Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Sci Total Environ ; 946: 174151, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38909804

ABSTRACT

Important foraging and nesting habitats for Caribbean green sea turtles (Chelonia mydas) exist within the Mesoamerican Reef System in the Mexican Caribbean. During the last 25 years, urban development and touristic activities have drastically increased in Quintana Roo, Mexico. Moreover, in the last decade, massive pelagic sargasso blooms have also afflicted this region; however, information about the biochemical responses of Caribbean green turtles to these inputs is absent. This study aimed to assess if the oxidative stress indicators in the red blood cells of green turtles are valuable biomarkers of the extent of the anthropic impact in this region. Persistent organic pollutants (POPs) were also measured in the plasma of free-living green turtles during 2015-2018 to characterize these habitats further. As biochemical biomarkers, the production rate of superoxide radical (O2•-), carbonylated protein content, and lipid peroxidation (TBARS) levels, and the activities of superoxide dismutase, glutathione S-transferase (GST), catalase, glutathione peroxidase were measured in erythrocytes. A 15 % occurrence of fibropapillomatosis (FP) was revealed, with tumor size being positively correlated with CAT activity in the affected individuals. A multivariate analysis embracing all oxidative stress markers discriminated green turtles between years of capture (p < 0.001), with those sampled during 2015 presenting the highest production of O2•- (p = 0.001), activities of GST (p < 0.001), levels of TBARS (p < 0.001) and carbonylated proteins (p = 0.02). These local and temporal biochemical responses coincided with the first massive Sargassum spp. bloom reported in the region. The results of this study corroborate the utility of the oxidative stress indicators as biomarkers of environmental conditions (sargasso blooms and POPs) in the green turtle as sentinel species.


Subject(s)
Ecosystem , Environmental Monitoring , Oxidative Stress , Turtles , Animals , Turtles/physiology , Mexico , Water Pollutants, Chemical/analysis , Biomarkers , Catalase/metabolism , Glutathione Transferase/metabolism , Lipid Peroxidation , Sargassum/physiology , Superoxide Dismutase/metabolism
2.
Helminthologia ; 60(2): 196-200, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37745228

ABSTRACT

The helminth fauna of juvenile green sea turtles (Chelonia mydas Linnaeus, 1758) is still poorly known. Herein, we study the gastrointestinal helminths of 28 juvenile green sea turtles found stranded on the north coast of Rio de Janeiro state, Brazil. All turtles were infected showing a rich helminth fauna. In total, 14802 trematodes belonging to 30 species and 5 families including Micros-caphidiidae, Plagiorchiidae, Pronocephalidae, Hapalotrematidae, and Telorchiidae were recovered. An unidentified nematode specimens was also found. The mean intensity was 536 (95% CI = 362 - 853) (range: 1 - 2831), and the species richness was 7.86 (95% CI = 6.46 - 9.21) (range: 1 - 17). The coast of Rio de Janeiro state represents new locality records for Angiodictyum posterovitellatum, Microscaphidium aberrans, M. warui, Octangium hyphalum, O. sagitta, Enodiotrema reductum and Pleurogonius laterouterus. This study confirms that the green sea turtle harbors the richest helminth fauna among sea turtle species and provides useful information on the gastrointestinal helminths of a poorly known stage in the life cycle of this endangered chelonian.

3.
Harmful Algae ; 128: 102498, 2023 10.
Article in English | MEDLINE | ID: mdl-37714579

ABSTRACT

Algal toxins are involved in the mortality and/or illness of marine organisms via consumption of contaminated prey, or upon direct exposure to toxic cells. In this study, the presence of potentially toxic microalgal cells was investigated within the digestive tract contents of a threatened species of green turtle (Chelonia mydas). Additionally, lipophilic toxins were determined by LC-MS/MS in tissue samples (liver, stomach and/or intestine) of selected animals (n = 39 individuals) found dead-stranded in southern Brazil, from winter/2015 to autumn/2016. Thirteen potentially toxic species of microalgae (both benthic and planktonic), including seven dinoflagellates, six cyanobacteria and one diatom, were found in the digestive tract contents of green turtles. Among them, dinoflagellates belonging to the Dinophysis acuminata species complex were the most frequent (36%) and abundant (maximum average abundance of 566 cells g-1 in spring/2015). Moreover, 23% of the examined sea turtles exhibited detectable levels of the diarrhetic shellfish toxin okadaic acid (OA) in washed digestive tissues. Seven individuals accumulated OA in their intestines (max. 24.1 ng g-1) and two in the stomachs (max. 7.4 ng g-1). Toxin levels in the tissues were directly and significantly (r = 0.70, p < 0.025) associated with the cell abundance of OA-producing D. acuminata and Prorocentrum lima species complexes within the digestive contents of green turtles. Although OA concentrations were relatively low, possible chronic exposure might deteriorate general health conditions of exposed sea turtles, increasing the risk for diseases. Okadaic acid has been regarded as a tumor-promoting compound and an environmental co-factor in the incidence of fibropapillomatosis, a frequent disease in juvenile green turtles inhabiting this geographic region. Even though, only one green turtle containing OA in the digestive tissues (out of six examined) also presented fibropapillomatosis in this study. Notwithstanding, sea turtles are sentinels of ocean health. Monitoring the accumulation of algal toxins and their negative effects on these organisms contributes to conserving biodiversity and marine habitats.


Subject(s)
Dinoflagellida , Microalgae , Toxins, Biological , Turtles , Animals , Brazil , Chromatography, Liquid , Okadaic Acid , Tandem Mass Spectrometry , Gastrointestinal Tract , Shellfish
4.
Mar Biol ; 170(7): 83, 2023.
Article in English | MEDLINE | ID: mdl-37251697

ABSTRACT

Sea turtles spend most of their life cycle in foraging grounds. Research in developmental habitats is crucial to understanding individual dynamics and to support conservation strategies. One approach to gather information in foraging grounds is the use of cost-effective and non-invasive techniques that allow public participation. The present study aimed to use photographic-identification (photo-ID) to investigate the spatio-temporal distribution of Chelonia mydas and Eretmochelys imbricata. Furthermore, we describe fibropapillomatosis occurrence. This work was carried out at subtropical rocky reefs of the Brazilian coast in Arraial do Cabo (22°57'S, 42°01'W), within a sustainable conservation unit. A total of 641 images were obtained through social media screening (n = 447), citizen science (n = 168), or intentional capture (n = 26) dated between 2006 and 2021. Additionally, 19 diving forms (between 2019 and 2021) were received from citizen scientists. All diving forms presented at least one turtle. Photo-ID identified 174 individuals of C. mydas, with 45 being resighted, while E. imbricata had 32 individuals, with 7 individuals resighted. The median interval between the first and last individual sighting was 1.7 years for C. mydas and 2.4 years for E. imbricata. Fibropapillomatosis was only observed in C. mydas, with a prevalence of 13.99% (20 of 143 individuals) and regression in 2 individuals (10.00%). Our results indicated that Arraial do Cabo is an important development area with individuals residing for at least 6 years. This study demonstrated that social media, along with photo-ID, can be useful to provide sea turtle estimates in a foraging ground using a non-invasive, low-cost method. Supplementary Information: The online version contains supplementary material available at 10.1007/s00227-023-04226-z.

5.
Animals (Basel) ; 13(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36766296

ABSTRACT

Sea turtles present strategies that have allowed them to survive and reproduce. They spend most of their lives in the sea, except when they emerge as hatchlings from the nest and when the adult females return to nest. Those moments of their life cycle are vital for their reproductive success, conservation, and knowledge of their biology. This study reports the life history traits exhibited by female black sea turtles from Colola Beach, Mexico using morphometric and reproductive data obtained during 15 sampling seasons (1985-2000, n = 1500). The results indicate that nesting females have a mean body size of 85.7 cm and reach sexual maturity at 24 years old at a minimum size of 68 cm. Females deposit a mean of 69.3 eggs per clutch, and the mean fecundity was 196.4 eggs per female per season. The remigration intervals of 3 and 5 years were the most frequent registered. The life history traits found in the black sea turtle population present the lowest values reported with respect to studies conducted in the Atlantic and Indo-Pacific green turtle populations, which supports the hypothesis that this population is recovering, since morphometric and reproductive data represent young nesting turtles.

6.
Ecology ; 104(2): e3902, 2023 02.
Article in English | MEDLINE | ID: mdl-36310424

ABSTRACT

Understanding how megaherbivores incorporate habitat features into their foraging behavior is key toward understanding how herbivores shape the surrounding landscape. While the role of habitat structure has been studied within the context of predator-prey dynamics and grazing behavior in terrestrial systems, there is a limited understanding of how structure influences megaherbivore grazing in marine ecosystems. To investigate the response of megaherbivores (green turtles) to habitat features, we experimentally introduced structure at two spatial scales in a shallow seagrass meadow in The Bahamas. Turtle density increased 50-fold (to 311 turtles ha-1 ) in response to the structures, and turtles were mainly grazing and resting (low vigilance behavior). This resulted in a grazing patch exceeding the size of the experimental setup (242 m2 ), with reduced seagrass shoot density and aboveground biomass. After structure removal, turtle density decreased and vigilance increased (more browsing and shorter surfacing times), while seagrass within the patch partly recovered. Even at a small scale (9 m2 ), artificial structures altered turtle grazing behavior, resulting in grazing patches in 60% of the plots. Our results demonstrate that marine megaherbivores select habitat features as foraging sites, likely to be a predator refuge, resulting in heterogeneity in seagrass bed structure at the landscape scale.


Subject(s)
Ecosystem , Turtles , Animals , Turtles/physiology , Biomass , Herbivory , Bahamas
7.
Animals (Basel) ; 12(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35739811

ABSTRACT

Two divergent genetic lineages have been described for the endangered green turtle in the Pacific Ocean, occurring sympatrically in some foraging grounds. Chile has seven known green turtle foraging grounds, hosting mainly juveniles of different lineages. Unfortunately, anthropic factors have led to the decline or disappearance of most foraging aggregations. We investigated age-class/sex structure, morphological variation, genetic diversity and structure, and health status of turtles from two mainland (Bahia Salado and Playa Chinchorro) and one insular (Easter Island) Chilean foraging grounds. Bahia Salado is composed of juveniles, and with Playa Chinchorro, exclusively harbors individuals of the north-central/eastern Pacific lineage, with Galapagos as the major genetic contributor. Conversely, Easter Island hosts juveniles and adults from both the eastern Pacific and French Polynesia. Morphological variation was found between lineages and foraging grounds, suggesting an underlying genetic component but also an environmental influence. Turtles from Easter Island, unlike Bahia Salado, exhibited injuries/alterations probably related to anthropic threats. Our findings point to establishing legal protection for mainland Chile's foraging grounds, and to ensure that the administrative plan for Easter Island's marine protected area maintains ecosystem health, turtle population viability, and related cultural and touristic activities.

8.
Sci Total Environ ; 823: 153593, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35122852

ABSTRACT

This study evaluated the influence of environmental degradation on the nutritional value of the main marine macrophytes consumed by green sea turtles (Chelonia mydas) in areas with different degrees of urbanization. Macrophyte assemblages in the highly urbanized area (HUa) showed lower richness compared to the lightly urbanized area (LUa) (Mann-Whitney U test: 10.0 ± 3.6 SD genera and 11.9 ± 4.2 taxa per transect vs. 20.1 ± 7.0 genera and 23.5 ± 9.2 taxa per transect) respectively. Also, diet was poorer with 4.0 ± 1.6 genera per turtle (vs. 8.5 ± 4.0 in HUa) and less diverse with Shannon index of diversity = 0.45 ± 0.29 (vs. 0.64 ± 0.46 in LUa). Body condition was similar in both areas. About half of individuals were classified as having normal body condition, 14-15% as underweight and 23-34% as being emaciated. Fibropapillomatosis prevalence (χ2 = 8.720; n = 222; df = 1; p = 0.003) was higher in the HUa but, in affected animals, severity was marginally non-significant (χ2 = 5.721; n = 82; df = 2; p = 0.057). Significant differences in energy content (kcal) were detected between areas in both summer (S) and winter (W). All ANOVAs on total lipids (F = 22.15 [S] and 30.39 [W]), total water-soluble proteins (F = 327.65 [S] and 64.42 [W]) and total carbohydrates (F = 70.90 [S] and 27.62 [W]) showed high significance (p < 0.001). Carotenoids concentration yielded significant results for Halodule in summer and Hypnea in winter (ANOVAs, F = 39.42 and 13.07, respectively). For both, tests revealed that concentration was higher in LUa than HUa. High levels of phycobiliproteins and proteins in this area probably reflect nitrogen accumulation. Frequency and severity of fibropapillomatosis suggest that urbanization-caused alterations in species diversity and in chemical composition of marine plants affect green turtles' health. LIGHT ABSTRACT: The use of coastal areas by humanity is widespread and increasing. The impacts caused to the coastal environment, be it terrestrial, estuarine or marine, are important and affect numerous species. Our study evaluated the influence of environmental degradation on the nutritional value of the main algae eaten by the green turtle, one of the very few marine megaherbivores (those herbivores with body mass above 10 kg). Diet in the highly urbanized area was richer in proteins, lipids and carbohydrates (sugars) and lower in carotenoids (photosynthetic and photoprotectant pigments in algae and plants; precursors of vitamin A involved in oxygen transport in animals-animals do not synthetize such molecules). High levels in phycobiliproteins (photosynthetic pigments present in some algae) and proteins in the highly urbanized area probably result from organic pollution and nitrogen accumulation in coastal waters. Nitrogen compounds dissolved in water are a threat to vertebrates due to its toxicity and negative effects on the immune system. Our results suggest that algae chemical composition and severity of fibropapillomatosis (tumors caused by a herpesvirus in green sea turtles) are directly related through environmental alterations caused by urbanization.


Subject(s)
Turtles , Animals , Brazil , Diet , Environmental Pollution , Turtles/metabolism , Urbanization
9.
Vet Res Commun ; 46(3): 939-945, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35098399

ABSTRACT

Dendritic cells form the link between the innate and adaptative immune response, particularly on mucosal and epidermal surfaces. The Langerhans, an epidermal dendritic cell subpopulation, play a key role in the skin immune response across several species. Scarse immune cell subpopulations, including Langerhans-like cells, have been identified in endangered green turtles thereby complicating the understanding of the pathogenesis of diseases such as fibropapillomatosis, which induces skin tumours in this species worldwide. In biopsies from green turtle skin, we demonstrated that the polyclonal anti-human Langerin antibodies strongly stained a Langerin+ cell population in epidermal sheets, the suprabasal layer of the epidermis in cryosections and in cells from cytospin preparation of migration assays. The morphology of these cells was round to amoeboid in normal skin; however, in skin with ulcerative dermatitis, Langerin+ cells aggregated around ulcers and adopted a more pleomorphic morphology. To our knowledge, this is the first identification of Langerin+ cells with a molecular marker in a reptile species.


Subject(s)
Chemokine CCL21 , Epidermal Cells , Langerhans Cells , Turtles , Animals , Skin/pathology , Turtles/physiology
10.
J Environ Manage ; 299: 113614, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34523542

ABSTRACT

The Mexican Caribbean is a vital nesting destination for loggerhead (Caretta caretta) and green (Chelonia mydas) sea turtles. Since 2015, massive periodical landings of pelagic Sargassum species (sargasso) have affected coastal ecosystems. Dense accumulations of sargasso on the shoreline may preclude access to sea turtles' preferred nesting areas and compromise hatching. In this study, we assess whether the number of nests and hatches of loggerhead and green sea turtles has been affected by the massive influx of sargasso. We compare data from before (2010-2014) and after (2015-2019) the first sargasso event, obtained from the same 17 marine turtle camps, which collectively account for 72.3 km of sampling distance over a 210 km section of shoreline. No differences in preferences on nesting beaches were recorded between periods for the two species. The mean number of nests per kilometer of coastline remained without statistically significant changes between periods in 16 camps and increased significantly in one camp for each species. Overall, the mean annual number of nests per kilometer of beach was 37% higher in the period after massive landings of sargasso began. The mean number of hatchlings increased significantly in one camp for C. mydas and in three for C. caretta. Periodical massive landings of sargasso from 2015 to 2019 do not appear to have compromised nesting and hatching of loggerhead and green sea turtles along the Mexican Caribbean coast.


Subject(s)
Sargassum , Turtles , Animals , Caribbean Region , Ecosystem , Nesting Behavior
11.
Proc Biol Sci ; 288(1954): 20210754, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34229490

ABSTRACT

Marine species may exhibit genetic structure accompanied by phenotypic differentiation related to adaptation despite their high mobility. Two shape-based morphotypes have been identified for the green turtle (Chelonia mydas) in the Pacific Ocean: the south-central/western or yellow turtle and north-central/eastern or black turtle. The genetic differentiation between these morphotypes and the adaptation of the black turtle to environmentally contrasting conditions of the eastern Pacific region has remained a mystery for decades. Here we addressed both questions using a reduced-representation genome approach (Dartseq; 9473 neutral SNPs) and identifying candidate outlier loci (67 outlier SNPs) of biological relevance between shape-based morphotypes from eight Pacific foraging grounds (n = 158). Our results support genetic divergence between morphotypes, probably arising from strong natal homing behaviour. Genes and enriched biological functions linked to thermoregulation, hypoxia, melanism, morphogenesis, osmoregulation, diet and reproduction were found to be outliers for differentiation, providing evidence for adaptation of C. mydas to the eastern Pacific region and suggesting independent evolutionary trajectories of the shape-based morphotypes. Our findings support the evolutionary distinctness of the enigmatic black turtle and contribute to the adaptive research and conservation genomics of a long-lived and highly mobile vertebrate.


Subject(s)
Turtles , Adaptation, Physiological/genetics , Animals , Genetic Drift , Pacific Ocean , Turtles/genetics
12.
Parasitol Res ; 120(6): 2281-2285, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33876314

ABSTRACT

The genus Desmogonius (Digenea: Pronocephalidae) is known only from sea turtles and currently contains two species: D. desmogonius Stephens, 1911 and D. loossi Chattopadhyaya, 1972. The present study describes a third species, Desmogonius baldassinae n. sp. found in a juvenile green sea turtle (Chelonia mydas) from Brazil. The new species is larger than its congeners in all dimensions, with vitellinic fields ending posterior to the ovary. In addition, we present a key for species identification and an emended diagnosis of the genus Desmogonius.


Subject(s)
Trematoda/isolation & purification , Trematode Infections/veterinary , Turtles/parasitology , Animals , Brazil , Female , Trematoda/classification , Trematode Infections/parasitology
13.
Genome ; 64(9): 879-891, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33555972

ABSTRACT

Technological and analytical advances to study evolutionary biology, ecology, and conservation of green turtles (Chelonia mydas) are realized through molecular approaches including DNA barcoding. We characterized the usefulness of COI DNA barcodes in green turtles in Mexico to better understand genetic divergence and other genetic parameters of this species. We analyzed 63 sequences, including 25 from green turtle field specimens collected from the Gulf of Mexico and from the Mexican Pacific and 38 already present in the Barcode of Life Data Systems (BOLD). A total of 13 haplotypes were identified with four novel haplotypes from the Pacific Ocean and three novel haplotypes from the Atlantic Ocean. Intraspecific distance values among COI gene sequences by two different models were 0.01, demonstrating that there is not a subdivision for green turtle species. Otherwise, the interspecific distance interval ranged from 0.07 to 0.13, supporting a clear subdivision among all sea turtle species. Haplotype and total nucleotide diversity values of the COI gene reflect a medium genetic diversity average. Green turtles of the Mexican Pacific showed common haplotypes to some Australian and Chinese turtles, but different from the haplotypes of the Mexican Atlantic. COI analysis revealed new haplotypes and confirmed that DNA barcodes were useful for evaluation of the population diversity of green turtles in Mexico.


Subject(s)
DNA Barcoding, Taxonomic , Turtles , Animals , Endangered Species , Haplotypes , Mexico , Turtles/genetics
14.
Animals (Basel) ; 11(1)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430211

ABSTRACT

During routine monitoring in Ojo de Liebre Lagoon, Mexico, a juvenile black turtle (Chelonia mydas) was captured, physically examined, measured, weighed, sampled, and tagged. The turtle showed no clinical signs suggestive of disease. Eleven months later, this turtle was recaptured in the same area, during which one lesion suggestive of fibropapilloma on the neck was identified and sampled for histopathology and molecular analysis. Histopathology revealed hyperkeratosis, epidermal hyperplasia, acanthosis, papillary differentiation and ballooning degeneration of epidermal cells, increased fibroblasts in the dermis, and angiogenesis, among other things. Hematological values were similar to those reported for clinically healthy black turtles and did not show notable changes between the first capture and the recapture; likewise, clinicopathological evaluation did not show structural or functional damage in the turtle's systems. The chelonid alphaherpesvirus 5 (ChHV5) UL30 gene was amplified and sequenced for phylogeny; Bayesian reconstruction showed a high alignment with the genus Scutavirus of the Eastern Pacific group. This is one of the first reports of ChHV5 in a cutaneous fibropapilloma of a black turtle in the Baja California peninsula.

15.
J Exp Zool A Ecol Integr Physiol ; 335(3): 319-328, 2021 03.
Article in English | MEDLINE | ID: mdl-33481356

ABSTRACT

Knowledge of feeding patterns of highly migratory species is critical for understanding their habitat use and informing the management of their populations. The Galapagos Islands are one of the most important nesting and feeding areas for green turtles (Chelonia mydas) across the tropical eastern Pacific, yet little is known about the feeding patterns of this species. The isotopic composition of different tissues has been used to gain insight into the trophic dynamics of mobile aquatic consumers whose trophic behavior is difficult to directly measure. To elucidate the temporal feeding patterns and isotopic niche sizes of Galapagos green turtles, stable isotope analyses were performed on multiple tissues (skin and carapace) collected at the two most important nesting areas in the archipelago: Bachas and Quinta Playa. The δ13 C and δ15 N signatures on the skin and carapace samples from 56 adult females revealed significant differences between tissues (p = .001 and p = .021, respectively) and nesting areas (p = .011 and p = .003, respectively). These differences suggest a shift from oceanic feeding grounds to neritic habitats before nesting. The carapace isotope values indicated an offshore feeding strategy and a greater isotopic niche (SEAc = 1.91‰2 ), whereas the skin isotope values represented an inshore feeding strategy with a narrower niche (SEAc = 1.37‰2 ), likely related to the consumption of specific coastal prey. Our results suggest that Galapagos green turtles feed across different habitats, and this information can be applied to improve the management of this endangered species.


Subject(s)
Carbon Isotopes , Nitrogen Isotopes , Turtles/physiology , Animals , Conservation of Natural Resources , Ecuador , Feeding Behavior , Skin/chemistry , Time Factors
16.
Mar Pollut Bull ; 162: 111821, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33162056

ABSTRACT

This study analyzed trace elements (As, Ba, Cd, Cu, Fe, Mn, Pb, Zn) and stable isotopes of carbon and nitrogen in egg yolk samples of female green turtles that nested in Rocas Atoll, Brazil, in 2017 and 2018. The trace elements concentration varied between years, with higher concentrations in 2017, suggesting that the nesting groups come from different foraging sites. The isotopic data indicated high overlap between years (73%), leading to an ambiguous interpretation on the turtles' foraging site. The Normalized Total Load presented a low association (0.01 < R2 < 0.41) with the stable isotopes. The Normalized Total Load that represents the trace element load in egg yolk is a holistic approach that can be applied elsewhere to predict ecotoxicology pathways in any animal species. We recommend a continuous monitoring to verify how the trace elements load behave in the nesting green turtles on Rocas Atoll.


Subject(s)
Trace Elements , Turtles , Water Pollutants, Chemical , Animals , Brazil , Egg Yolk , Female , Isotopes , Trace Elements/analysis , Water Pollutants, Chemical/analysis
17.
Biota Neotrop. (Online, Ed. ingl.) ; 21(1): e20201099, 2021. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1142473

ABSTRACT

Abstract In this study, multi-tissue (yolk and carapace) stable isotope analysis was used to assess individual isotopic niche trajectories of nesting green turtles on Rocas Atoll, off northeastern Brazil, and to reveal a diet shift in the temporal dimension. The diet trajectories of individual green turtles were highly directional, with a stronger component towards decreasing values of δ15N from carapace to yolk. When the green turtles are in their foraging sites (temporal window measured by the yolk samples), they are more herbivores. Conversely, in a broader temporal window, the green turtles demonstrate a carnivore-omnivore strategy, such as represented by heavier δ15N values in the carapace. This finding confirms a temporal diet shift. This is the first study that applies trophic niche trajectories for sea turtles, adding a new isotopic tool to understand the trophic ecology of these migrant animals.


Resumo Neste estudo, a análise de isótopos estáveis em múltiplos tecidos (vitelo e carapaça) foi usada para avaliar as trajetórias individuais de nicho isotópico de tartarugas verdes em nidificação no Atol das Rocas, nordeste do Brasil, e para revelar uma mudança de dieta na dimensão temporal. As trajetórias individuais da dieta de tartarugas verdes foram altamente direcionais, com um componente mais forte na direção de valores decrescentes de δ15N da carapaça ao vitelo. Quando as tartarugas verdes estão em seus locais de forrageamento (janela temporal medida pelas amostras de vitelo), elas são mais herbívoras. Por outro lado, em uma janela temporal mais ampla, as tartarugas verdes demonstram uma estratégia carnívora-onívora, representada por valores mais elevados de δ15N na carapaça. Os resultados confirmam uma mudança temporal na dieta. Este é o primeiro estudo que aplica trajetórias de nicho trófico para tartarugas marinhas, adicionando uma nova ferramenta isotópica para entender a ecologia trófica desses animais migrantes.

18.
Pesqui. vet. bras ; Pesqui. vet. bras;40(11): 922-932, Nov. 2020. tab, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1155029

ABSTRACT

Caseous lesions in the esophagus of green turtles (Chelonia mydas) from the coast of Brazil have been described as obstructive lesions and can lead to the death of these animals. However, their etiology remains unclear. The aim of this study was to isolate and characterize the aerobic bacterial microbiota of the esophagus of green turtles (C. mydas) from the Brazilian coast and to verify its possible participation in the etiology of caseous lesions. For this, 42 animals were used, 33 alive and healthy and 9 naturally dead that had esophageal lesions confirmed by necropsy, from Anchieta and Piúma beaches, Espírito Santo. Microbiological tests and morphological evaluation of the esophagus were performed. We isolated 14 different bacterial agents from healthy animal samples, with the prevalence of Pseudomonas aeruginosa being (36.36%), Staphylococcus aureus (33.33%), Aeromonas hydrophila (27.27%), and Vibrio alginolyticus (24.24%). In dead animals, only three distinct agents were isolated: S. aureus (50.00%), A. hydrophila (25.00%), and V. alginolyticus (25.00%). Morphological evaluation revealed a predominance of the lesions at the gastroesophageal junction, with multifocal-to-coalescent distribution, discrete intensity, and absence of obstruction. Ulcerations and caseous exudates, inflammatory infiltrates, parasitic eggs, and giant foreign body cells were also observed as well as bacterial lumps and glandular alterations, such as necrosis, adenitis, and fragments of adult parasites. There was a positive correlation between bacterial lumps and microbiological culture and a negative correlation between bacterial lumps and microbiological culture with parasites. Thus, it was noted that the esophageal aerobic microbiota of C. mydas was predominantly composed of Gram-negative bacteria such as P. aeruginosa, A. hydrophila, and V. alginolyticus, in addition to several enterobacteria and Gram-positive bacteria, such as S. aureus. These agents are opportunists and may be involved in the etiology of caseous esophagitis in association with other pathogens as co-factors working in association or, even in a secondary way.(AU)


A ocorrência de lesão caseosa no esôfago de tartarugas-verdes (Chelonia mydas) da costa do Brasil tem sido descrita como de caráter obstrutivo e pode causar a morte dos animais. No entanto, sua etiologia permanece pouco esclarecida. Objetivou-se isolar e caracterizar a microbiota aeróbica esofágica das tartarugas-verdes (C. mydas) da costa brasileira e verificar sua possível participação na etiologia das lesões caseosas. Foram utilizados 42 animais, 33 vivos e hígidos e nove mortos naturalmente que apresentavam lesão esofágica confirmada pela necropsia, provenientes de Anchieta e Piúma, Espírito Santo, nos quais foram feitos testes microbiológicos e avaliação morfológica do esôfago. Foram isolados 14 agentes bacterianos diferentes nas amostras de animais saudáveis, com prevalência de Pseudomonas aeruginosa (36,36%), Staphylococcus aureus (33,33%), Aeromonas hydrophila (27,27%) e Vibrio alginolyticus (24,24%). Nos animais mortos, foram isolados apenas três agentes distintos: S. aureus (50,00%), A. hydrophila (25,00%) e V. alginolyticus (25,00%). A avaliação morfológica revelou predominância da lesão em junção gastroesofágica, com distribuição multifocal a coalescente, intensidade discreta e ausência de obstrução. Observou-se ainda ulceração e exsudato caseoso, infiltrado inflamatório, ovos de parasitos e células gigantes do tipo corpo estranho, além de grumos bacterianos e de alterações glandulares, como necrose, adenite e fragmentos de parasitos adultos. Houve correlação positiva dos grumos bacterianos com cultivo microbiológico e negativa dos grumos bacterianos e cultivo microbiológico com parasitos. Assim, nota-se que a microbiota esofágica aeróbica de C. mydas é constituída predominantemente por bactérias Gram-negativas como P. aeruginosa, A. hydrophila e V. alginolyticus, além de diversas enterobatérias e por Gram-positivas, como S. aureus. Esses agentes são oportunistas e podem estar envolvidos na etiologia da esofagite caseosa em associação a outros patógenos como co-fatores agindo em associação, ou mesmo, por via de infecção secundária.(AU)


Subject(s)
Animals , Bacteria, Aerobic/isolation & purification , Turtles/microbiology , Esophagitis/etiology , Bacterial Infections/veterinary , Esophagus/microbiology
19.
Braz. J. Vet. Pathol. ; 13(3): 585-591, nov. 2020. ilus, tab
Article in English | VETINDEX | ID: vti-31324

ABSTRACT

Fibropapillomatosis is a neoplastic disease that affects sea turtles. It is characterized by multiple papillomas, fibropapillomas and cutaneous and/or visceral fibromas. Although its etiology has not been fully elucidated, it is known that there is a strong involvement of an alpha herpesvirus, but the influence of other factors such as parasites, genetics, chemical carcinogens, contaminants, immunosuppression and ultraviolet radiation may be important in the disease, being pointed out as one of the main causes of a reduction in the green turtle population. Thus, the objective of this article was to describe the morphology of cutaneous fibropapillomas found in specimens of the green turtle (Chelonia mydas), using light and scanning electron microscopy in order to contribute to the mechanism of tumor formation. Microscopically, it presented hyperplastic stromal proliferation and epidermal proliferation with hyperkeratosis. The bulky mass was coated with keratin, with some keratinocyte invaginations, that allowed the keratin to infiltrate from the epidermis into the dermis, forming large keratinized circular spirals. Another fact that we observed was the influence of the inflammation of the tumors caused by ectoparasites.(AU)


Subject(s)
Animals , Turtles , Papilloma/diagnosis , Ectoparasitic Infestations/diagnosis , Keratins
20.
Braz. j. vet. pathol ; 13(3): 585-591, nov. 2020. ilus, tab
Article in English | VETINDEX | ID: biblio-1469770

ABSTRACT

Fibropapillomatosis is a neoplastic disease that affects sea turtles. It is characterized by multiple papillomas, fibropapillomas and cutaneous and/or visceral fibromas. Although its etiology has not been fully elucidated, it is known that there is a strong involvement of an alpha – herpesvirus, but the influence of other factors such as parasites, genetics, chemical carcinogens, contaminants, immunosuppression and ultraviolet radiation may be important in the disease, being pointed out as one of the main causes of a reduction in the green turtle population. Thus, the objective of this article was to describe the morphology of cutaneous fibropapillomas found in specimens of the green turtle (Chelonia mydas), using light and scanning electron microscopy in order to contribute to the mechanism of tumor formation. Microscopically, it presented hyperplastic stromal proliferation and epidermal proliferation with hyperkeratosis. The bulky mass was coated with keratin, with some keratinocyte invaginations, that allowed the keratin to infiltrate from the epidermis into the dermis, forming large keratinized circular spirals. Another fact that we observed was the influence of the inflammation of the tumors caused by ectoparasites.


Subject(s)
Animals , Ectoparasitic Infestations/diagnosis , Papilloma/diagnosis , Turtles , Keratins
SELECTION OF CITATIONS
SEARCH DETAIL