects sustained for 5 d. Similar to JWX or Scop, GMA rapidly reduced the neuroinflammation signaling of Iba-1-NF-кB, enhanced neuroplasticity signaling of CaMKII-mTOR-BDNF, and attenuated the upregulated expressions of the NMDAR sub-units GluN1 and GluN2B in the hippocampus of LPS-treated mice. GMA, JWX and Scop rapidly restored the number of BDNF-positive cells reduced by LPS treatment in the CA3 region of the hippocampus. Furthermore, rapamycin, a selective inhibitor of mTOR, blunted the rapid antidepressant-like effects and hippocampal BDNF signaling upregulation by GMA. CONCLUSION: GMA may serve as a refined formula from JWX, capable of inducing rapid antidepressant-like effects. In the LPS-induced depression model, the effects of GMA were mediated via rapidly alleviating neuroinflammation and enhancing neuroplasticity.

14.
BMC Neurosci ; 25(1): 36, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103771

ABSTRACT

BACKGROUND: Status epilepticus is a common and potentially life-threatening neurological emergency with a high risk for cognitive and neurobiological impairment. Our aim was to evaluate the neuroprotective effects of centrally administered irisin and acute exhausting exercise against oxidative brain injury and memory dysfunction due to a pentylenetetrazole (PTZ)-induced single seizure. Male Sprague Dawley rats with intracerebroventricular (icv) cannulas were randomly divided into intraperitoneally (ip) saline-injected control and PTZ-injected (45 mg/kg) seizure groups. Both the control and PTZ groups were then treated with irisin (7.5 µg/kg, 2 µl, icv), saline (2 µl, icv) or were forced to an acute bout of strenuous exercise before the ip injection of saline (control) or PTZ. Seizures were evaluated using the Racine score. To evaluate memory performance, a passive avoidance test was performed before and after PTZ injection. Following euthanasia at the 24th hour of seizure induction, brain tissues were removed for histopathological examination and for evaluating oxidative damage, antioxidant capacity, and neurotransmitter levels. RESULTS: Glutamate/GABA imbalance observed in PTZ rats was corrected by irisin administration (p < 0.001/p < 0.01), while irisin prevented the generation of reactive oxygen species and lipid peroxidation (p < 0.05 - 0.001) and replenished the antioxidant catalase and glutathione levels (p < 0.01-0.01) in the cerebral tissue, and reduced the histologically evident neuronal injury due to a single seizure (p < 0.05 - 0.01). Irisin also delayed the onset of seizures (p < 0.05) and improved memory dysfunction (p < 0.05), but did not affect the severity of seizures. The acute exhaustive swimming exercise completed before PTZ-seizure depressed glutamate level (p < 0.001), maintained the oxidant/antioxidant balance, alleviated neuronal injury (p < 0.05 - 0.01) and upregulated cerebral BDNF expression (p < 0.05). CONCLUSION: In conclusion, acute high-intensity exercise or exogenously administered irisin provides neuroprotection by maintaining the balance of excitatory/inhibitory neurotransmitters and oxidant/antioxidant systems.


Subject(s)
Fibronectins , Memory Disorders , Pentylenetetrazole , Physical Conditioning, Animal , Rats, Sprague-Dawley , Seizures , Animals , Male , Memory Disorders/etiology , Physical Conditioning, Animal/physiology , Physical Conditioning, Animal/methods , Fibronectins/metabolism , Fibronectins/administration & dosage , Rats , Neuroinflammatory Diseases , Epilepsy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/administration & dosage , Oxidative Stress/drug effects , Oxidative Stress/physiology
15.
Toxicol Rep ; 13: 101687, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39109071

ABSTRACT

Objective: Morphine exposure during pregnancy has detrimental effects on both the mother and her offspring, both during and after childbirth. This study aimed to investigate the impact of prenatal morphine exposure on rat pups and dams, specifically focusing on changes in Neuregulin-1 (Nrg-1)/ErbB4 gene expression, inflammation, and brain-derived neurotrophic factor (BDNF) levels. Materials and methods: Twenty female rats were randomized into two experimental groups:1-Morphine Group: Dams received morphine throughout pregnancy. 2-Control Group: Dams received no interventions.At the end of gestation, blood samples were collected from the dams. Subsequently, dams and their pups underwent tissue collection from the cortical area of the brain to evaluate the following parameters: Interleukin-6 (IL-6), Interleukin-10 (IL-10), total antioxidant capacity (TAC), Malondialdehyde (MDA), and Brain-derived neurotrophic factor (BDNF).Additionally, RNA was extracted from the pup's cortical brain tissue for the assessment of gene expression levels of Neuregulin-1 (NRG-1) and ErbB-4 using quantitative real-time polymerase chain reaction (qrt-PCR). Results: The molecular investigation revealed a decrease in NRG-1 and ErbB-4 expressions in the brain cortex of offspring exposed to morphine during prenatal development. Additionally, the levels of IL-6 and IL-10 in both the serum and brain of both the mothers and their offspring in the morphine group were significantly higher compared to the control group. The morphine-exposed group also exhibited significantly lower levels of TAC and higher levels of MDA, indicating increased oxidative stress. Furthermore, the levels of BDNF in the morphine group were significantly lower compared to the control group. Conclusion: Prenatal morphine exposure in rats has detrimental effects on both the dams and their offspring. This study demonstrates that prenatal morphine exposure disrupts critical molecular pathways involved in neurodevelopment, inflammation, oxidative stress, and neurotrophic signaling. These findings suggest that prenatal morphine exposure can have long-lasting consequences for the offspring, potentially contributing to neurodevelopmental disorders and other health issues later in life.

16.
Exp Gerontol ; 195: 112539, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39116955

ABSTRACT

Neurodegenerative diseases (NDDs) are a class of neurological disorders marked by the progressive loss of neurons that afflict millions of people worldwide. These illnesses affect brain connection, impairing memory, cognition, behavior, sensory perception, and motor function. Alzheimer's, Parkinson's, and Huntington's diseases are examples of common NDDs, which frequently include the buildup of misfolded proteins. Cognitive-behavioral impairments are early markers of neurodevelopmental disorders, emphasizing the importance of early detection and intervention. Neurotrophins such as brain-derived neurotrophic factor (BDNF) are critical for neuron survival and synaptic plasticity, which is required for learning and memory. NDDs have been associated with decreased BDNF levels. Physical exercise, a non-pharmacological intervention, benefits brain health by increasing BDNF levels, lowering cognitive deficits, and slowing brain degradation. Exercise advantages include increased well-being, reduced depression, improved cognitive skills, and neuroprotection by lowering amyloid accumulation, oxidative stress, and neuroinflammation. This study examines the effects of physical exercise on cognitive-behavioral deficits and BDNF levels in the limbic system impacted by neurodegeneration. The findings highlight the necessity of including exercise into NDD treatment to improve brain structure, function, and total BDNF levels. As research advances, exercise is becoming increasingly acknowledged as an important technique for treating cognitive decline and neurodegenerative disorders.

17.
Int J Mol Sci ; 25(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39126038

ABSTRACT

Obstructive sleep apnea (OSA) has been linked to disruptions in circadian rhythm and neurotrophin (NFT) signaling. This study explored the link between neuromodulators, chronotype, and insomnia in OSA. The participants (n = 166) underwent polysomnography (PSG) before being categorized into either the control or the OSA group. The following questionnaires were completed: Insomnia Severity Index (ISI), Epworth Sleepiness Scale, Chronotype Questionnaire (morningness-eveningness (ME), and subjective amplitude (AM). Blood samples were collected post-PSG for protein level assessment using ELISA kits for brain-derived neurotrophic factor (BDNF), proBDNF, glial-cell-line-derived neurotrophic factor, NFT3, and NFT4. Gene expression was analyzed utilizing qRT-PCR. No significant differences were found in neuromodulator levels between OSA patients and controls. The controls with insomnia exhibited elevated neuromodulator gene expression (p < 0.05). In the non-insomnia individuals, BDNF and NTF3 expression was increased in the OSA group compared to controls (p = 0.007 for both); there were no significant differences between the insomnia groups. The ISI scores positively correlated with all gene expressions in both groups, except for NTF4 in OSA (R = 0.127, p = 0.172). AM and ME were predicting factors for the ISI score and clinically significant insomnia (p < 0.05 for both groups). Compromised compensatory mechanisms in OSA may exacerbate insomnia. The correlation between chronotype and NFT expression highlights the role of circadian misalignments in sleep disruptions.


Subject(s)
Brain-Derived Neurotrophic Factor , Circadian Rhythm , Polysomnography , Sleep Apnea, Obstructive , Sleep Initiation and Maintenance Disorders , Humans , Sleep Initiation and Maintenance Disorders/metabolism , Sleep Initiation and Maintenance Disorders/physiopathology , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/metabolism , Sleep Apnea, Obstructive/complications , Male , Female , Middle Aged , Adult , Brain-Derived Neurotrophic Factor/blood , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Neurotransmitter Agents/metabolism , Neurotransmitter Agents/blood , Surveys and Questionnaires , Neurotrophin 3/metabolism , Neurotrophin 3/genetics , Case-Control Studies
18.
Int J Mol Sci ; 25(15)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39126055

ABSTRACT

Rasmussen's encephalitis (RE) stands as a rare neurological disorder marked by progressive cerebral hemiatrophy and epilepsy resistant to medical treatment. Despite extensive study, the primary cause of RE remains elusive, while its histopathological features encompass cortical inflammation, neuronal degeneration, and gliosis. The underlying molecular mechanisms driving disease progression remain largely unexplored. In this case study, we present a patient with RE who underwent hemispherotomy and has remained seizure-free for over six months, experiencing gradual motor improvement. Furthermore, we conducted molecular analysis on the excised brain tissue, unveiling a decrease in the expression of cell-cycle-associated genes coupled with elevated levels of BDNF and TNF-α proteins. These findings suggest the potential involvement of cell cycle regulators in the progression of RE.


Subject(s)
Encephalitis , Humans , Encephalitis/genetics , Encephalitis/pathology , Encephalitis/metabolism , Male , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Brain/pathology , Brain/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cerebral Cortex/pathology , Cerebral Cortex/metabolism , Female , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Cell Cycle/genetics
19.
Immunopharmacol Immunotoxicol ; : 1-16, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138615

ABSTRACT

OBJECTIVE: The threat of hearing loss has become a universal reality. Gentamycin (GM) can lead to ototoxicity and may result in permanent hearing loss. This study aimed to elucidate whether the hypolipidemic drug Ezetimibe (EZE) has a possible underlying mechanism for protecting rats from GM-induced ototoxicity. METHODS AND RESULTS: 30 male Wister albino rats were separated into three groups, ten in each group: control, GM, and GM + EZE. At the end of the experiment, rats underwent hearing threshold evaluation via auditory brainstem response (ABR), carotid artery blood flow velocity (CBV), and resistance (CVR) measurement, in addition to a biochemical assessment of serum malondialdehyde (MDA), nitric oxide (NO), catalase (CAT), hemeOxygenase-1 (HO-1), and tumor necrosis factor-α (TNF-α). Also, real-time PCR was employed to quantify the levels of brain-derived neurotrophic factor (BDNF). Cochlea was also studied via histological and immunohistochemical methods. GM revealed a significant increase in CVR, MDA, NO, and TNF-α and a significant decrease in ABR, CBV, CAT, HO-1, and cochlear BDNF expression. EZE supplementation revealed a significant rise in ARB in addition to CBV and a decline in CVR and protected cochlear tissues via antioxidant, anti-inflammatory, and antiapoptotic mechanisms via downregulating Caspase-3 immunoreaction, upregulating proliferating cellular nuclear antigen (PCNA) immunoreaction, and upregulating of the cochlear BDNF expression. Correlations were significantly negative between BDNF and MDA, NO, TNF-α, COX 2, and caspase-3 immunoreaction and significantly positive with CAT, HO-1, and PCNA immunoreaction. DISCUSSION: EZE can safeguard inner ear tissues from GM via antioxidant, anti-inflammatory, and antiapoptotic mechanisms, as well as upregulation of BDNF mechanisms.

20.
BMC Complement Med Ther ; 24(1): 293, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090706

ABSTRACT

BACKGROUND: Salidroside is the major bioactive and pharmacological active substance in Rhodiola rosea L. It has been reported to have neuroprotective effects on cerebral ischemia/reperfusion (I/R). However, whether salidroside can enhance neural regeneration after cerebral I/R is still unknown. This study investigated the effects of salidroside on the endogenous neural regeneration after cerebral I/R and the related mechanism. METHODS: Focal cerebral I/R was induced in rats by transient middle cerebral artery occlusion/reperfusion (MCAO/R). The rats were intraperitoneally treated salidroside once daily for 7 consecutive days. Neurobehavioral assessments were performed at 3 days and 7 days after the injury. TTC staining was performed to assess cerebral infarct volume. To evaluate the survival of neurons, immunohistochemical staining of Neuronal Nuclei (NeuN) in the ischemic hemisphere were conducted. Also, immunofluorescence double or triple staining of the biomarkers of proliferating neural progenitor cells in Subventricular Zone (SVZ) and striatum of the ischemia hemisphere were performed to investigate the neurogenesis. Furthermore, reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect the expression of neurotrophic factors (NTFs) brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Expression of Notch1 and its target molecular Hes1 were also analyzed by western-blotting and RT-PCR. RESULTS: Salidroside treatment ameliorated I/R induced neurobehavioral impairment, and reduced infarct volume. Salidroside also restored NeuN positive cells loss after I/R injury. Cerebral I/R injury significantly increased the expression of 5-Bromo-2'-Deoxyuridine (BrdU) and doublecotin (DCX), elevated the number of BrdU/Nestin/DCX triple-labeled cells in SVZ, and BrdU/Nestin/glial fibrillary acidic protein (GFAP) triple-labeled cells in striatum. Salidroside treatment further promoted the proliferation of BrdU/DCX labeled neuroblasts and BrdU/Nestin/GFAP labeled reactive astrocytes. Furthermore, salidroside elevated the mRNA expression and protein concentration of BDNF and NGF in ischemia periphery area, as well. Mechanistically, salidroside elevated Notch1/Hes1 mRNA expression in SVZ. The protein levels of them were also increased after salidroside administration. CONCLUSIONS: Salidroside enhances the endogenous neural regeneration after cerebral I/R. The mechanism of the effect may involve the regulation of BDNF/NGF and Notch signaling pathway.


Subject(s)
Brain Ischemia , Glucosides , Nerve Regeneration , Phenols , Rats, Sprague-Dawley , Reperfusion Injury , Signal Transduction , Animals , Glucosides/pharmacology , Phenols/pharmacology , Rats , Male , Signal Transduction/drug effects , Reperfusion Injury/drug therapy , Brain Ischemia/drug therapy , Nerve Regeneration/drug effects , Neuroprotective Agents/pharmacology , Nerve Growth Factors/metabolism , Disease Models, Animal , Receptors, Notch/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Neurogenesis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL