Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 300
Filter
1.
Alzheimers Dement ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136090

ABSTRACT

INTRODUCTION: Abdominal adipose tissue (AT) mass has adverse effects on the brain. This study aimed to investigate the effect of glucose uptake by abdominal AT on brain aging. METHODS: Three-hundred twenty-five participants underwent total-body positron emission tomography scan. Brain age was estimated in an independent test set (n = 98) using a support vector regression model that was built using a training set (n = 227). Effects of abdominal subcutaneous and visceral AT (SAT/VAT) glucose uptake on brain age delta were evaluated using linear regression. RESULTS: Higher VAT glucose uptake was linked to negative brain age delta across all subgroups. Higher SAT glucose uptake was associated with negative brain age delta in lean individuals. In contrast, increased SAT glucose uptake demonstrated positive trends with brain age delta in female and overweight/obese participants. DISCUSSION: Increased glucose uptake of the abdominal VAT has positive influences on the brain, while SAT may not have such influences, except for lean individuals. HIGHLIGHTS: Higher glucose uptake of the visceral adipose tissue was linked to decelerated brain aging. Higher glucose uptake of the subcutaneous adipose tissue (SAT) was associated with negative brain age delta in lean individuals. Faster brain aging was associated with increased glucose uptake of the SAT in female and overweight and obese individuals.

2.
Front Dement ; 3: 1380015, 2024.
Article in English | MEDLINE | ID: mdl-39081605

ABSTRACT

Introduction: White matter hyperintensities (WMHs) and cerebral microbleeds are widespread among aging population and linked with cognitive deficits in mild cognitive impairment (MCI), vascular MCI (V-MCI), and Alzheimer's disease without (AD) or with a vascular component (V-AD). In this study, we aimed to investigate the association between brain age, which reflects global brain health, and cerebrovascular lesion load in the context of pathological aging in diverse forms of clinically-defined neurodegenerative conditions. Methods: We computed brain-predicted age difference (brain-PAD: predicted brain age minus chronological age) in the Comprehensive Assessment of Neurodegeneration and Dementia cohort of the Canadian Consortium on Neurodegeneration in Aging including 70 cognitively intact elderly (CIE), 173 MCI, 88 V-MCI, 50 AD, and 47 V-AD using T1-weighted magnetic resonance imaging (MRI) scans. We used a well-established automated methodology that leveraged fluid attenuated inversion recovery MRIs for precise quantification of WMH burden. Additionally, cerebral microbleeds were detected utilizing a validated segmentation tool based on the ResNet50 network, utilizing routine T1-weighted, T2-weighted, and T2* MRI scans. Results: The mean brain-PAD in the CIE cohort was around zero, whereas the four categories showed a significantly higher mean brain-PAD compared to CIE, except MCI group. A notable association trend between brain-PAD and WMH loads was observed in aging and across the spectrum of cognitive impairment due to AD, but not between brain-PAD and microbleed loads. Discussion: WMHs were associated with faster brain aging and should be considered as a risk factor which imperils brain health in aging and exacerbate brain abnormalities in the context of neurodegeneration of presumed AD origin. Our findings underscore the significance of novel research endeavors aimed at elucidating the etiology, prevention, and treatment of WMH in the area of brain aging.

3.
Biol Psychiatry ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39084501

ABSTRACT

BACKGROUND: Different types of early-life adversity have been associated with children's brain structure and function. However, understanding the disparate influence of distinct adversity exposures on the developing brain remains a major challenge. METHODS: This study investigates the neural correlates of 10 robust dimensions of early-life adversity identified through exploratory factor analysis in a large community sample of youth from the Adolescent Brain Cognitive Development (ABCD) Study. Brain age models were trained, validated, and tested separately on T1-weighted (T1; N = 9524), diffusion tensor (DTI; N = 8834), and resting-state functional (rs-fMRI; N = 8233) magnetic resonance imaging (MRI) data from two time points (mean age = 10.7 years, SD = 1.2, range = 8.9-13.8 years). RESULTS: Bayesian multilevel modelling supported distinct associations between different types of early-life adversity exposures and younger- and older-looking brains. Dimensions generally related to emotional neglect, such as lack of primary and secondary caregiver support, and lack of caregiver supervision, were associated with lower brain age gaps (BAGs), i.e., younger-looking brains. In contrast, dimensions generally related to caregiver psychopathology, trauma exposure, family aggression, substance use and separation from biological parent, and socio-economic disadvantage and neighbourhood safety were associated with higher BAGs, i.e., older-looking brains. CONCLUSIONS: The findings suggest that dimensions of early-life adversity are differentially associated with distinct neurodevelopmental patterns, indicative of dimension-specific delayed and accelerated brain maturation.

4.
Brain Commun ; 6(4): fcae213, 2024.
Article in English | MEDLINE | ID: mdl-39007039

ABSTRACT

The frequency of the apolipoprotein E ɛ4 allele and vascular risk factors differs among ethnic groups. We aimed to assess the combined effects of apolipoprotein E ɛ4 and vascular risk factors on brain age in Korean and UK cognitively unimpaired populations. We also aimed to determine the differences in the combined effects between the two populations. We enrolled 2314 cognitively unimpaired individuals aged ≥45 years from Korea and 6942 cognitively unimpaired individuals from the UK, who were matched using propensity scores. Brain age was defined using the brain age index. The apolipoprotein E genotype (ɛ4 carriers, ɛ2 carriers and ɛ3/ɛ3 homozygotes) and vascular risk factors (age, hypertension and diabetes) were considered predictors. Apolipoprotein E ɛ4 carriers in the Korean (ß = 0.511, P = 0.012) and UK (ß = 0.302, P = 0.006) groups had higher brain age index values. The adverse effects of the apolipoprotein E genotype on brain age index values increased with age in the Korean group alone (ɛ2 carriers × age, ß = 0.085, P = 0.009; ɛ4 carriers × age, ß = 0.100, P < 0.001). The apolipoprotein E genotype, age and ethnicity showed a three-way interaction with the brain age index (ɛ2 carriers × age × ethnicity, ß = 0.091, P = 0.022; ɛ4 carriers × age × ethnicity, ß = 0.093, P = 0.003). The effects of apolipoprotein E on the brain age index values were more pronounced in individuals with hypertension in the Korean group alone (ɛ4 carriers × hypertension, ß = 0.777, P = 0.038). The apolipoprotein E genotype, age and ethnicity showed a three-way interaction with the brain age index (ɛ4 carriers × hypertension × ethnicity, ß=1.091, P = 0.014). We highlight the ethnic differences in the combined effects of the apolipoprotein E ɛ4 genotype and vascular risk factors on accelerated brain age. These findings emphasize the need for ethnicity-specific strategies to mitigate apolipoprotein E ɛ4-related brain aging in cognitively unimpaired individuals.

5.
J Cent Nerv Syst Dis ; 16: 11795735241266556, 2024.
Article in English | MEDLINE | ID: mdl-39049837

ABSTRACT

BACKGROUND: Brain age model, including estimated brain age and brain-predicted age difference (brain-PAD), has shown great potentials for serving as imaging markers for monitoring normal ageing, as well as for identifying the individuals in the pre-diagnostic phase of neurodegenerative diseases. PURPOSE: This study aimed to investigate the brain age models in normal ageing and mild cognitive impairments (MCI) converters and their values in classifying MCI conversion. METHODS: Pre-trained brain age model was constructed using the structural magnetic resonance imaging (MRI) data from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) project (N = 609). The tested brain age model was built using the baseline, 1-year and 3-year follow-up MRI data from normal ageing (NA) adults (n = 32) and MCI converters (n = 22) drew from the Open Access Series of Imaging Studies (OASIS-2). The quantitative measures of morphometry included total intracranial volume (TIV), gray matter volume (GMV) and cortical thickness. Brain age models were calculated based on the individual's morphometric features using the support vector machine (SVM) algorithm. RESULTS: With comparable chronological age, MCI converters showed significant increased TIV-based (Baseline: P = 0.021; 1-year follow-up: P = 0.037; 3-year follow-up: P = 0.001) and left GMV-based brain age than NA adults at all time points. Higher brain-PAD scores were associated with worse global cognition. Acceptable classification performance of TIV-based (AUC = 0.698) and left GMV-based brain age (AUC = 0.703) was found, which could differentiate the MCI converters from NA adults at the baseline. CONCLUSIONS: This is the first demonstration that MRI-informed brain age models exhibit feature-specific patterns. The greater GMV-based brain age observed in MCI converters may provide new evidence for identifying the individuals at the early stage of neurodegeneration. Our findings added value to existing quantitative imaging markers and might help to improve disease monitoring and accelerate personalized treatments in clinical practice.


Based on individual's MRI scans, brain age model has shown great potentials for serving as imaging markers for monitoring normal ageing (NA), as well as for identifying the ones in the pre-diagnostic phase of age-related neurodegenerative diseases. In this study, we investigated the brain age models in normal ageing and mild cognitive impairments (MCI) converters and their values in classifying MCI conversion. Pre-trained brain age model was constructed using the quantitative measures of morphometry included total intracranial volume (TIV), gray matter volume (GMV) and cortical thickness. With comparable chronological age, MCI converters showed significant increased brain age than NA adults at all time points. Higher brain age were associated with worse global cognition. This is the first demonstration that MRI-informed brain age models exhibit feature-specific patterns. The greater GMV-based brain age observed in MCI converters may provide new evidence for identifying the individuals at the early stage of neurodegeneration. Our findings added value to existing quantitative imaging markers and might help to improve disease monitoring and accelerate personalized treatments in clinical practice.

6.
Nat Sci Sleep ; 16: 879-896, 2024.
Article in English | MEDLINE | ID: mdl-38974693

ABSTRACT

Purpose: This study aims to improve brain age estimation by developing a novel deep learning model utilizing overnight electroencephalography (EEG) data. Methods: We address limitations in current brain age prediction methods by proposing a model trained and evaluated on multiple cohort data, covering a broad age range. The model employs a one-dimensional Swin Transformer to efficiently extract complex patterns from sleep EEG signals and a convolutional neural network with attentional mechanisms to summarize sleep structural features. A multi-flow learning-based framework attentively merges these two features, employing sleep structural information to direct and augment the EEG features. A post-prediction model is designed to integrate the age-related features throughout the night. Furthermore, we propose a DecadeCE loss function to address the problem of an uneven age distribution. Results: We utilized 18,767 polysomnograms (PSGs) from 13,616 subjects to develop and evaluate the proposed model. The model achieves a mean absolute error (MAE) of 4.19 and a correlation of 0.97 on the mixed-cohort test set, and an MAE of 6.18 years and a correlation of 0.78 on an independent test set. Our brain age estimation work reduced the error by more than 1 year compared to other studies that also used EEG, achieving the level of neuroimaging. The estimated brain age index demonstrated longitudinal sensitivity and exhibited a significant increase of 1.27 years in individuals with psychiatric or neurological disorders relative to healthy individuals. Conclusion: The multi-flow deep learning model proposed in this study, based on overnight EEG, represents a more accurate approach for estimating brain age. The utilization of overnight sleep EEG for the prediction of brain age is both cost-effective and adept at capturing dynamic changes. These findings demonstrate the potential of EEG in predicting brain age, presenting a noninvasive and accessible method for assessing brain aging.

7.
Dialogues Clin Neurosci ; 26(1): 38-52, 2024.
Article in English | MEDLINE | ID: mdl-38963341

ABSTRACT

INTRODUCTION: One major challenge in developing personalised repetitive transcranial magnetic stimulation (rTMS) is that the treatment responses exhibited high inter-individual variations. Brain morphometry might contribute to these variations. This study sought to determine whether individual's brain morphometry could predict the rTMS responders and remitters. METHODS: This was a secondary analysis of data from a randomised clinical trial that included fifty-five patients over the age of 60 with both comorbid depression and neurocognitive disorder. Based on magnetic resonance imaging scans, estimated brain age was calculated with morphometric features using a support vector machine. Brain-predicted age difference (brain-PAD) was computed as the difference between brain age and chronological age. RESULTS: The rTMS responders and remitters had younger brain age. Every additional year of brain-PAD decreased the odds of relieving depressive symptoms by ∼25.7% in responders (Odd ratio [OR] = 0.743, p = .045) and by ∼39.5% in remitters (OR = 0.605, p = .022) in active rTMS group. Using brain-PAD score as a feature, responder-nonresponder classification accuracies of 85% (3rd week) and 84% (12th week), respectively were achieved. CONCLUSION: In elderly patients, younger brain age appears to be associated with better treatment responses to active rTMS. Pre-treatment brain age models informed by morphometry might be used as an indicator to stratify suitable patients for rTMS treatment. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: ChiCTR-IOR-16008191.


Subject(s)
Brain , Magnetic Resonance Imaging , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Male , Female , Aged , Brain/pathology , Middle Aged , Magnetic Resonance Imaging/methods , Treatment Outcome , Cognition Disorders/therapy , Depression/therapy , Age Factors , Predictive Value of Tests
8.
J Prev Alzheimers Dis ; 11(4): 1140-1147, 2024.
Article in English | MEDLINE | ID: mdl-39044526

ABSTRACT

BACKGROUND: Resting heart rate (RHR), has been related to increased risk of dementia, but the relationship between RHR and brain age is unclear. OBJECTIVE: We aimed to investigate the association of RHR with brain age and brain age gap (BAG, the difference between predicted brain age and chronological age) assessed by multimodal Magnetic Resonance Imaging (MRI) in mid- and old-aged adults. DESIGN: A longitudinal study from the UK Biobank neuroimaging project where participants underwent brain MRI scans 9+ years after baseline. SETTING: A population-based study. PARTICIPANTS: A total of 33,381 individuals (mean age 54.74 ± 7.49 years; 53.44% female). MEASUREMENTS: Baseline RHR was assessed by blood pressure monitor and categorized as <60, 60-69 (reference), 70-79, or ≥80 beats per minute (bpm). Brain age was predicted using LASSO through 1,079 phenotypes in six MRI modalities (including T1-weighted MRI, T2-FLAIR, T2*, diffusion-MRI, task fMRI, and resting-state fMRI). Data were analyzed using linear regression models. RESULTS: As a continuous variable, higher RHR was associated with older brain age (ß for per 1-SD increase: 0.331, 95% [95% confidence interval, CI]: 0.265, 0.398) and larger BAG (ß: 0.263, 95% CI: 0.202, 0.324). As a categorical variable, RHR 70-79 bpm and RHR ≥80 bpm were associated with older brain age (ß [95% CI]: 0.361 [0.196, 0.526] / 0.737 [0.517, 0.957]) and larger BAG (0.256 [0.105, 0.407] / 0.638 [0.436, 0.839]), but RHR< 60 bpm with younger brain age (-0.324 [-0.500, -0.147]) and smaller BAG (-0.230 [-0.392, -0.067]), compared to the reference group. These associations between elevated RHR and brain age were similar in both middle-aged (<60) and older (≥60) adults, whereas the association of RHR< 60 bpm with younger brain age and larger BAG was only significant among middle-aged adults. In stratification analysis, the association between RHR ≥80 bpm and older brain age was present in people with and without CVDs, while the relation of RHR 70-79 bpm to brain age present only in people with CVD. CONCLUSION: Higher RHR (>80 bpm) is associated with older brain age, even among middle-aged adults, but RHR< 60 bpm is associated with younger brain age. Greater RHR could be an indicator for accelerated brain aging.


Subject(s)
Brain , Heart Rate , Machine Learning , Magnetic Resonance Imaging , Humans , Middle Aged , Female , Male , Brain/diagnostic imaging , Brain/physiology , Aged , Heart Rate/physiology , Longitudinal Studies , Aging/physiology , United Kingdom , Neuroimaging , Rest/physiology
9.
Bioengineering (Basel) ; 11(7)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39061729

ABSTRACT

The intricate dynamics of brain aging, especially the neurodegenerative mechanisms driving accelerated (ABA) and resilient brain aging (RBA), are pivotal in neuroscience. Understanding the temporal dynamics of these phenotypes is crucial for identifying vulnerabilities to cognitive decline and neurodegenerative diseases. Currently, there is a lack of comprehensive understanding of the temporal dynamics and neuroimaging biomarkers linked to ABA and RBA. This study addressed this gap by utilizing a large-scale UK Biobank (UKB) cohort, with the aim to elucidate brain aging heterogeneity and establish the foundation for targeted interventions. Employing Lasso regression on multimodal neuroimaging data, structural MRI (sMRI), diffusion MRI (dMRI), and resting-state functional MRI (rsfMRI), we predicted the brain age and classified individuals into ABA and RBA cohorts. Our findings identified 1949 subjects (6.2%) as representative of the ABA subpopulation and 3203 subjects (10.1%) as representative of the RBA subpopulation. Additionally, the Discriminative Event-Based Model (DEBM) was applied to estimate the sequence of biomarker changes across aging trajectories. Our analysis unveiled distinct central ordering patterns between the ABA and RBA cohorts, with profound implications for understanding cognitive decline and vulnerability to neurodegenerative disorders. Specifically, the ABA cohort exhibited early degeneration in four functional networks and two cognitive domains, with cortical thinning initially observed in the right hemisphere, followed by the temporal lobe. In contrast, the RBA cohort demonstrated initial degeneration in the three functional networks, with cortical thinning predominantly in the left hemisphere and white matter microstructural degeneration occurring at more advanced stages. The detailed aging progression timeline constructed through our DEBM analysis positioned subjects according to their estimated stage of aging, offering a nuanced view of the aging brain's alterations. This study holds promise for the development of targeted interventions aimed at mitigating age-related cognitive decline.

10.
Neuroimage ; 297: 120751, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39048043

ABSTRACT

BACKGROUND: Convolutional neural network (CNN) can capture the structural features changes of brain aging based on MRI, thus predict brain age in healthy individuals accurately. However, most studies use single feature to predict brain age in healthy individuals, ignoring adding information from multiple sources and the changes in brain aging patterns after mild traumatic brain injury (mTBI) were still unclear. METHODS: Here, we leveraged the structural data from a large, heterogeneous dataset (N = 1464) to implement an interpretable 3D combined CNN model for brain-age prediction. In addition, we also built an atlas-based occlusion analysis scheme with a fine-grained human Brainnetome Atlas to reveal the age-sstratified contributed brain regions for brain-age prediction in healthy controls (HCs) and mTBI patients. The correlations between brain predicted age gaps (brain-PAG) following mTBI and individual's cognitive impairment, as well as the level of plasma neurofilament light were also examined. RESULTS: Our model utilized multiple 3D features derived from T1w data as inputs, and reduced the mean absolute error (MAE) of age prediction to 3.08 years and improved Pearson's r to 0.97 on 154 HCs. The strong generalizability of our model was also validated across different centers. Regions contributing the most significantly to brain age prediction were the caudate and thalamus for HCs and patients with mTBI, and the contributive regions were mostly located in the subcortical areas throughout the adult lifespan. The left hemisphere was confirmed to contribute more in brain age prediction throughout the adult lifespan. Our research showed that brain-PAG in mTBI patients was significantly higher than that in HCs in both acute and chronic phases. The increased brain-PAG in mTBI patients was also highly correlated with cognitive impairment and a higher level of plasma neurofilament light, a marker of neurodegeneration. The higher brain-PAG and its correlation with severe cognitive impairment showed a longitudinal and persistent nature in patients with follow-up examinations. CONCLUSION: We proposed an interpretable deep learning framework on a relatively large dataset to accurately predict brain age in both healthy individuals and mTBI patients. The interpretable analysis revealed that the caudate and thalamus became the most contributive role across the adult lifespan in both HCs and patients with mTBI. The left hemisphere contributed significantly to brain age prediction may enlighten us to be concerned about the lateralization of brain abnormality in neurological diseases in the future. The proposed interpretable deep learning framework might also provide hope for testing the performance of related drugs and treatments in the future.


Subject(s)
Aging , Brain Concussion , Brain , Magnetic Resonance Imaging , Neural Networks, Computer , Humans , Adult , Male , Female , Middle Aged , Magnetic Resonance Imaging/methods , Brain Concussion/diagnostic imaging , Brain/diagnostic imaging , Young Adult , Aged , Cognitive Dysfunction/diagnostic imaging , Deep Learning
11.
Neuroimage Clin ; 43: 103635, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38941766

ABSTRACT

Advanced age is the most important risk factor for Alzheimer's disease (AD), and carrier-status of the Apolipoprotein E4 (APOE4) allele is the strongest known genetic risk factor. Many studies have consistently shown a link between APOE4 and synaptic dysfunction, possibly reflecting pathologically accelerated biological aging in persons at risk for AD. To test the hypothesis that distinct functional connectivity patterns characterize APOE4 carriers across the clinical spectrum of AD, we investigated 128 resting state functional Magnetic Resonance Imaging (fMRI) datasets from the Alzheimer's Disease Neuroimaging Initiative database (ADNI), representing all disease stages from cognitive normal to clinical dementia. Brain region centralities within functional networks, computed as eigenvector centrality, were tested for multivariate associations with chronological age, APOE4 carrier status and clinical stage (as well as their interactions) by partial least square analysis (PLSC). By PLSC analysis two distinct brain activity patterns could be identified, which reflected interactive effects of age, APOE4 and clinical disease stage. A first component including sensorimotor regions and parietal regions correlated with age and AD clinical stage (p < 0.001). A second component focused on medial-frontal regions and was specifically related to the interaction between age and APOE4 (p = 0.032). Our findings are consistent with earlier reports on altered network connectivity in APOE4 carriers. Results of our study highlight promise of graph-theory based network centrality to identify brain connectivity linked to genetic risk, clinical stage and age. Our data suggest the existence of brain network activity patterns that characterize APOE4 carriers across clinical stages of AD.

12.
Neurobiol Aging ; 141: 113-120, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38852544

ABSTRACT

We examined how brain reserve in midlife, measured by brain-predicted age difference scores (Brain-PADs), predicted executive function concurrently and longitudinally into early old age, and whether these associations were moderated by young adult cognitive reserve or APOE genotype. 508 men in the Vietnam Era Twin Study of Aging (VETSA) completed neuroimaging assessments at mean age 56 and six executive function tasks at mean ages 56, 62, and 68 years. Results indicated that greater brain reserve at age 56 was associated with better concurrent executive function (r=.10, p=.040) and less decline in executive function over 12 years (r=.34, p=.001). These associations were not moderated by cognitive reserve or APOE genotype. Twin analysis suggested associations with executive function slopes were driven by genetic influences. Our findings suggest that greater brain reserve allowed for better cognitive maintenance from middle- to old age, driven by a genetic association. The results are consistent with differential preservation of executive function based on brain reserve that is independent of young adult cognitive reserve or APOE genotype.


Subject(s)
Aging , Apolipoproteins E , Brain , Cognitive Reserve , Executive Function , Humans , Executive Function/physiology , Cognitive Reserve/physiology , Male , Middle Aged , Brain/diagnostic imaging , Brain/physiology , Aged , Aging/physiology , Aging/genetics , Aging/psychology , Apolipoproteins E/genetics , Genotype , Longitudinal Studies , Cognition/physiology , Neuroimaging
13.
Brain Sci ; 14(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38928532

ABSTRACT

Accelerated brain aging is a possible mechanism of pathology in schizophrenia. Advances in MRI-based brain development algorithms allow for the calculation of predicted brain age (PBA) for individuals. Here, we assessed PBA in 70 first-episode schizophrenia-spectrum individuals (FESz) and 76 matched healthy neurotypical comparison individuals (HC) to determine if FESz showed advanced aging proximal to psychosis onset and whether PBA was associated with neurocognitive, social functioning, or symptom severity measures. PBA was calculated with BrainAgeR (v2.1) from T1-weighted MR scans. There were no differences in the PBAs between groups. After controlling for actual age, a "younger" PBA was associated with higher vocabulary scores among all individuals, while an "older" PBA was associated with more severe negative symptom "Inexpressivity" component scores among FESz. Female participants in both groups had an elevated PBA relative to male participants. These results suggest that a relatively younger brain age is associated with a better semantic memory performance. There is no evidence for accelerated aging in FESz with a late adolescent/early adult onset. Despite a normative PBA, FESz with a greater residual PBA showed impairments in a cluster of negative symptoms, which may indicate some underlying age-related pathology proximal to psychosis onset. Although a period of accelerated aging cannot be ruled out with disease course, it does not occur at the time of the first episode.

14.
Brain Sci ; 14(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38928575

ABSTRACT

Clinical cognitive advancement within the Alzheimer's disease (AD) continuum is intimately connected with sustained accumulation of tau protein pathology. The biological brain age and its gap show great potential for pathological risk and disease severity. In the present study, we applied multivariable linear support vector regression to train a normative brain age prediction model using tau brain images. We further assessed the predicted biological brain age and its gap for patients within the AD continuum. In the AD continuum, evaluated pathologic tau binding was found in the inferior temporal, parietal-temporal junction, precuneus/posterior cingulate, dorsal frontal, occipital, and inferior-medial temporal cortices. The biological brain age gaps of patients within the AD continuum were notably higher than those of the normal controls (p < 0.0001). Significant positive correlations were observed between the brain age gap and global tau protein accumulation levels for mild cognitive impairment (r = 0.726, p < 0.001), AD (r = 0.845, p < 0.001), and AD continuum (r = 0.797, p < 0.001). The pathologic tau-based age gap was significantly linked to neuropsychological scores. The proposed pathologic tau-based biological brain age model could track the tau protein accumulation trajectory of cognitive impairment and further provide a comprehensive quantification index for the tau accumulation risk.

15.
Horm Behav ; 164: 105596, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38944998

ABSTRACT

In a subset of females, postmenopausal status has been linked to accelerated aging and neurological decline. A complex interplay between reproductive-related factors, mental disorders, and genetics may influence brain function and accelerate the rate of aging in the postmenopausal phase. Using multiple regressions corrected for age, in this preregistered study we investigated the associations between menopause-related factors (i.e., menopausal status, menopause type, age at menopause, and reproductive span) and proxies of cellular aging (leukocyte telomere length, LTL) and brain aging (white and gray matter brain age gap, BAG) in 13,780 females from the UK Biobank (age range 39-82). We then determined how these proxies of aging were associated with each other, and evaluated the effects of menopause-related factors, history of depression (= lifetime broad depression), and APOE ε4 genotype on BAG and LTL, examining both additive and interactive relationships. We found that postmenopausal status and older age at natural menopause were linked to longer LTL and lower BAG. Surgical menopause and longer natural reproductive span were also associated with longer LTL. BAG and LTL were not significantly associated with each other. The greatest variance in each proxy of biological aging was most consistently explained by models with the addition of both lifetime broad depression and APOE ε4 genotype. Overall, this study demonstrates a complex interplay between menopause-related factors, lifetime broad depression, APOE ε4 genotype, and proxies of biological aging. However, results are potentially influenced by a disproportionate number of healthier participants among postmenopausal females. Future longitudinal studies incorporating heterogeneous samples are an essential step towards advancing female health.

16.
Alzheimers Res Ther ; 16(1): 128, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877568

ABSTRACT

OBJECTIVES: This study aimed to evaluate the potential clinical value of a new brain age prediction model as a single interpretable variable representing the condition of our brain. Among many clinical use cases, brain age could be a novel outcome measure to assess the preventive effect of life-style interventions. METHODS: The REMEMBER study population (N = 742) consisted of cognitively healthy (HC,N = 91), subjective cognitive decline (SCD,N = 65), mild cognitive impairment (MCI,N = 319) and AD dementia (ADD,N = 267) subjects. Automated brain volumetry of global, cortical, and subcortical brain structures computed by the CE-labeled and FDA-cleared software icobrain dm (dementia) was retrospectively extracted from T1-weighted MRI sequences that were acquired during clinical routine at participating memory clinics from the Belgian Dementia Council. The volumetric features, along with sex, were combined into a weighted sum using a linear model, and were used to predict 'brain age' and 'brain predicted age difference' (BPAD = brain age-chronological age) for every subject. RESULTS: MCI and ADD patients showed an increased brain age compared to their chronological age. Overall, brain age outperformed BPAD and chronological age in terms of classification accuracy across the AD spectrum. There was a weak-to-moderate correlation between total MMSE score and both brain age (r = -0.38,p < .001) and BPAD (r = -0.26,p < .001). Noticeable trends, but no significant correlations, were found between BPAD and incidence of conversion from MCI to ADD, nor between BPAD and conversion time from MCI to ADD. BPAD was increased in heavy alcohol drinkers compared to non-/sporadic (p = .014) and moderate (p = .040) drinkers. CONCLUSIONS: Brain age and associated BPAD have the potential to serve as indicators for, and to evaluate the impact of lifestyle modifications or interventions on, brain health.


Subject(s)
Aging , Alzheimer Disease , Brain , Cognitive Dysfunction , Healthy Aging , Magnetic Resonance Imaging , Humans , Male , Female , Aged , Brain/diagnostic imaging , Brain/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Magnetic Resonance Imaging/methods , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Aging/pathology , Aging/physiology , Middle Aged , Biomarkers , Aged, 80 and over , Retrospective Studies
17.
Neuroscience ; 551: 185-195, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38838977

ABSTRACT

In recent years, the relationship between age-related hearing loss, cognitive decline, and the risk of dementia has garnered significant attention. The significant variability in brain health and aging among individuals of the same chronological age suggests that a measure assessing how one's brain ages may better explain hearing-cognition links. The main aim of this study was to investigate the mediating role of Brain Age Gap (BAG) in the association between hearing impairment and cognitive function. This research included 185 participants aged 20-79 years. BAG was estimated based on the difference between participant's brain age (estimated based on their structural T1-weighted MRI scans) and chronological age. Cognitive performance was assessed using the Montreal Cognitive Assessment (MoCA) test while hearing ability was measured using pure-tone thresholds (PTT) and words-in-noise (WIN) perception. Mediation analyses were used to examine the mediating role of BAG in the relationship between age-related hearing loss as well as difficulties in WIN perception and cognition. Participants with poorer hearing sensitivity and WIN perception showed lower MoCA scores, but this was an indirect effect. Participants with poorer performance on PTT and WIN tests had larger BAG (accelerated brain aging), and this was associated with poorer performance on the MoCA test. Mediation analyses showed that BAG partially mediated the relationship between age-related hearing loss and cognitive decline. This study enhances our understanding of the interplay among hearing loss, cognition, and BAG, emphasizing the potential value of incorporating brain age assessments in clinical evaluations to gain insights beyond chronological age, thus advancing strategies for preserving cognitive health in aging populations.


Subject(s)
Aging , Brain , Cognitive Dysfunction , Humans , Middle Aged , Male , Female , Aged , Adult , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Brain/diagnostic imaging , Brain/physiopathology , Aging/physiology , Young Adult , Presbycusis/physiopathology , Magnetic Resonance Imaging , Hearing Loss/physiopathology , Cognition/physiology
18.
medRxiv ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38853932

ABSTRACT

The infant brain undergoes rapid and significant developmental changes in the first three years of life. Understanding these changes through the prediction of chronological age using neuroimaging data can provide insights into typical and atypical brain development. We utilized longitudinal resting-state EEG data from 457 typically developing infants, comprising 938 recordings, to develop age prediction models. The multilayer perceptron model demonstrated the highest accuracy with an R2 of 0.82 and a mean absolute error of 92.4 days. Aperiodic offset and periodic theta, alpha, and beta power were identified as key predictors of age via Shapley values. Application of the model to EEG data from infants later diagnosed with autism spectrum disorder or Down syndrome revealed significant underestimations of chronological age. This study establishes the feasibility of using EEG to assess brain maturation in early childhood and supports its potential as a clinical tool for early identification of alterations in brain development.

19.
Acta Physiol (Oxf) ; 240(8): e14191, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38895950

ABSTRACT

AIM: Physical activity (PA) is a key component for brain health and Reserve, and it is among the main dementia protective factors. However, the neurobiological mechanisms underpinning Reserve are not fully understood. In this regard, a noradrenergic (NA) theory of cognitive reserve (Robertson, 2013) has proposed that the upregulation of NA system might be a key factor for building reserve and resilience to neurodegeneration because of the neuroprotective role of NA across the brain. PA elicits an enhanced catecholamine response, in particular for NA. By increasing physical commitment, a greater amount of NA is synthetised in response to higher oxygen demand. More physically trained individuals show greater capabilities to carry oxygen resulting in greater Vo 2 max - a measure of oxygen uptake and physical fitness (PF). METHODS: We hypothesized that greater Vo 2 max would be related to greater Locus Coeruleus (LC) MRI signal intensity. In a sample of 41 healthy subjects, we performed Voxel-Based Morphometry analyses, then repeated for the other neuromodulators as a control procedure (Serotonin, Dopamine and Acetylcholine). RESULTS: As hypothesized, greater Vo 2 max related to greater LC signal intensity, and weaker associations emerged for the other neuromodulators. CONCLUSION: This newly established link between Vo 2 max and LC-NA system offers further understanding of the neurobiology underpinning Reserve in relationship to PA. While this study supports Robertson's theory proposing the upregulation of the NA system as a possible key factor building Reserve, it also provides ground for increasing LC-NA system resilience to neurodegeneration via Vo 2 max enhancement.


Subject(s)
Locus Coeruleus , Norepinephrine , Physical Fitness , Humans , Locus Coeruleus/physiology , Locus Coeruleus/metabolism , Male , Female , Aged , Physical Fitness/physiology , Norepinephrine/metabolism , Middle Aged , Oxygen Consumption/physiology , Exercise/physiology , Magnetic Resonance Imaging
20.
Elife ; 122024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869938

ABSTRACT

One well-known biomarker candidate that supposedly helps capture fluid cognition is Brain Age, or a predicted value based on machine-learning models built to predict chronological age from brain MRI. To formally evaluate the utility of Brain Age for capturing fluid cognition, we built 26 age-prediction models for Brain Age based on different combinations of MRI modalities, using the Human Connectome Project in Aging (n=504, 36-100 years old). First, based on commonality analyses, we found a large overlap between Brain Age and chronological age: Brain Age could uniquely add only around 1.6% in explaining variation in fluid cognition over and above chronological age. Second, the age-prediction models that performed better at predicting chronological age did NOT necessarily create better Brain Age for capturing fluid cognition over and above chronological age. Instead, better-performing age-prediction models created Brain Age that overlapped larger with chronological age, up to around 29% out of 32%, in explaining fluid cognition. Third, Brain Age missed around 11% of the total variation in fluid cognition that could have been explained by the brain variation. That is, directly predicting fluid cognition from brain MRI data (instead of relying on Brain Age and chronological age) could lead to around a 1/3-time improvement of the total variation explained. Accordingly, we demonstrated the limited utility of Brain Age as a biomarker for fluid cognition and made some suggestions to ensure the utility of Brain Age in explaining fluid cognition and other phenotypes of interest.


Subject(s)
Aging , Biomarkers , Brain , Cognition , Magnetic Resonance Imaging , Humans , Aged , Brain/diagnostic imaging , Brain/physiology , Cognition/physiology , Magnetic Resonance Imaging/methods , Aging/physiology , Aged, 80 and over , Middle Aged , Male , Adult , Female , Connectome , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL