Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 135: 104549, 2021 08.
Article in English | MEDLINE | ID: mdl-34171640

ABSTRACT

Accurate values for the six cardiac bidomain conductivities are crucial for meaningful computational studies of conduction in cardiac tissue, and are yet to be determined by experimental means. Although previous studies have proposed an approach using a multi-electrode array to measure potentials, from which the conductivities can be determined, it has been found that the conductivities cannot be retrieved consistently when the noise in the potentials varies. This paper presents a protocol, which not only has been shown to retrieve the conductivities to a reasonable accuracy, but does so under the presence of a more appropriate additive Gaussian noise model, while using fewer computational resources. Through repetitions of the protocol, a comparison of two pre-fabricated 128 electrode arrays, one array with a square arrangement of electrodes and the other with a rectangular arrangement, was made against a 75-electrode array proposed in previous studies. Results indicated that the two pre-fabricated arrays were generally more capable of obtaining the cardiac conductivities to a higher degree of accuracy than the 75-electrode array. The 128-electrode rectangular array was orientated such that the length of the array first ran along the direction of the fibres, then was reorientated such that the length of the array ran perpendicular to the direction of the fibres. The 128-electrode rectangular array, when orientated in this manner, was more capable of retrieving the conductivities than the remainder of the arrays tested, and thus we suggest this arrangement be used during experimental trials.


Subject(s)
Heart , Models, Cardiovascular , Computer Simulation , Electric Conductivity , Electrodes
2.
Med Biol Eng Comput ; 58(12): 2919-2935, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33089458

ABSTRACT

Modelling the electrical activity of the heart is an important tool for understanding electrical function in various diseases and conduction disorders. Clearly, for model results to be useful, it is necessary to have accurate inputs for the models, in particular the commonly used bidomain model. However, there are only three sets of four experimentally determined conductivity values for cardiac ventricular tissue and these are inconsistent, were measured around 40 years ago, often produce different results in simulations and do not fully represent the three-dimensional anisotropic nature of cardiac tissue. Despite efforts in the intervening years, difficulties associated with making the measurements and also determining the conductivities from the experimental data have not yet been overcome. In this review, we summarise what is known about the conductivity values, as well as progress to date in meeting the challenges associated with both the mathematical modelling and the experimental techniques. Graphical abstract Epicardial potential distributions, arising from a subendocardial ischaemic region, modelled using conductivity data from the indicated studies.


Subject(s)
Models, Cardiovascular , Myocardial Ischemia , Computer Simulation , Heart , Heart Conduction System , Humans
3.
Med Biol Eng Comput ; 56(5): 761-780, 2018 May.
Article in English | MEDLINE | ID: mdl-28933043

ABSTRACT

Reduced blood flow in the coronary arteries can lead to damaged heart tissue (myocardial ischaemia). Although one method for detecting myocardial ischaemia involves changes in the ST segment of the electrocardiogram, the relationship between these changes and subendocardial ischaemia is not fully understood. In this study, we modelled ST-segment epicardial potentials in a slab model of cardiac ventricular tissue, with a central ischaemic region, using the bidomain model, which considers conduction longitudinal, transverse and normal to the cardiac fibres. We systematically quantified the effect of uncertainty on the input parameters, fibre rotation angle, ischaemic depth, blood conductivity and six bidomain conductivities, on outputs that characterise the epicardial potential distribution. We found that three typical types of epicardial potential distributions (one minimum over the central ischaemic region, a tripole of minima, and two minima flanking a central maximum) could all occur for a wide range of ischaemic depths. In addition, the positions of the minima were affected by both the fibre rotation angle and the ischaemic depth, but not by changes in the conductivity values. We also showed that the magnitude of ST depression is affected only by changes in the longitudinal and normal conductivities, but not by the transverse conductivities.


Subject(s)
Models, Cardiovascular , Myocardial Ischemia/pathology , Uncertainty , Action Potentials/physiology , Algorithms , Animals , Computer Simulation , Heart Conduction System/physiology , Humans , Least-Squares Analysis , Pericardium/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...