Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 184
Filter
1.
Sci Rep ; 14(1): 19264, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39164312

ABSTRACT

Boron has been suggested to enhance the biological effectiveness of proton beams in the Bragg peak region via the p + 11B → 3α nuclear capture reaction. However, a number of groups have observed no such enhancement in vitro or questioned its proposed mechanism recently. To help elucidate this phenomenon, we irradiated DU145 prostate cancer or U-87 MG glioblastoma cells by clinical 190 MeV proton beams in plateau or Bragg peak regions with or without 10B or 11B isotopes added as sodium mercaptododecaborate (BSH). The results demonstrate that 11B but not 10B or other components of the BSH molecule enhance cell killing by proton beams. The enhancement occurs selectively in the Bragg peak region, is present for boron concentrations as low as 40 ppm, and is not due to secondary neutrons. The enhancement is likely initiated by proton-boron capture reactions producing three alpha particles, which are rare events occurring in a few cells only, and their effects are amplified by intercellular communication to a population-level response. The observed up to 2-3-fold reductions in survival levels upon the presence of boron for the studied prostate cancer or glioblastoma cells suggest promising clinical applications for these tumour types.


Subject(s)
Boron Neutron Capture Therapy , Proton Therapy , Humans , Boron Neutron Capture Therapy/methods , Proton Therapy/methods , Cell Line, Tumor , Male , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/drug therapy , Glioblastoma/radiotherapy , Glioblastoma/drug therapy , Boron/chemistry , Cell Survival/drug effects , Cell Survival/radiation effects , Protons
2.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125877

ABSTRACT

Philadelphia-chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is characterized by reciprocal chromosomal translocation between chromosome 9 and 22, leading to the expression of constitutively active oncogenic BCR-ABL1 fusion protein. CXC chemokine receptor 4 (CXCR4) is essential for the survival of BCR-ABL1-transformed mouse pre-B cells, as the deletion of CXCR4 induces death in these cells. To investigate whether CXCR4 inhibition also effectively blocks BCR-ABL1-transformed cell growth in vitro, in this study, we explored an array of peptide-based inhibitors of CXCR4. The inhibitors were optimized derivatives of EPI-X4, an endogenous peptide antagonist of CXCR4. We observed that among all the candidates, EPI-X4 JM#170 (referred to as JM#170) effectively induced cell death in BCR-ABL1-transformed mouse B cells but had little effect on untransformed wild-type B cells. Importantly, AMD3100, a small molecule inhibitor of CXCR4, did not show this effect. Treatment with JM#170 induced transient JNK phosphorylation in BCR-ABL1-transformed cells, which in turn activated the intrinsic apoptotic pathway by inducing cJun, Bim, and Bax gene expressions. Combinatorial treatment of JM#170 with ABL1 kinase inhibitor Imatinib exerted a stronger killing effect on BCR-ABL1-transformed cells even at a lower dose of Imatinib. Surprisingly, JM#170 actively killed Sup-B15 cells, a BCR-ABL1+ human ALL cell line, but had no effect on the BCR-ABL1- 697 cell line. This suggests that the inhibitory effect of JM#170 is specific for BCR-ABL1+ ALL. Taken together, JM#170 emerges as a potent novel drug against Ph+ ALL.


Subject(s)
Fusion Proteins, bcr-abl , Receptors, CXCR4 , Receptors, CXCR4/metabolism , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/genetics , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/metabolism , Animals , Mice , Humans , Peptides/pharmacology , Cell Survival/drug effects , Apoptosis/drug effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Cell Line, Tumor , Philadelphia Chromosome/drug effects , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
3.
Methods Mol Biol ; 2831: 301-313, 2024.
Article in English | MEDLINE | ID: mdl-39134858

ABSTRACT

Isolation and culture of dorsal root ganglion (DRG) neurons from adult animals is a useful experimental system for evaluating neural plasticity after axonal injury, as well as the neurological dysfunction resulting from aging and various types of disease. In this chapter, we will introduce a detailed method for the culture of mature rat DRG neurons. About 30-40 ganglia are dissected from a rat and mechanically and enzymatically digested. Subsequently, density gradient centrifugation of the digested tissue using 30% Percoll efficiently eliminates myelin debris and non-neuronal cells, to afford neuronal cells with a high yield and purity.


Subject(s)
Cell Culture Techniques , Cell Separation , Ganglia, Spinal , Nerve Regeneration , Neurons , Animals , Ganglia, Spinal/cytology , Rats , Neurons/cytology , Neurons/physiology , Cell Culture Techniques/methods , Nerve Regeneration/physiology , Cell Separation/methods , Nerve Degeneration/pathology , Cells, Cultured , Centrifugation, Density Gradient/methods
4.
J Nucl Med Technol ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137978

ABSTRACT

The early years of nuclear medicine included the development and clinical use of several in vitro or nonimaging procedures. The use of radionuclides as replacements for nonradioactive dyes brought improved accuracies and less subjective measurements to indicator dilution studies of body compartments such as the gastrointestinal system, lungs, urinary system, and vascular space. A popular nuclear medicine procedure was the radionuclide dilution method for quantitation of whole-blood volume or red blood cell volume or mass using 51Cr-labeled red blood cells-an important diagnostic element in patients suspected of having polycythemia vera, congestive heart failure, hypertension, shock, syncope, and other abnormal blood volume disorders. The radionuclide dilution method led to improved evaluation of red blood cell survival, which is important for clinical treatment planning in anemia and confirmation of splenic sequestration of damaged red blood cells. Although it was discovered that 51Cr was a chemically stable radiolabel of red blood cells after binding to intracellular hemoglobin, few nuclear medicine departments offered the clinical study for referring physicians because it required laboratory expertise for technologists, patient coordination, and a time-consuming procedure. The introduction of improved methods that are less time-consuming and have clinically acceptable results, along with the discontinuation of the sodium chromate 51Cr injection radiopharmaceutical by manufacturers, has consigned 51Cr red blood cells for red blood cell volume, mass, or survival evaluation to the list of retired nuclear medicine studies.

5.
World J Stem Cells ; 16(6): 623-640, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38948094

ABSTRACT

The stem cell pre-treatment approaches at cellular and sub-cellular levels encompass physical manipulation of stem cells to growth factor treatment, genetic manipulation, and chemical and pharmacological treatment, each strategy having advantages and limitations. Most of these pre-treatment protocols are non-combinative. This editorial is a continuum of Li et al's published article and Wan et al's editorial focusing on the significance of pre-treatment strategies to enhance their stemness, immunoregulatory, and immunosuppressive properties. They have elaborated on the intricacies of the combinative pre-treatment protocol using pro-inflammatory cytokines and hypoxia. Applying a well-defined multi-pronged combinatorial strategy of mesenchymal stem cells (MSCs), pre-treatment based on the mechanistic understanding is expected to develop "Super MSCs", which will create a transformative shift in MSC-based therapies in clinical settings, potentially revolutionizing the field. Once optimized, the standardized protocols may be used with slight modifications to pre-treat different stem cells to develop "super stem cells" with augmented stemness, functionality, and reparability for diverse clinical applications with better outcomes.

6.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 476-481, 2024 Mar 28.
Article in English, Chinese | MEDLINE | ID: mdl-38970522

ABSTRACT

There are 2 techniques for detecting red blood cell survival (RBCS) detection techniques: red blood cell labeling test and carbon monoxide (CO) breath test. The former has disadvantages such as long measurement times and complicated procedures, while the latter is simple, convenient, moderately priced, and capable of dynamically monitoring changes in RBCS before and after treatment. Currently, the CO breath test is gradually being implemented in clinical practice. RBCS is not only applied to hematologic diseases such as multiple myeloma, myelodysplastic syndromes, lymphoma, and thalassemia, but also to non-hematologic diseases like type 2 diabetes and chronic kidney disease. It can assist in diagnosis, guide treatment, evaluate drug treatment efficacy, and predict disease progression.


Subject(s)
Erythrocytes , Humans , Erythrocytes/cytology , Carbon Monoxide/blood , Breath Tests/methods , Cell Survival , Diabetes Mellitus, Type 2/blood , Hematologic Diseases/blood , Hematologic Diseases/diagnosis
7.
J Diabetes Res ; 2024: 8555211, 2024.
Article in English | MEDLINE | ID: mdl-39022651

ABSTRACT

We have previously identified a parasite-derived peptide, FhHDM-1, that prevented the progression of diabetes in nonobese diabetic (NOD) mice. Disease prevention was mediated by the activation of the PI3K/Akt pathway to promote ß-cell survival and metabolism without inducing proliferation. To determine the molecular mechanisms driving the antidiabetogenic effects of FhHDM-1, miRNA:mRNA interactions and in silico predictions of the gene networks were characterised in ß-cells, which were exposed to the proinflammatory cytokines that mediate ß-cell destruction in Type 1 diabetes (T1D), in the presence and absence of FhHDM-1. The predicted gene targets of miRNAs differentially regulated by FhHDM-1 mapped to the biological pathways that regulate ß-cell biology. Six miRNAs were identified as important nodes in the regulation of PI3K/Akt signaling. Additionally, IGF-2 was identified as a miRNA gene target that mediated the beneficial effects of FhHDM-1 on ß-cells. The findings provide a putative mechanism by which FhHDM-1 positively impacts ß-cells to permanently prevent diabetes. As ß-cell death/dysfunction underlies diabetes development, FhHDM-1 opens new therapeutic avenues.


Subject(s)
Apoptosis , Cytokines , Insulin-Secreting Cells , MicroRNAs , Signal Transduction , MicroRNAs/metabolism , MicroRNAs/genetics , Animals , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/drug effects , Apoptosis/drug effects , Signal Transduction/drug effects , Cytokines/metabolism , Mice , Mice, Inbred NOD , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Diabetes Mellitus, Type 1/metabolism , Gene Expression Regulation/drug effects
8.
Biol Methods Protoc ; 9(1): bpae038, 2024.
Article in English | MEDLINE | ID: mdl-39006461

ABSTRACT

Vascular smooth muscle cells (VSMCs) are an integral part of blood vessels and are the focus of intensive research in vascular biology, translational research, and cardiovascular diseases. Though immortalized vascular smooth muscle cell lines are available, their use is limited, underscoring the need for primary VSMCs. There are several methods for isolating primary cells from mice. However, the isolation method from rat blood vessels requires optimization, given the differences in the aorta of mice and rats. Here we compare two methods for VSMCs isolation from rats: enzymatic digestion and the "block" method. We observed a significantly higher yield of VSMCs using the enzymatic digestion method. We further confirmed that VSMCs expressed well-established VSMC-specific markers (calponin) with both methods and observed the persistence of this marker up to 9 passages, suggesting a continuation of the secretory phenotype of VSMCs. Overall, this work compares two methods and demonstrates a practical and effective method for isolating VSMCs from rat aorta, providing vascular biologists with a valuable and reliable experimental tool.

9.
Cancers (Basel) ; 16(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39001513

ABSTRACT

Breast cancer treatment has evolved drastically with the addition of immunotherapy and novel targeted drugs to the current treatment options. However, achieving long-term responses with minimal adverse events remains challenging. Cancer testis antigens (CTAs) offer novel opportunities for drug development thanks to their tumor specificity, immunogenicity, pro-tumorigenic functions, and negative prognostic connotations. We previously reported that lactate dehydrogenase C (LDHC) plays a key role in regulating genomic stability and that targeting LDHC significantly improved treatment response to DNA damage response drugs in breast cancer. Here, we explored the molecular mechanisms associated with LDHC silencing in two basal-like breast cancer cell lines, MDA-MB-468 and BT-549, and a Her2-enriched breast cancer cell line, HCC-1954. Transcriptomic analyses identified the cell line-dependent differential activation of the pro-survival STAT3 pathway following LDHC depletion. While LDHC silencing significantly compromised cell survival in basal-like breast cancer cells in conjunction with a downregulation of STAT3 signaling, the opposite effect was observed in Her2-enriched breast cancer cells, which demonstrated the enhanced activation of the pro-survival STAT3 signaling pathway. The inhibition of STAT3 not only reversed the unfavorable effect of LDHC silencing in the Her2-enriched cancer cells but also demonstrated significant anti-cancer activity when used as a single agent. Our findings suggest that the LDHC-STAT3 signaling axis plays a role in regulating breast tumor cell survival in a subtype-dependent manner. Thus, LDHC-targeted therapy could be a viable therapeutic approach for a subset of breast cancer patients, particularly patients with basal-like breast cancer, whereas patients carrying Her2-enriched tumors may likely benefit more from monotherapy with STAT3 inhibitors.

10.
Front Cell Dev Biol ; 12: 1421360, 2024.
Article in English | MEDLINE | ID: mdl-39035028

ABSTRACT

Introduction: Abnormal spreading of alpha-synuclein (αS), a hallmark of Parkinson's disease, is known to promote peripheral inflammation, which occurs in part via functional alterations in monocytes/macrophages. However, underlying intracellular mechanisms remain unclear. Methods: Herein we investigate the subcellular, molecular, and functional effects of excess αS in human THP-1 monocytic cell line, THP-1-derived macrophages, and at least preliminarily, in primary monocyte-derived macrophages (MDMs). In cells cultured w/wo recombinant αS (1 µM) for 4 h and 24 h, by Confocal microscopy, Western Blot, RT-qPCR, Elisa, and Flow Cytometry we assessed: i) αS internalization; ii) cytokine/chemokine expression/secretion, and C-C motif chemokine receptor 2 (CCR2) levels; iii) autophagy (LC3II/I, LAMP1/LysoTracker, p62, pS6/total S6); and iv) lipid droplets (LDs) accumulation, and cholesterol pathway gene expression. Transwell migration assay was employed to measure THP-1 cell migration/chemotaxis, while FITC-IgG-bead assay was used to analyze phagocytic capacity, and the fate of phagocytosed cargo in THP-1-derived macrophages. Results: Extracellular αS was internalized by THP-1 cells, THP-1-derived macrophages, and MDMs. In THP1 cells, αS induced a general pro-inflammatory profile and conditioned media from αS-exposed THP-1 cells potently attracted unstimulated cells. However, CCL2 secretion peaked at 4 h αS, consistent with early internalization of its receptor CCR2, while this was blunted at 24 h αS exposure, when CCR2 recycled back to the plasma membrane. Again, 4 h αS-exposed THP-1 cells showed increased spontaneous migration, while 24 h αS-exposed cells showed reduced chemotaxis. This occurred in the absence of cell toxicity and was associated with upregulation of autophagy/lysosomal markers, suggesting a pro-survival/tolerance mechanism against stress-related inflammation. Instead, in THP-1-derived macrophages, αS time-dependently potentiated the intracellular accumulation, and release of pro-inflammatory mediators. This was accompanied by mild toxicity, reduced autophagy-lysosomal markers, defective LDs formation, as well as impaired phagocytosis, and the appearance of stagnant lysosomes engulfed with phagocytosed cargo, suggesting a status of macrophage exhaustion reminiscent of hypophagia. Discussion: In summary, despite an apparently similar pro-inflammatory phenotype, monocytes and macrophages respond differently to intracellular αS accumulation in terms of cell survival, metabolism, and functions. Our results suggest that in periphery, αS exerts cell- and context-specific biological effects bridging alterations of autophagy, lipid dynamics, and inflammatory pathways.

11.
J Cell Sci ; 137(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39034922

ABSTRACT

Focal adhesion kinase (FAK; encoded by PTK2) was discovered over 30 years ago as a cytoplasmic protein tyrosine kinase that is localized to cell adhesion sites, where it is activated by integrin receptor binding to extracellular matrix proteins. FAK is ubiquitously expressed and functions as a signaling scaffold for a variety of proteins at adhesions and in the cell cytoplasm, and with transcription factors in the nucleus. FAK expression and intrinsic activity are essential for mouse development, with molecular connections to cell motility, cell survival and gene expression. Notably, elevated FAK tyrosine phosphorylation is common in tumors, including pancreatic and ovarian cancers, where it is associated with decreased survival. Small molecule and orally available FAK inhibitors show on-target inhibition in tumor and stromal cells with effects on chemotherapy resistance, stromal fibrosis and tumor microenvironment immune function. Herein, we discuss recent insights regarding mechanisms of FAK activation and signaling, its roles as a cytoplasmic and nuclear scaffold, and the tumor-intrinsic and -extrinsic effects of FAK inhibitors. We also discuss results from ongoing and advanced clinical trials targeting FAK in low- and high-grade serous ovarian cancers, where FAK acts as a master regulator of drug resistance. Although FAK is not known to be mutationally activated, preventing FAK activity has revealed multiple tumor vulnerabilities that support expanding clinical combinatorial targeting possibilities.


Subject(s)
Focal Adhesion Protein-Tyrosine Kinases , Neoplasms , Signal Transduction , Humans , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Female , Tumor Microenvironment , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics
12.
Dis Model Mech ; 17(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39051470

ABSTRACT

All living organisms - from single-celled prokaryotes through to invertebrates and humans - are frequently exposed to numerous challenges during their lifetime, which could damage their molecular and cellular contents and threaten their survival. Nevertheless, these diverse organisms are, on the whole, remarkably resilient to potential threats. Recent years have seen rapid advances in our mechanistic understanding of this emerging phenomenon of biological resilience, which enables cells, tissues and whole organisms to bounce back from challenges or stress. In this At a Glance article, I discuss current knowledge on the diverse molecular mechanisms driving biological resilience across scales, with particular focus on its dynamic and adaptive nature. I highlight emerging evidence that loss of biological resilience could underly numerous pathologies, including age-related frailty and degenerative disease. Finally, I present the multi-disciplinary experimental approaches that are helping to unravel the causal mechanisms of resilience and how this emerging knowledge could be harnessed therapeutically in the clinic.


Subject(s)
Health , Humans , Animals , Disease , Adaptation, Physiological , Aging , Stress, Physiological
13.
Sci Rep ; 14(1): 16083, 2024 07 12.
Article in English | MEDLINE | ID: mdl-38992199

ABSTRACT

Extracellular vesicles (EVs) are a new mechanism of cellular communication, by delivering their cargo into target cells to modulate molecular pathways. EV-mediated crosstalk contributes to tumor survival and resistance to cellular stress. However, the role of EVs in B-cell Acute Lymphoblastic Leukaemia (B-ALL) awaits to be thoroughly investigated. We recently published that ActivinA increases intracellular calcium levels and promotes actin polymerization in B-ALL cells. These biological processes guide cytoskeleton reorganization, which is a crucial event for EV secretion and internalization. Hence, we investigated the role of EVs in the context of B-ALL and the impact of ActivinA on this phenomenon. We demonstrated that leukemic cells release a higher number of EVs in response to ActivinA treatment, and they can actively uptake EVs released by other B-ALL cells. Under culture-induced stress conditions, EVs coculture promoted cell survival in B-ALL cells in a dose-dependent manner. Direct stimulation of B-ALL cells with ActivinA or with EVs isolated from ActivinA-stimulated cells was even more effective in preventing cell death. This effect can be possibly ascribed to the increase of vesiculation and modifications of EV-associated microRNAs induced by ActivinA. These data demonstrate that ActivinA boosts EV-mediated B-ALL crosstalk, improving leukemia survival in stress conditions.


Subject(s)
Cell Communication , Cell Survival , Extracellular Vesicles , Extracellular Vesicles/metabolism , Humans , Cell Line, Tumor , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , MicroRNAs/metabolism , MicroRNAs/genetics
14.
Dev Cell ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38981469

ABSTRACT

Mitochondria and endoplasmic reticulum contacts (MERCs) control multiple cellular processes, including cell survival and differentiation. Based on the observations that MERCs were specifically enriched in the CD4-CD8- double-negative (DN) stage, we studied their role in early mouse thymocyte development. We found that T cell-specific knockout of Hspa9, which encodes GRP75, a protein that mediates MERC formation by assembling the IP3R-GRP75-VDAC complex, impaired DN3 thymocyte viability and resulted in thymocyte developmental arrest at the DN3-DN4 transition. Mechanistically, GRP75 deficiency induced mitochondrial stress, releasing mitochondrial DNA (mtDNA) into the cytosol and triggering the type I interferon (IFN-I) response. The IFN-I pathway contributed to both the impairment of cell survival and DN3-DN4 transition blockage, while increased lipid peroxidation (LPO) played a major role downstream of IFN-I. Thus, our study identifies the essential role of GRP75-dependent MERCs in early thymocyte development and the governing facts of cell survival and differentiation in the DN stage.

15.
Cell Commun Signal ; 22(1): 356, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982464

ABSTRACT

BACKGROUND: Stem cell-derived extracellular vesicles (EVs) are an emerging class of therapeutics with excellent biocompatibility, bioactivity and pro-regenerative capacity. One of the potential targets for EV-based medicines are cardiovascular diseases (CVD). In this work we used EVs derived from human induced pluripotent stem cells (hiPSCs; hiPS-EVs) cultured under different oxygen concentrations (21, 5 and 3% O2) to dissect the molecular mechanisms responsible for cardioprotection. METHODS: EVs were isolated by ultrafiltration combined with size exclusion chromatography (UF + SEC), followed by characterization by nanoparticle tracking analysis, atomic force microscopy (AFM) and Western blot methods. Liquid chromatography and tandem mass spectrometry coupled with bioinformatic analyses were used to identify differentially enriched proteins in various oxygen conditions. We directly compared the cardioprotective effects of these EVs in an oxygen-glucose deprivation/reoxygenation (OGD/R) model of cardiomyocyte (CM) injury. Using advanced molecular biology, fluorescence microscopy, atomic force spectroscopy and bioinformatics techniques, we investigated intracellular signaling pathways involved in the regulation of cell survival, apoptosis and antioxidant response. The direct effect of EVs on NRF2-regulated signaling was evaluated in CMs following NRF2 inhibition with ML385. RESULTS: We demonstrate that hiPS-EVs derived from physiological hypoxia at 5% O2 (EV-H5) exert enhanced cytoprotective function towards damaged CMs compared to EVs derived from other tested oxygen conditions (normoxia; EV-N and hypoxia 3% O2; EV-H3). This resulted from higher phosphorylation rates of Akt kinase in the recipient cells after transfer, modulation of AMPK activity and reduced apoptosis. Furthermore, we provide direct evidence for improved calcium signaling and sustained contractility in CMs treated with EV-H5 using AFM measurements. Mechanistically, our mass spectrometry and bioinformatics analyses revealed differentially enriched proteins in EV-H5 associated with the antioxidant pathway regulated by NRF2. In this regard, EV-H5 increased the nuclear translocation of NRF2 protein and enhanced its transcription in CMs upon OGD/R. In contrast, inhibition of NRF2 with ML385 abolished the protective effect of EVs on CMs. CONCLUSIONS: In this work, we demonstrate a superior cardioprotective function of EV-H5 compared to EV-N and EV-H3. Such EVs were most effective in restoring redox balance in stressed CMs, preserving their contractile function and preventing cell death. Our data support the potential use of hiPS-EVs derived from physiological hypoxia, as cell-free therapeutics with regenerative properties for the treatment of cardiac diseases.


Subject(s)
Antioxidants , Extracellular Vesicles , Induced Pluripotent Stem Cells , Myocytes, Cardiac , NF-E2-Related Factor 2 , Proto-Oncogene Proteins c-akt , Signal Transduction , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Extracellular Vesicles/metabolism , NF-E2-Related Factor 2/metabolism , Humans , Proto-Oncogene Proteins c-akt/metabolism , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Signal Transduction/drug effects , Antioxidants/pharmacology , Oxidative Stress/drug effects , Cell Hypoxia/drug effects , Apoptosis/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Animals
16.
Front Immunol ; 15: 1309846, 2024.
Article in English | MEDLINE | ID: mdl-38919612

ABSTRACT

Acid ceramidase (Ac) is a lysosomal enzyme catalyzing the generation of sphingosine from ceramide, and Ac inhibitors are currently being investigated as potential cancer therapeutics. Yet, the role of the Ac in immune responses, particularly anti-viral immunity, is not fully understood. To investigate the impact of Ac expression on various leukocyte populations, we generated a tamoxifen-inducible global knockout mouse model for the Ac (iAc-KO). Following tamoxifen administration to healthy mice, we extracted primary and secondary lymphoid organs from iAc-KO and wild-type (wt) littermates and subsequently performed extensive flow cytometric marker analysis. In addition, we isolated CD4+ T cells from the spleen and lymph nodes for sphingolipid profiling and restimulated them in vitro with Dynabeads™ Mouse T-activator CD3/CD28. Intracellular cytokine expression (FACS staining) was analyzed and secreted cytokines detected in supernatants. To study cell-intrinsic effects, we established an in vitro model for iAc-KO in isolated CD4+ T and B cells. For CD4+ T cells of iAc-KO versus wt mice, we observed reduced Ac activity, an increased ceramide level, and enhanced secretion of IFNγ upon CD3/CD28 costimulation. Moreover, there was a marked reduction in B cell and plasma cell and blast numbers in iAc-KO compared to wt mice. To study cell-intrinsic effects and in line with the 3R principles, we established in vitro cell culture systems for iAc-KO in isolated B and CD4+ T cells. Our findings pinpoint to a key role of the Ac in mature B and antibody-secreting cells and in IFNγ secretion by CD4+ T cells.


Subject(s)
Acid Ceramidase , B-Lymphocytes , CD4-Positive T-Lymphocytes , Interferon-gamma , Mice, Knockout , Animals , Mice , Acid Ceramidase/metabolism , Acid Ceramidase/genetics , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Interferon-gamma/metabolism , Lymphocyte Count , Mice, Inbred C57BL
17.
Int J Biol Macromol ; 273(Pt 1): 133064, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866288

ABSTRACT

Bone tissue regeneration strategies have incorporated the use of natural polymers, such as hydroxyapatite (nHA), chitosan (CH), gelatin (GEL), or alginate (ALG). Additionally, platelet concentrates, such as platelet-rich fibrin (PRF) have been suggested to improve scaffold biocompatibility. This study aimed to develop scaffolds composed of nHA, GEL, and CH, with or without ALG and lyophilized PRF, to evaluate the scaffold's properties, growth factor release, and dental pulp stem cells (DPSC), and osteoblast (OB) derived from DPSC viability. Four scaffold variations were synthesized and lyophilized. Then, degradation, swelling profiles, and morphological analysis were performed. Furthermore, PDGF-BB and FGF-B growth factors release were quantified by ELISA, and cytotoxicity and cell viability were evaluated. The swelling and degradation profiles were similar in all scaffolds, with pore sizes ranging between 100 and 250 µm. FGF-B and PDGF-BB release was evidenced after 24 h of scaffold immersion in cell culture medium. DPSC and OB-DPSC viability was notably increased in PRF-supplemented scaffolds. The nHA-CH-GEL-PRF scaffold demonstrated optimal physical-biological characteristics for stimulating DPSC and OB-DPSC cell viability. These results suggest lyophilized PRF improves scaffold biocompatibility for bone tissue regeneration purposes.


Subject(s)
Alginates , Cell Survival , Chitosan , Dental Pulp , Durapatite , Gelatin , Osteoblasts , Platelet-Rich Fibrin , Stem Cells , Tissue Scaffolds , Humans , Dental Pulp/cytology , Chitosan/chemistry , Chitosan/pharmacology , Gelatin/chemistry , Platelet-Rich Fibrin/chemistry , Platelet-Rich Fibrin/metabolism , Tissue Scaffolds/chemistry , Stem Cells/drug effects , Stem Cells/cytology , Stem Cells/metabolism , Cell Survival/drug effects , Durapatite/chemistry , Durapatite/pharmacology , Alginates/chemistry , Alginates/pharmacology , Osteoblasts/drug effects , Osteoblasts/cytology , Cell Adhesion/drug effects , Tissue Engineering/methods , Cells, Cultured
18.
Dent Mater ; 40(8): 1259-1266, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871524

ABSTRACT

OBJECTIVES: To investigate the transdentinal effects of surface reaction-type pre-reacted glass-ionomer (S-PRG) fillers on odontoblast-like cells. METHODS: An eluate of S-PRG fillers was obtained by dissolving the particles in distilled water (1:1 m/v). Dentin discs with similar permeability were mounted into artificial pulp chambers and MDPC-23 cells were seeded on their pulpal surface. The occlusal surface was treated with (n = 10): ultrapure water (negative control - NC), hydrogen peroxide (positive control - PC), S-PRG eluate exposure for 1 min (S-PRG 1 min), or S-PRG filler eluate exposure for 30 min (S-PRG 30 min). After 24 h, cell viability (alamarBlue) and morphology (SEM) were evaluated. The extract obtained from transdentinal diffusion was applied to MDPC-23 pre-cultured in plates for another 24 h to evaluate viability (alamarBlue, 1, 3, and 7 days), gene expression of Col1a1, Alpl, Dspp, and Dmp1 (RT-qPCR, 1 and 7 days), and mineralization (Alizarin Red, 7 days). Data were analyzed with ANOVA (α = 5 %). RESULTS: While S-PRG 1 min did not differ from NC, S-PRG 30 min reduced 17.9 % viability of cells from discs. S-PRG treatments resulted in low cell detaching from dentin, and the remaining cells exhibited typical morphology or minor cytoplasmic contraction. S-PRG 30 min slightly increased cell viability (6 %) 1 day after contact with the extract. S-PRG treatments upregulated the expression of the investigated genes, especially after 1 day. S-PRG 30 min stimulated mineralization activity by 39.7 %. CONCLUSIONS: S-PRG filler eluate does not cause transdentinal cytotoxicity on odontoblast-like cells, and long-term exposure can stimulate their dentinogenic-related mineralization activity. SIGNIFICANCE: The transdentinal elution of ions from S-PRG fillers is not expected to be harmful to the dental pulp and may exert bioactive effects by inducing dentin matrix deposition through the metabolism of underlying odontoblasts.


Subject(s)
Cell Survival , Dentin , Odontoblasts , Odontoblasts/drug effects , Cell Survival/drug effects , Dentin/drug effects , Glass Ionomer Cements/pharmacology , Glass Ionomer Cements/chemistry , Glass Ionomer Cements/toxicity , Animals , Microscopy, Electron, Scanning , Materials Testing , Surface Properties , Mice , Cells, Cultured , Gene Expression/drug effects , Acrylic Resins , Silicon Dioxide
19.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928439

ABSTRACT

Tumor cells reprogram their metabolism to meet the increased demand for nucleotides and other molecules necessary for growth and proliferation. In fact, cancer cells are characterized by an increased "de novo" synthesis of purine nucleotides. Therefore, it is not surprising that specific enzymes of purine metabolism are the targets of drugs as antineoplastic agents, and a better knowledge of the mechanisms underlying their regulation would be of great help in finding new therapeutic approaches. The mammalian target of the rapamycin (mTOR) signaling pathway, which is often activated in cancer cells, promotes anabolic processes and is a major regulator of cell growth and division. Among the numerous effects exerted by mTOR, noteworthy is its empowerment of the "de novo" synthesis of nucleotides, accomplished by supporting the formation of purinosomes, and by increasing the availability of necessary precursors, such as one-carbon formyl group, bicarbonate and 5-phosphoribosyl-1-pyrophosphate. In this review, we highlight the connection between purine and mitochondrial metabolism, and the bidirectional relation between mTOR signaling and purine synthesis pathways.


Subject(s)
Neoplasms , Purines , Signal Transduction , TOR Serine-Threonine Kinases , Humans , Neoplasms/metabolism , Neoplasms/pathology , TOR Serine-Threonine Kinases/metabolism , Purines/metabolism , Animals , Mitochondria/metabolism
20.
Biomed Pharmacother ; 177: 117032, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38941894

ABSTRACT

In cell-based bone augmentation, transplanted cell dysfunction and apoptosis can occur due to oxidative stress caused by the overproduction of reactive oxygen species (ROS). Edaravone (EDA) is a potent free radical scavenger with potential medical applications. This study aimed to investigate the effect of controlling oxidative stress on bone regeneration using EDA. Bone marrow-derived cells were collected from 4-week-old rats, and EDA effects on cell viability and osteogenic differentiation were evaluated. Collagen gels containing PKH26-prelabeled cells were implanted into the calvarial defects of 12-week-old rats, followed by daily subcutaneous injections of normal saline or 500 µM EDA for 4 d. Bone formation was examined using micro-computed tomography and histological staining. Immunofluorescence staining was performed for markers of oxidative stress, macrophages, osteogenesis, and angiogenesis. EDA suppressed ROS production and hydrogen peroxide-induced apoptosis, recovering cell viability and osteoblast differentiation. EDA treatment in vivo increased new bone formation. EDA induced the transition of the macrophage population toward the M2 phenotype. The EDA group also exhibited stronger immunofluorescence for vascular endothelial growth factor and CD31. In addition, more PKH26-positive and PKH26-osteocalcin-double-positive cells were observed in the EDA group, indicating that transplanted cell survival was prolonged, and they differentiated into bone-forming cells. This could be attributed to oxidative stress suppression at the transplantation site by EDA. Collectively, local administration using EDA facilitates bone regeneration by improving the local environment and angiogenesis, prolonging survival, and enhancing the osteogenic capabilities of transplanted cells.


Subject(s)
Bone Regeneration , Cell Differentiation , Cell Survival , Edaravone , Osteogenesis , Oxidation-Reduction , Oxidative Stress , Rats, Sprague-Dawley , Reactive Oxygen Species , Animals , Bone Regeneration/drug effects , Edaravone/pharmacology , Osteogenesis/drug effects , Oxidative Stress/drug effects , Cell Differentiation/drug effects , Reactive Oxygen Species/metabolism , Rats , Cell Survival/drug effects , Male , Apoptosis/drug effects , Osteoblasts/drug effects , Osteoblasts/metabolism , Macrophages/drug effects , Macrophages/metabolism , Skull/drug effects , Cells, Cultured , Free Radical Scavengers/pharmacology , Free Radical Scavengers/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL