Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Front Microbiol ; 15: 1360098, 2024.
Article in English | MEDLINE | ID: mdl-39171258

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is responsible for causing fatal watery diarrhea in piglets, resulting in significant economic losses within the pig farming industry. Although vaccination is currently employed as a preventive measure, certain vaccines do not provide complete protection against PEDV field strains. Probiotics present a promising alternative due to their ability to regulate intestinal flora, enhance host immunity, and improve resistance against pathogenic microorganisms. We isolated six lactic acid bacteria (LAB) from the fecal microorganisms of Bama pigs, compared to Limosilactobacillus mucosae DSM13345 of the same genus in which Limosilactobacillus mucosae G01 (L. mucosae G01) proved to have a potent anti-PEDV effect. In a comprehensive manner, L. mucosae G01 significantly augmented the phosphorylation of IRF3 in IPEC-J2 cells, resulting in the induction of interferons (IFN α, IFN ß, IFN λ1, and IFN λ3) and subsequent upregulation of interferon-stimulated genes (ISGs) (MX1, MX2, OAS1, and ZAP) in a dose-dependent fashion, consequently leading to the mitigation of PEDV replication. These findings underscore the promising prospects of L. mucosae G01 as a naturally derived substitute for combating PEDV and other enteric coronavirus infections.

2.
J Voice ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38429118

ABSTRACT

OBJECTIVE: To develop a novel Laryngopharyngeal Reflux Disease (LPRD) model in Bama pigs through endoscopic cricopharyngeal myotomy. METHODS: A total of eight 8-month-old Bama pigs were randomly assigned to either the control or surgery group. Prior to intervention, upper esophageal sphincter (UES) manometry and laryngopharyngeal Dx-pH monitoring were conducted to establish baseline physiological parameters for each pig. Subsequently, the surgery group underwent endoscopic cricopharyngeal myotomy, while the control group did not. Two weeks postintervention, these procedures were repeated to evaluate changes in UES contractility and the occurrence of reflux events. At week eight postsurgery, mucosal tissues from both groups were harvested for histological analysis. Hematoxylin and eosin (H&E) staining was used to assess inflammation, while transmission electron microscopy (TEM) examined alterations in intercellular spaces and desmosomes. RESULTS: The mean UES pressures in the control and surgery groups were 59 ± 9 mmHg and 68 ± 12 mmHg, respectively. In the surgery group, there was a significant decrease in UES pressure 2weeks after the operation compared to preoperative values (P = 0.005), whereas no significant change was observed in the control group (P = 0.488). Laryngopharyngeal reflux (LPR) was successfully induced in the surgery group as evidenced by reflux events with pH <5.0, which were not detected in the control group. HE staining revealed marked inflammatory cell infiltration and submucosal gland expansion in throat tissues of the surgery group Bama pigs. TEM further showed enlarged intercellular spaces and reduced desmosome numbers in the laryngopharyngeal epithelium compared to controls. CONCLUSION: Given analogous throat epithelial structures to humans, Bama pigs are an appropriate species for an LPRD animal model. Endoscopic cricopharyngeal myotomy effectively induces LPR and observable pathological changes in Bama pigs, providing a valuable platform for further research into LPRD pathophysiology.

3.
Front Microbiol ; 14: 1239847, 2023.
Article in English | MEDLINE | ID: mdl-37928663

ABSTRACT

Introduction: Obesity is closely related to gut microbiota, however, the dynamic change of microbial diversity and composition during the occurrence and development process of obesity is not clear. Methods: A weight-change model of adult Bama pig (2 years, 58 individuals) was established, and weight gain (27 weeks) and weight loss (9 weeks) treatments were implemented. The diversity and community structures of fecal microbiota (418 samples) was investigated by using 16S rRNA (V3-V4) high-throughput sequencing. Results: During the weight gain period (1~27 week), the alpha diversity of fecal microbiota exhibited a "down-up-down" fluctuations, initially decreasing, recovering in the mid-term, and decreasing again in the later stage. Beta diversity also significantly changed over time, indicating a gradual deviation of the microbiota composition from the initial time point. Bacteroides, Clostridium sensu stricto 1, and Escherichia-Shigella showed positive correlations with weight gain, while Streptococcus, Oscillospira, and Prevotellaceae UCG-001 exhibited negative correlations. In the weight loss period (30~38 week), the alpha diversity further decreased, and the composition structure underwent significant changes compared to the weight gain period. Christensenellaceae R-7 group demonstrated a significant increase during weight loss and showed a negative correlation with body weight. Porphyromonas and Campylobacter were positively correlated with weight loss. Discussion: Both long-term fattening and weight loss induced by starvation led to substantial alterations in porcine gut microbiota, and the microbiota changes observed during weight gain could not be recovered during weight loss. This work provides valuable resources for both obesity-related research of human and microbiota of pigs.

4.
J Biomed Res ; 37(4): 315-325, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-37088562

ABSTRACT

To investigate the feasibility and effectiveness of establishing porcine ischemia-reperfusion models by ligating the left anterior descending (LAD) coronary artery, we first randomly divided 16 male Bama pigs into a sham group and a model group. After anesthesia, we separated the arteries and veins. Subsequently, we rapidly located the LAD coronary artery at the beginning of its first diagonal branch through a mid-chest incision. Then, we loosened and released the ligation line after five minutes of pre-occlusion. Finally, we ligated the LAD coronary artery in situ two minutes later and loosened the ligature 60 min after ischemia. Compared with the sham group, electrocardiogram showed multiple continuous lead ST-segment elevations, and ultrasound cardiogram showed significantly lower ejection fraction and left ventricular fractional shortening at one hour and seven days post-operation in the model group. Twenty-four hours after the operation, cardiac troponin T and creatine kinase-MB isoenzyme levels significantly increased in the model group, compared with the sham group. Hematoxylin and eosin staining showed the presence of many inflammatory cells infiltrating the interstitium of the myocardium in the model group but not in the sham group. Masson staining revealed a significant increase in infarct size in the ischemia/reperfusion group. All eight pigs in the model group recovered with normal sinus heart rates, and the survival rate was 100%. In conclusion, the method can provide an accurate and stable large animal model for preclinical research on ischemia/reperfusion with a high success rate and homogeneity of the myocardial infarction area.

5.
Front Genet ; 13: 844833, 2022.
Article in English | MEDLINE | ID: mdl-35432468

ABSTRACT

The depot differences between Subcutaneous Fat (SAF) and Visceral Fat (VAF) are critical for human well-being and disease processes in regard to energy metabolism and endocrine function. Miniature pigs (Sus scrofa) are ideal biomedical models for human energy metabolism and obesity due to the similarity of their lipid metabolism with that of humans. However, the regulation of differences in fat deposition and development remains unclear. In this study, the development of SAF and VAF was characterized and compared in Bama pig during postnatal development (infancy, puberty and adulthood), using RNA sequencing techniques (RNA-Seq). The transcriptome of SAF and VAF was profiled and isolated from 1-, 3- and 6 months-old pigs and identified 23,636 expressed genes, of which 1,165 genes were differentially expressed between the depots and/or developmental stages. Upregulated genes in SAF showed significant function and pathway enrichment in the central nervous system development, lipid metabolism, oxidation-reduction process and cell adhesion, whereas genes involved in the immune system, actin cytoskeleton organization, male gonad development and the hippo signaling pathway were preferentially expressed in VAF. Miner analysis of short time-series expression demonstrated that differentiation in gene expression patterns between the two depots corresponded to their distinct responses in sexual development, hormone signaling pathways, lipid metabolism and the hippo signaling pathway. Transcriptome analysis of SAF and VAF suggested that the depot differences in adipose tissue are not only related to lipid metabolism and endocrine function, but are closely associated with sexual development and organ size regulation.

6.
Foods ; 12(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36613221

ABSTRACT

The Bama Xiang pig (BM) is a unique pig species in Guangxi Province, China. Compared to other breeds of domestic pig, such as the Debao pig (DB), it is smaller in size, better in meat quality, resistant to rough feeding and strong in stress resistance. These unique advantages of Bama Xiang pigs make them of great edible value and scientific research value. However, the differences in muscle metabolites between Bama Xiang pigs (BM) and Debao pigs (DB) are largely unexplored. Here, we identified 214 differential metabolites between these two pig breeds by LC-MS. Forty-one such metabolites are enriched into metabolic pathways, and these metabolites correspond to 11 metabolic pathways with significant differences. In Bama pigs, the abundance of various metabolites such as creatine, citric acid, L-valine and hypoxanthine is significantly higher than in Debao pigs, while the abundance of other metabolites, such as carnosine, is significantly lower. Among these, we propose six differential metabolites: L-proline, citric acid, ribose 1-phosphate, L-valine, creatine, and L-arginine, as well as four potential differential metabolites (without the KEGG pathway), alanyl-histidine, inosine 2'-phosphate, oleoylcarnitine, and histidinyl hydroxyproline, as features for evaluating the meat quality of Bama pigs and for differentiating pork from Bama pigs and Debao pigs. This study provides a proof-of-concept example of distinguishing pork from different pig breeds at the metabolite level and sheds light on elucidating the biological processes underlying meat quality differences. Our pork metabolites data are also of great value to the genomics breeding community in meat quality improvement.

7.
Scars Burn Heal ; 6: 2059513120930903, 2020.
Article in English | MEDLINE | ID: mdl-32637158

ABSTRACT

Pigs are the most promising models for the study of wound healing and hypertrophic scarring because they are anatomically and physiologically similar to human beings. The Red Duroc pig and Mini Bama pig are two swine models that have attracted a lot of attention. The aim of the present study was to examine and compare the scarring process in a red Duroc pig and a Mini Bama pig, providing knowledge for researchers and clinicians to enable them to choose the most suitable pig model for studies.

8.
Reprod Domest Anim ; 55(10): 1314-1327, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32679613

ABSTRACT

CRISPR/Cas9-mediated genome editing technology is a simple and highly efficient and specific genome modification approach with wide applications in the animal industry. CRISPR/Cas9-mediated genome editing combined with somatic cell nuclear transfer rapidly constructs gene-edited somatic cell-cloned pigs for the genetic improvement of traits or simulation of human diseases. Chinese Bama pigs are an excellent indigenous minipig breed from Bama County of China. Research on genome editing of Chinese Bama pigs is of great significance in protecting its genetic resource, improving genetic traits and in creating disease models. This study aimed to address the disadvantages of slow growth and low percentage of lean meat in Chinese Bama pigs and to knock out the myostatin gene (MSTN) by genome editing to promote growth and increase lean meat production. We first used CRISPR/Cas9-mediated genome editing to conduct biallelic knockout of the MSTN, followed by somatic cell nuclear transfer to successfully generate MSTN biallelic knockout Chinese Bama pigs, which was confirmed to have significantly faster growth rate and showed myofibre hyperplasia when they reached sexual maturity. This study lays the foundation for the rapid improvement of production traits of Chinese Bama pigs and the generation of gene-edited disease models in this breed.


Subject(s)
CRISPR-Cas Systems , Myostatin/genetics , Swine, Miniature/genetics , Animals , Female , Gene Knockout Techniques/veterinary , Male , Muscle Fibers, Skeletal/physiology , Nuclear Transfer Techniques/veterinary , Pork Meat , Swine , Swine, Miniature/growth & development
9.
Acta Otolaryngol ; 139(11): 939-947, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31486693

ABSTRACT

Background: Inner gene therapy offers great promises as a potential treatment for hearing loss. Aims/objectives: One of the critical determinants of the success of inner ear gene therapy is to find a delivery method which results in consistent transduction efficiency of targeted cell types while minimizing hearing loss. Material and methods: Surgery was performed only in the right ear of each Bama miniature pig, and the left ear served as a control. The gene delivery to inner ear via round window membrane (RWM) and posterior semicircular canal (PSC) approach was performed with the viral vector AAV1-CMV-GFP. Results: The gene delivery through RWM and the PSC (canalostomy) is able to perfuse the inner ear. Conclusions and significance: The easy anatomic identification of the PSC, as to RWM, as well as minimal manipulation of the temporal bone required, make this surgical approach an attractive option for inner ear gene delivery in big animal model.


Subject(s)
Gene Transfer Techniques , Genetic Therapy/methods , Round Window, Ear/surgery , Semicircular Canals/surgery , Animals , Swine , Swine, Miniature
10.
Genes (Basel) ; 11(1)2019 12 30.
Article in English | MEDLINE | ID: mdl-31905971

ABSTRACT

Skin is the body's largest organ, and the main function of skin is to protect underlying organs from possible external damage. Melanocytes play an important role in skin pigmentation. The Bama pig has a "two-end-black" phenotype with different coat colors across skin regions, e.g., white skin (without melanocytes) and black skin (with melanocytes), which could be a model to investigate skin-related disorders, specifically loss of melanocytes. Here, we generated expression profiles of mRNAs and long noncoding RNAs in Bama pig skins with different coat colors. In total, 14,900 mRNAs and 7549 lncRNAs were expressed. Overall, 2338 mRNAs/113 lncRNAs with FDR-adjusted p-value ≤ 0.05 were considered to be differentially expressed (DE) mRNAs/lncRNAs, with 1305 down-regulated mRNAs and 1033 up-regulated mRNAs in white skin with|log2(fold change)| > 1. The genes down-regulated in white skin were associated with pigmentation, melanocyte-keratinocyte interaction, and keratin, while up-regulated ones were mainly associated with cellular energy metabolisms. Furthermore, those DE lncRNAs were predicted to be implicated in pigmentation, keratin synthesis and cellular energy metabolism. In general, this study provides insight into the transcriptional difference involved in melanocyte-loss-induced keratinocyte changes and promotes the Bama pig as a biomedical model in skin research.


Subject(s)
Gene Expression Profiling/methods , Melanocytes/cytology , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Skin/chemistry , Animals , Energy Metabolism , Gene Expression Regulation , Melanocytes/chemistry , Phenotype , Principal Component Analysis , Sequence Analysis, RNA , Skin/cytology , Skin Pigmentation , Swine
11.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-698125

ABSTRACT

Objective To investigate the effect of intense low frequency noise on the different hearing functions and hair cell damage in bama pigs.Methods Thirteen bama pigs were randomly divided into a normal control group (3 pigs) and an experimental group (10 pigs).The pigs in experimental group were randomly divided into 50 Hz subgroup (5 pigs) and 70 Hz subgroup (5 pigs).The 50 Hz subgroup was exposed to intense low frequency noise at 167~170 dB SPL,50 Hz for 30 min,and the 70 Hz subgroup was exposed to intense low frequency noise at 164 dB SPL,70 Hz for 30 min.Auditory brainstem response(ABR) and distortion product otoacoustic emission (DPOAE) were performed before and after noise exposure.The cochlear were collected and the inner ear morphology changes were studied.Results Before the experiment,the ABR threshold of the pig was 20~50 dB SPL,and the average of 50 Hz group was 33.5±9.4 dB SPL,the average of the 70 Hz group was 34.0±4.6 dB SPL.The level of the above 3 000 Hz DPOAE could be elicited.But they were not elicited after the exposure to the noise.The inner ear structures were damaged.The DAPI showed hair cell missing.Conclusion ABR and DPOAE were elevated after noise exposure.The auditory system of bama pigs had irreversible damages.Hair cells damaged were given priority to with necrosis,and the higher the level of intense low frequency noise,the more serious the damage to the hair cell.

12.
Appl Microbiol Biotechnol ; 101(14): 5809-5818, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28510800

ABSTRACT

Even though salbutamol (SAL) had remarkable effects on the enhancement of growth rate and carcass composition in different livestock species such as cattle, pigs, sheep and poultry, it was banned as a growth promoter because of its adverse effects on health. However, the specific mechanism by which salbutamol enhances growth efficiency remains unknown. In this study, Bama pigs were randomly allocated to receive salbutamol (5 mg/kg) for 30 or 60 days and were compared with untreated pigs. Pigs treated with salbutamol demonstrated enhanced growth rates and carcass composition; however, they showed deterioration in blood biochemical indices and organ development. We hypothesized that salbutamol exerts its effects by modulating the composition of the gut microbiota population. The faecal microbiome of pigs was characterized via pyrosequencing of the bacterial 16S rRNA gene. The gut microbiota population analysis showed that salbutamol caused shifts in the microbial composition of less abundant species. Redundancy analysis indicated an increase in abundance of the phylum Bacteroidetes, class Betaproteobacteria, family Christensenellaceae and genus Lactobacillus, and a decreased ratio of the phylum Firmicutes, class Clostridia and genera Ruminococcus, Blautia and Subdoligranulum. In conclusion, our study provided circumstantial evidence that the various effects of salbutamol are caused by gut microbiota modulation, and several potential candidates were identified for SAL detection via the gut microbiota. Our findings provided new insights into the roles of the gut microbiota during salbutamol treatment, and these findings will aid in the screening of alternative strategies for animal health improvement and production enhancement.


Subject(s)
Albuterol/pharmacology , Bacteria/drug effects , Gastrointestinal Microbiome/drug effects , Growth Substances/pharmacology , Swine, Miniature/microbiology , Albuterol/adverse effects , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteroidetes/drug effects , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Feces/microbiology , Growth Substances/adverse effects , Lactobacillus/drug effects , Lactobacillus/genetics , RNA, Ribosomal, 16S , Swine
13.
Organ Transplantation ; (6): 127-131, 2017.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-731671

ABSTRACT

To establish a platform to monitor the immune rejection after abdominal aortic patch suture in a xenotransplantation model.Methods The carotid was excised from wild-type Bama pigs,cut into 2.5 cmx 1.0 cm pieces in shuttle shape and subsequently sutured to the abdominal aorta of cynomolgus monkeys.No immunosuppressive agent was administered.General conditions of the recipient monkeys were observed.The morphological changes of the graft artery were assessed by pathological examination at postoperative 1 year.Before and 7,14,28 and 49 d after surgery,the blood samples were collected from the recipient monkeys.The serum levels of IgM and IgG antibodies were quantitatively measured by the red blood cell and peripheral blood mononuclear cell (PBMC) from Bama pigs.The quantity of lymphocytes in the recipient monkeys was detected by routine blood test and flow cytometry.Results All 3 monkeys undergoing transplantation survived well.At postoperative 1 year,the lateral tissues of the vascular wall at the artery graft were seen in dark red color.Hematoxylin-eosin (HE) staining revealed a large quantity of red blood cell and platelet deposition,accompanied with lymphocyte infiltration.Using porcine red blood cell and PBMC as target cells,the serum levels of anti-pig IgM and IgG antibodies peaked at postoperative 28 d,and slightly declined at postoperative 49 d.The quantity of lymphocytes and T cell subset also peaked at postoperative 28 d and began to decrease at postoperative 49 d.Conclusions Artery patch suture is a simple and reliable xenotransplantation model.The recipients can maintain normal physiological state without the use of immunosuppressive agents.The grafts can effectively activate the immune system of the recipients,induce the production of anti-pig antibodies and provoke cellular immune rejection.Therefore,this model can be utilized to monitor the immune rejection throughout the xenotransplantation process.

SELECTION OF CITATIONS
SEARCH DETAIL