Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.777
Filter
1.
Physiol Rep ; 12(19): e70057, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39358841

ABSTRACT

The sense of smell is still considered a fuzzy sensation. Softly wafting aromas can stimulate the appetite and trigger memories; however, there are many unexplored aspects of its underlying mechanisms, and not all of these have been elucidated. Although the final sense of smell takes place in the brain, it is greatly affected during the preliminary stage, when odorants are converted into electrical signals. After signal conversion through ion channels in olfactory cilia, action potentials are generated through other types of ion channels located in the cell body. Spike trains through axons transmit this information as digital signals to the brain, however, before odorants are converted into digital electric signals, such as an action potential, modification of the transduction signal has already occurred. This review focuses on the early stages of olfactory signaling. Modification of signal transduction mechanisms and their effect on the human sense of smell through three characteristics (signal amplification, olfactory adaptation, and olfactory masking) produced by olfactory cilia, which is the site of signal transduction are being addressed in this review.


Subject(s)
Cilia , Signal Transduction , Smell , Humans , Smell/physiology , Animals , Cilia/physiology , Cilia/metabolism , Signal Transduction/physiology , Olfactory Receptor Neurons/physiology , Olfactory Receptor Neurons/metabolism , Odorants
2.
Development ; 151(19)2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39369306

ABSTRACT

Sonic hedgehog (Shh) signaling regulates embryonic morphogenesis utilizing the primary cilium, the cell's antenna, which acts as a signaling hub. Fuz, an effector of planar cell polarity signaling, regulates Shh signaling by facilitating cilia formation, and the G protein-coupled receptor 161 (Gpr161) is a negative regulator of Shh signaling. The range of phenotypic malformations observed in mice bearing mutations in either of the genes encoding these proteins is similar; however, their functional relationship has not been previously explored. This study identified the genetic and biochemical linkage between Fuz and Gpr161 in mouse neural tube development. Fuz was found to be genetically epistatic to Gpr161 with respect to regulation of Shh signaling in mouse neural tube development. The Fuz protein biochemically interacts with Gpr161, and Fuz regulates Gpr161-mediated ciliary localization, a process that might utilize ß-arrestin 2. Our study characterizes a previously unappreciated Gpr161-Fuz axis that regulates Shh signaling during mouse neural tube development.


Subject(s)
Cilia , Hedgehog Proteins , Neural Tube , Receptors, G-Protein-Coupled , Signal Transduction , Animals , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Neural Tube/metabolism , Neural Tube/embryology , Signal Transduction/genetics , Mice , Cilia/metabolism , Cilia/genetics , Gene Expression Regulation, Developmental , beta-Arrestin 2/metabolism , beta-Arrestin 2/genetics , Epistasis, Genetic , Female , Cytoskeletal Proteins , Intracellular Signaling Peptides and Proteins
3.
Reprod Toxicol ; : 108729, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39366525

ABSTRACT

Alcohol exposure during the gastrulation stage of development can disrupt Sonic hedgehog (Shh) signaling and cause eye, craniofacial, and brain defects. One of the genes that regulates Shh signaling is Efcab7, which encodes a protein that facilitates the actions of Smoothened (Smo), a critical component of the Shh pathway. Previous work from our lab has demonstrated that Efcab7 is differentially expressed between two sub-strains of C57BL/6 mice that differ in their sensitivity to gastrulation-stage alcohol exposure. The more alcohol-sensitive C57BL/6J mice express lower levels of Efcab7 during gastrulation than do the less alcohol-sensitive C57BL/6NHsd mice. The current study examined whether partial or full Efcab7 deletions render mice more sensitive to gastrulation-stage alcohol exposure and affect the sensitivity to other modulators of Shh signaling that cause craniofacial malformations. Efcab7+/- dams were mated with Efcab7+/- sires to produce Efcab7+/+, Efcab7+/-, and Efcab7-/- fetuses. On gestational day 7 (GD 7), they received either alcohol (two doses of 2.9g/kg, i.p., given 4hours apart), the Smo antagonist vismodegib (40mg/kg, or vehicle, p.o,), the Smo agonist SAG (20mg/kg) or the appropriate vehicles. GD 17 fetuses were collected and examined for ocular and craniofacial dysmorphology. As compared to Efcab7+/+ fetuses, Efcab7-/- fetuses exposed to alcohol or vismodegib treatment had more severe ocular and craniofacial malformations. In contrast, Efcab7-/- fetuses had less severe malformations induced by SAG. These results confirm that Efcab7 can modify responses to Shh agonists and antagonists and further identify Efcab7 as a gene important for the sensitivity to gastrulation-stage alcohol exposure.

4.
Front Aging Neurosci ; 16: 1451655, 2024.
Article in English | MEDLINE | ID: mdl-39364348

ABSTRACT

Primary cilia (PC) are microtubules-based, independent antennal-like sensory organelles, that are seen in most vertebrate cells of different types, including astrocytes and neurons. They send signals to cells to control many physiological and cellular processes by detecting changes in the extracellular environment. Parkinson's disease (PD), a neurodegenerative disease that progresses over time, is primarily caused by a gradual degradation of the dopaminergic pathway in the striatum nigra, which results in a large loss of neurons in the substantia nigra compact (SNpc) and a depletion of dopamine (DA). PD samples have abnormalities in the structure and function of PC. The alterations contribute to the cause, development, and recovery of PD via influencing signaling pathways (SHH, Wnt, Notch-1, α-syn, and TGFß), genes (MYH10 and LRRK2), defective mitochondrial function, and substantia nigra dopaminergic neurons. Thus, restoring the normal structure and physiological function of PC and neurons in the brain are effective treatment for PD. This review summarizes the function of PC in neurodegenerative diseases and explores the pathological mechanisms caused by PC alterations in PD, in order to provide references and ideas for future research.

5.
J Adv Res ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39265888

ABSTRACT

INTRODUCTION: Primary cilia are hair-like solitary organelles growing on most mammalian cells that play fundamental roles in embryonic patterning and organogenesis. Defective cilia often cause a suite of inherited diseases called ciliopathies with multifaceted manifestations. Intraflagellar transport (IFT), a bidirectional protein trafficking along the cilium, actively facilitates the formation and absorption of primary cilia. IFT172 is the largest component of the IFT-B complex, and its roles in Bardet-Biedl Syndrome (BBS) have been appreciated with unclear mechanisms. OBJECTIVES: We performed a battery of behavioral tests with Ift172 haploinsufficiency (Ift172+/-) and WT littermates. We use RNA sequencing to identify the genes and signaling pathways that are differentially expressed and enriched in the hippocampus of Ift172+/- mice. Using AAV-mediated sparse labeling, electron microscopic examination, patch clamp and local field potential recording, western blot, luciferase reporter assay, chromatin immunoprecipitation, and neuropharmacological approach, we investigated the underlying mechanisms for the aberrant phenotypes presented by Ift172+/- mice. RESULTS: Ift172+/- mice displayed excessive self-grooming, elevated anxiety, and impaired cognition. RNA sequencing revealed enrichment of differentially expressed genes in pathways relevant to axonogenesis and synaptic plasticity, which were further confirmed by less spine density and synaptic number. Ift172+/- mice demonstrated fewer parvalbumin-expressing neurons, decreased inhibitory synaptic transmission, augmented theta oscillation, and sharp-wave ripples in the CA1 region. Moreover, Ift172 haploinsufficiency caused less BDNF production and less activated BDNF-TrkB signaling pathway through transcription factor Gli3. Application of 7,8-Dihydroxyflavone, a potent small molecular TrkB agonist, fully restored BDNF-TrkB signaling activity and abnormal behavioral phenotypes presented by Ift172+/- mice. With luciferase and chip assays, we provided further evidence that Gli3 may physically interact with BDNF promoter I and regulate BDNF expression. CONCLUSIONS: Our data suggest that Ift172 per se drives neurotrophic effects and, when defective, could cause neurodevelopmental disorders reminiscent of autism-like disorders.

6.
Curr Biol ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39317195

ABSTRACT

Centrosomes have critical roles in microtubule organization, ciliogenesis, and cell signaling.1,2,3,4,5,6,7,8 Centrosomal alterations also contribute to diseases, including microcephaly, cancer, and ciliopathies.9,10,11,12,13 To date, over 150 centrosomal proteins have been identified, including several kinases and phosphatases that control centrosome biogenesis, function, and maintenance.2,3,4,5,14,15,16,17,18,19,20,21 However, the regulatory mechanisms that govern centrosome function are not fully defined, and thus how defects in centrosomal regulation contribute to disease is incompletely understood. Using a systems genetics approach, we find here that PPP2R3C, a poorly characterized PP2A phosphatase subunit, is a distal centriole protein and functional partner of centriolar proteins CEP350 and FOP. We further show that a key function of PPP2R3C is to counteract the kinase activity of MAP3K1. In support of this model, MAP3K1 knockout suppresses growth defects caused by PPP2R3C inactivation, and MAP3K1 and PPP2R3C have opposing effects on basal and microtubule stress-induced JNK signaling. Illustrating the importance of balanced MAP3K1 and PPP2R3C activities, acute overexpression of MAP3K1 severely inhibits centrosome function and triggers rapid centriole disintegration. Additionally, inactivating PPP2R3C mutations and activating MAP3K1 mutations both cause congenital syndromes characterized by gonadal dysgenesis.22,23,24,25,26,27,28 As a syndromic PPP2R3C variant is defective in centriolar localization and binding to centriolar protein FOP, we propose that imbalanced activity of this centrosomal kinase-phosphatase pair is the shared cause of these disorders. Thus, our findings reveal a new centrosomal phospho-regulatory module, shed light on disorders of gonadal development, and illustrate the power of systems genetics to identify previously unrecognized gene functions.

7.
Front Cell Dev Biol ; 12: 1429782, 2024.
Article in English | MEDLINE | ID: mdl-39239564

ABSTRACT

Cdon and boc are members of the cell adhesion molecule subfamily III Ig/fibronectin. Although they have been reported to be involved in muscle and neural development at late developmental stage, their early roles in embryonic development remain unknown. Here, we discovered that in zebrafish, cdon, but not boc, is expressed in dorsal forerunner cells (DFCs) and the epithelium of Kupffer's vesicle (KV), suggesting a potential role for cdon in organ left-right (LR) patterning. Further data showed that liver and heart LR patterning were disrupted in cdon morphants and cdon mutants. Mechanistically, we found that loss of cdon function led to defect in DFCs clustering, reduced KV lumen, and defective cilia, resulting in randomized Nodal/spaw signaling and subsequent organ LR patterning defects. Additionally, predominant distribution of a cdon morpholino (MO) in DFCs caused defects in DFC clustering, KV morphogenesis, cilia number/length, Nodal/spaw signaling, and organ LR asymmetry, similar to those observed in cdon morphants and cdon -/- embryos, indicating a cell-autonomous role for cdon in regulating KV formation during LR patterning. In conclusion, our data demonstrate that during gastrulation and early somitogenesis, cdon is essential for proper DFC clustering, KV formation, and normal cilia, thereby playing a critical role in establishing organ LR asymmetry.

8.
Tissue Barriers ; : 2399990, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230173

ABSTRACT

Ciliopathies are a group of diseases caused by defects in cilia, hair-like organelles that can have many functions ranging from regulating extracellular fluid flow to sensing mechanical or chemical stimuli. Multiciliated cells (MCCs) with motile cilia are found in locations that include the central nervous system, where they are critical for homeostasis. Specifically, ependymal MCCs line the brain ventricles and central canal of the spinal cord, while other specialized MCCs occupy highly vascularized structures known as the choroid plexuses (ChPs) and produce cerebrospinal fluid (CSF). Now, a recent study has shown that murine ChP MCCs develop nodal-like cilia. Interestingly, ChP cilia were found to undergo resorption during early postnatal stages in part through axoneme regression, and this phenomenon was mirrored in human postmortem ChP samples. Taken together, these findings reveal important new insights about the ultrastructure of MCCs that comprise the mammalian ChP, and may have ramifications for other MCC populations in health and disease states.

9.
Acta Neuropathol ; 148(1): 39, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254862

ABSTRACT

Mature multiciliated ependymal cells line the cerebral ventricles where they form a partial barrier between the cerebrospinal fluid (CSF) and brain parenchyma and regulate local CSF microcirculation through coordinated ciliary beating. Although the ependyma is a highly specialized brain interface with barrier, trophic, and perhaps even regenerative capacity, it remains a misfit in the canon of glial neurobiology. We provide an update to seminal reviews in the field by conducting a scoping review of the post-2010 mature multiciliated ependymal cell literature. We delineate how recent findings have either called into question or substantiated classical views of the ependymal cell. Beyond this synthesis, we document the basic methodologies and study characteristics used to describe multiciliated ependymal cells since 1980. Our review serves as a comprehensive resource for future investigations of mature multiciliated ependymal cells.


Subject(s)
Brain , Cilia , Ependyma , Ependyma/pathology , Humans , Animals , Cilia/pathology , Cilia/physiology , Brain/pathology , Adult
11.
Pediatr Pulmonol ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39291810

ABSTRACT

INTRODUCTION: Primary ciliary dyskinesia (PCD) is a rare genetic disorder characterized by chronic respiratory tract infections and in some cases laterality defects and infertility. The symptoms of PCD are caused by malfunction of motile cilia, hair-like organelles protruding out of the cell. Thus far, disease causing variants in over 50 genes have been identified and these variants explain around 70% of all known cases. Population specific genetics underlying PCD has been reported highlighting the importance of characterizing gene variants in different populations for development of gene-based diagnostics and management. METHODS: Whole exome sequencing was used to identify disease causing variants in Finnish PCD cohort. The effect of the identified HYDIN variants on cilia structure and function was confirmed by high-speed video analysis, immunofluorescence and electron tomography. RESULTS: In this study, we identified three Finnish PCD patients carrying homozygous loss-of-function variants and one patient with compound heterozygous variants within HYDIN. The functional studies showed defects in the axonemal central pair complex. All patients had clinical PCD symptoms including chronic wet cough and recurrent airway infections, associated with mostly static airway cilia. CONCLUSION: Our results are consistent with the previously identified important role of HYDIN in the axonemal central pair complex and improve specific diagnostics of PCD in different national populations.

12.
Front Cell Dev Biol ; 12: 1397931, 2024.
Article in English | MEDLINE | ID: mdl-39268086

ABSTRACT

Emerging evidence suggests a significant contribution of primary cilia to cell division and proliferation. MicroRNAs, especially miR-17, contribute to cell cycle regulation and proliferation. Recent investigations have highlighted the dysregulated expression of miR-17 in various malignancies, underlining its potential role in cancer. However, the correlation between primary cilia and miR-17 has yet to be fully elucidated. The present study examines the presence of miR-17 in primary cilia. The miR-17 expression is studied in selected ciliary protein knockdown cells. Using in situ hybridization (ISH), we identified the subcellular localization of miR-17 in both cilium and cell body. We confirmed the importance of miR-17, progesterone receptor membrane component-2 (PGRMC2), and monosialodihexosylganglioside (GM3S) in cilia formation, as shown by the significant reduction in cilia and cilia length in knockdown cells compared to control. We also demonstrated the involvement of PGRMC2, GM3S, polycystin-2 (PKD2), and miR-17 in cellular proliferation and cell growth. Our studies revealed a hyperproliferative effect in the knockdown cells compared to control cells, suggesting the regulatory roles of PGRMC2/GM3S/PKD2/miR-17 in promoting cell proliferation. Overall, our studies conclude that ciliary proteins are involved in cell division and proliferation. We further hypothesize that primary cilia can serve as compartments to store and control genetic materials, further implicating their complex involvement in cellular processes.

13.
Heliyon ; 10(17): e35972, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39281559

ABSTRACT

An organoid culture system better recapitulates the cellular structure, function, and interaction between cells and the extracellular matrix (ECM) than a two-dimensional (2D) culture system. We here constructed a condylar cartilage organoid to explore the regulatory role of primary cilia. Similar to the natural condylar cartilage, the condylar cartilage organoid exhibited abundant ECM and comprised superficial, proliferative, and hypertrophic zones. Primary cilia in the condylar cartilage organoid were shorter on average than those in the 2D culture chondrocytes, but their average length was equivalent to those in the natural condylar cartilage. Notably, primary cilia in each zone of the condylar cartilage organoid had an average length similar to that of primary cilia in the natural condylar cartilage. According to transcriptomic and biochemical analyses, the expression of cilia-related genes and cilia-related Hedgehog (HH) signaling differed between the condylar cartilage organoid and 2D culture systems. IFT88 knockdown promoted the protein levels of COL-Ⅹ, TRPV4, and HH signaling molecules in the condylar cartilage organoid, but decreased them in the 2D culture system. Notably, the protein levels of COL-Ⅹ, TRPV4, and HH signaling molecules increased in the superficial zone of the si IFT88 condylar cartilage organoid compared with the condylar cartilage organoid. However, the protein levels of aforementioned molecules were not significantly different in proliferative and hypertrophic zones. Collectively, we successfully constructed the condylar cartilage organoid with a better tissue structure and abundant ECM. Moreover, the condylar cartilage organoid is more suitable for exploring primary cilia functions.

14.
Bioinspir Biomim ; 19(6)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39255824

ABSTRACT

A remarkable variety of organisms use metachronal coordination (i.e. numerous neighboring appendages beating sequentially with a fixed phase lag) to swim or pump fluid. This coordination strategy is used by microorganisms to break symmetry at small scales where viscous effects dominate and flow is time-reversible. Some larger organisms use this swimming strategy at intermediate scales, where viscosity and inertia both play important roles. However, the role of individual propulsor kinematics-especially across hydrodynamic scales-is not well-understood, though the details of propulsor motion can be crucial for the efficient generation of flow. To investigate this behavior, we developed a new soft robotic platform using magnetoactive silicone elastomers to mimic the metachronally coordinated propulsors found in swimming organisms. Furthermore, we present a method to passively encode spatially asymmetric beating patterns in our artificial propulsors. We investigated the kinematics and hydrodynamics of three propulsor types, with varying degrees of asymmetry, using Particle Image Velocimetry and high-speed videography. We find that asymmetric beating patterns can move considerably more fluid relative to symmetric beating at the same frequency and phase lag, and that asymmetry can be passively encoded into propulsors via the interplay between elastic and magnetic torques. Our results demonstrate that nuanced differences in propulsor kinematics can substantially impact fluid pumping performance. Our soft robotic platform also provides an avenue to explore metachronal coordination at the meso-scale, which in turn can inform the design of future bioinspired pumping devices and swimming robots.


Subject(s)
Biomimetic Materials , Cilia , Hydrodynamics , Robotics , Swimming , Robotics/instrumentation , Animals , Swimming/physiology , Cilia/physiology , Biomechanical Phenomena , Ctenophora/physiology , Biomimetics/methods , Biomimetics/instrumentation , Equipment Design , Rheology , Silicone Elastomers/chemistry , Viscosity
15.
Dis Model Mech ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39263856

ABSTRACT

Defects in ciliary signaling or mutations in proteins that localize to primary cilia lead to a class of human diseases known as ciliopathies. About 10% of mammalian genes encode cilia-associated proteins and a major gap in the cilia research field is prioritizing which genes to study and finding the in vivo vertebrate mutant alleles and reagents available for their study. Here we present a unified resource listing the cilia-associated human genes cross-referenced to available mouse and zebrafish mutant alleles, their associated phenotypes as well as expression data in kidney and functional data for vertebrate Hedgehog signaling. This resource empowers researchers to easily sort and filter genes based on their own expertise and priorities, cross-reference with newly-generated -omics datasets, and quickly find in vivo resources and phenotypes associated with a gene of interest.

16.
Cell Signal ; 124: 111402, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39251051

ABSTRACT

Cisplatin, a platinum-based anticancer drug, is used to treat several types of cancer. Despite its effectiveness, cisplatin-induced side effects have often been reported. Although cisplatin-induced toxicities, such as apoptosis and/or necrosis, have been well studied, the fate of cells after exposure to sublethal doses of cisplatin needs further elucidation. Treatment with a sublethal dose of cisplatin induced cell cycle arrest at the G2 phase in retinal pigment epithelial cells. Following cisplatin withdrawal, the cells irreversibly exited the cell cycle and became senescent. Notably, the progression from the G2 to the G1 phase occurred without mitotic entry, a phenomenon referred to as mitotic bypass, resulting in the accumulation of cells containing 4N DNA content. Cisplatin-exposed cells exhibited morphological changes associated with senescence, including an enlarged size of cell and nucleus and increased granularity. In addition, the senescent cells possessed primary cilia and persistent DNA lesions. Senescence induced by transient exposure to cisplatin involves mTOR activation. Although transient co-exposure with an mTORC1 inhibitor rapamycin did not prevent mitotic bypass and entry into senescence, it delayed the progression of senescence and attenuated senescent phenotypes, resulting in shorter primary cilia formation. Conclusively, cisplatin induces senescence in retinal pigment epithelial cells by promoting mTOR activation.

17.
Open Biol ; 14(9): 240036, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39255847

ABSTRACT

Family with sequence similarity 161 (Fam161) is an ancient family of microtubule-binding proteins located at the centriole and cilium transition zone (TZ) lumen that exhibit rapid evolution in mice. However, their adaptive role is unclear. Here, we used flies to gain insight into their cell type-specific adaptations. Fam161 is the sole orthologue of FAM161A and FAM161B found in flies. Mutating Fam161 results in reduced male reproduction and abnormal geotaxis behaviour. Fam161 localizes to sensory neuron centrioles and their specialized TZ (the connecting cilium) in a cell type-specific manner, sometimes labelling only the centrioles, sometimes labelling the centrioles and cilium TZ and sometimes labelling the TZ with varying lengths that are longer than other TZ proteins, defining a new ciliary compartment, the extra distal TZ. These findings suggest that Fam161 is an essential centriole and TZ protein with a unique cell type-specific localization in fruit flies that can produce cell type-specific adaptations.


Subject(s)
Centrioles , Cilia , Drosophila Proteins , Animals , Centrioles/metabolism , Cilia/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Male , Drosophila melanogaster/metabolism , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Organ Specificity
18.
Sci Rep ; 14(1): 20993, 2024 09 09.
Article in English | MEDLINE | ID: mdl-39251704

ABSTRACT

The kinesin-9 family comprises two subfamilies specific to ciliated eukaryotic cells, and has recently attracted considerable attention because of its importance in ciliary bending and formation. However, only scattered data are available on the motor properties of kinesin-9 family members; these properties have not been compared under identical experimental conditions using kinesin-9 motors from the same species. Here, we report the comprehensive motor properties of two kinesin-9 molecules of Tetrahymena thermophila, TtK9A (Kif9/Klp1 ortholog) and TtK9B1 (Kif6 ortholog), using microtubule-based in vitro assays, including single-motor and multi-motor assays and microtubule-stimulated ATPase assays. Both subfamilies exhibit microtubule plus-end-directed, extremely slow motor activity, both in single and multiple molecules. TtK9A shows lower processivity than TtK9B1. Our findings indicate that the considerable slow movement of kinesin-9 that corresponds to low ATP hydrolysis rates is a common feature of the ciliary kinesin-9 family.


Subject(s)
Kinesins , Microtubules , Tetrahymena thermophila , Kinesins/metabolism , Kinesins/genetics , Microtubules/metabolism , Tetrahymena thermophila/metabolism , Tetrahymena thermophila/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Adenosine Triphosphate/metabolism , Cilia/metabolism , Tetrahymena/metabolism , Tetrahymena/genetics
19.
J Adv Res ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39306273

ABSTRACT

INTRODUCTION: Mechanical stimulation has been proven to promote bone-tendon interface (BTI) healing, but the mechanism remains unclear. OBJECTIVE: To investigate the effects of mechanical stimulation on the biological behavior of nestin+-bone mesenchymal stem cells (BMSCs) during the BTI healing, and to reveal the mechanisms of mechanical stimulation affecting BTI healing by primary cilia on the nestin+-BMSCs. METHODS: Transgenic tracing mice (nestin creERT2:: IFT88fl/fl/ROSA26 YFP) with primary cilia on nestin+-BMSCs conditioned knocked out were constructed, and the littermates (nestin creERT2:: ROSA26 YFP) with normal cilia on nestin+-BMSCs were the control. After establishing mouse supraspinatus insertion injury models, samples were collected at week-2 (n = 5 per group), 4 and 8 (n = 15 per group, respectively). In vivo, the repair efficiency was evaluated by histology, imaging, biomechanics, and the migration of nestin+-BMSCs, detected by immunofluorescence staining. In vitro, nestin+ BMSCs were sorted and stimulated by tensile force to study the mechanisms of primary cilium-mediated mechanosensitive basis. RESULTS: Mechanical stimulation (MS) accelerated the recruitment of nestin+-BMSCs and promoted osteogenic and chondrogenic capacity. Histological, imaging and biomechanical results showed that the BTI healing quality of the IFT88+/+, MS group was better than that of the other groups. After the conditionally knockout IFT88 in nestin+-BMSCs, the repair ability of the BTI was obviously deteriorated, even though mechanical stimulation did not increase significantly (IFT88-/-, MS group). In vitro results showed the tensile loading enhanced the proliferation, migration and osteogenic or chondrogenic gene expression of nestin+-BMSCs with normal cilia. On the other hand, osteogenesis and chondrogenic expression were significantly decreased after inhibiting actin- Hippo/YAP pathway components. CONCLUSION: The primary cilia mediated mechanical stimulation regulated osteogenic and chondrogenic differentiation potential of nestin+-BMSCs through the actin- Hippo/YAP pathway, and then promoted the BTI healing process.

20.
Biol Open ; 13(9)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39263863

ABSTRACT

Mutations impacting cilia genes lead to a class of human diseases known as ciliopathies. This is due to the role of cilia in the development, survival, and regeneration of many cell types. We investigated the extent to which disrupting cilia impacted these processes in lateral line hair cells of zebrafish. We found that mutations in two intraflagellar transport (IFT) genes, ift88 and dync2h1, which lead to the loss of kinocilia, caused increased hair cell apoptosis. IFT gene mutants also have a decreased mitochondrial membrane potential, and blocking the mitochondrial uniporter causes a loss of hair cells in wild-type zebrafish but not mutants, suggesting mitochondria dysfunction may contribute to the apoptosis seen in these mutants. These mutants also showed decreased proliferation during hair cell regeneration but did not show consistent changes in support cell number or proliferation during hair cell development. These results show that the loss of hair cells seen following disruption of cilia through either mutations in anterograde or retrograde IFT genes appears to be due to impacts on hair cell survival but not necessarily development in the zebrafish lateral line.


Subject(s)
Cell Survival , Cilia , Mutation , Regeneration , Zebrafish Proteins , Zebrafish , Cilia/metabolism , Animals , Cell Survival/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Apoptosis/genetics , Hair Cells, Auditory/physiology , Hair Cells, Auditory/metabolism , Cell Proliferation , Mitochondria/metabolism , Mitochondria/genetics , Membrane Potential, Mitochondrial
SELECTION OF CITATIONS
SEARCH DETAIL