Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 835
Filter
1.
EFSA J ; 22(7): e8950, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39086458

ABSTRACT

Following a request from the European Commission, the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety and efficacy of liquid l-lysine base produced with a genetically modified strain of Corynebacterium glutamicum as a nutritional feed additive for all animal species. The l-lysine base liquid produced with C. glutamicum NRRL B-67535 and NRRL B-67439 is currently authorised as a nutritional additive for all animal species. The present application is aimed at modifying the current authorisation to include C. glutamicum NRRL B-68248 as a production strain. The new production strain qualifies for the qualified presumption of safety approach when used for production purposes. It was unambiguously identified as C. glutamicum and was shown not to harbour acquired antimicrobial resistance determinants for antibiotics of human and veterinary importance. All the introduced sequences or mutations were considered to be safe, and no viable cells or DNA of the NRRL B-68248 strain was detected in the final product. Therefore, the final product does not pose any safety concern associated with the production strain. l-Lysine base produced using C. glutamicum NRRL B-68248 does not represent a risk for the target species, the consumer or the environment. The additive was considered to be neither irritant to skin or the eyes, nor a dermal sensitiser. l-Lysine base produced with C. glutamicum NRRL B-68248 is considered to be an efficacious source of the essential amino acid l-lysine for non-ruminant animal species. For the supplemental l-lysine to be as efficacious in ruminants as in non-ruminant species, it would require protection against degradation in the rumen.

2.
Food Chem ; 458: 140238, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38968705

ABSTRACT

Corynebacterium glutamicum was used to ferment wheat gluten hydrolysates (WGHs) to prepare flavour base. This study investigated the effect of hydrolysis degrees (DHs) and fermentation time on flavour of WGHs. During fermentation, the contents of amino nitrogen, total acid and small peptides increased, while the protein and pH value decreased. Succinic acid, GMP, and Glu were the prominent umami substances in fermented WGHs. The aromas of WGHs with different DHs could be distinguished by electronic nose and GC-IMS. Based on OAV of GC-MS, hexanal was the main compound in WGHs, while phenylethyl alcohol and acetoin were dominant after fermentation. WGHs with high DHs accumulated more flavour metabolites. Correlation analysis showed that small peptides (<1 kDa) could promote the formation of flavour substances, and Asp was potentially relevant flavour precursor. This study indicated that fermented WGHs with different DHs can potentially be used in different food applications based on flavour profiles.

3.
Front Bioeng Biotechnol ; 12: 1419444, 2024.
Article in English | MEDLINE | ID: mdl-39050686

ABSTRACT

Oranges are the most processed fruit in the world-it is therefore apparent that the industrial production of orange juice generates large quantities of orange peel as a by-product. Unfortunately, the management of the orange peel waste leads to economic and environmental problems. Meanwhile, the use of sustainable raw materials for the production of bulk chemicals, such as amino acids, is becoming increasingly attractive. To address both issues, this study focused on the use of orange peel waste as a raw material for media preparation for the production of amino acids by engineered Corynebacterium glutamicum. C. glutamicum grew on pure orange peel hydrolysate (OPH) and growth was enhanced by the addition of a nitrogen source and a pH buffer. Inhibitory effects by the combination of high concentrations of OPH, (NH4)2SO4, and MOPS buffer in the wild-type strain (WT), were overcome in the tyrosine-producing engineered C. glutamicum strain AROM3. Genetic modifications that we identified to allow for improved growth rates under these conditions included the deletions of the vanillin dehydrogenase gene vdh, the ʟ-lactate dehydrogenase gene ldhA and the 19 genes comprising cluster cg2663-cg2686. A growth inhibiting compound present in high concentrations in the OPH is 5-(hydroxymethyl)furfural (HMF). We identified vdh as being primarily responsible for the oxidation of HMF to its acid 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), as the formation of HMFCA was reduced by 97% upon deletion of vdh in C. glutamicum WT. In addition, we showed that growth limitations could be overcome by adjusting the media preparation, using a combination of cheap ammonia water and KOH for pH neutralization after acidic hydrolysis. Overall, we developed a sustainable medium based on orange peel waste for the cultivation of C. glutamicum and demonstrated the successful production of the exemplary amino acids ʟ-arginine, ʟ-lysine, ʟ-serine, ʟ-valine and ʟ-tyrosine.

4.
ACS Synth Biol ; 13(7): 2227-2237, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38975718

ABSTRACT

The inevitable transition from petrochemical production processes to renewable alternatives has sparked the emergence of biofoundries in recent years. Manual engineering of microbes will not be sufficient to meet the ever-increasing demand for novel producer strains. Here we describe the AutoBioTech platform, a fully automated laboratory system with 14 devices to perform operations for strain construction without human interaction. Using modular workflows, this platform enables automated transformations of Escherichia coli with plasmids assembled via modular cloning. A CRISPR/Cas9 toolbox compatible with existing modular cloning frameworks allows automated and flexible genome editing of E. coli. In addition, novel workflows have been established for the fully automated transformation of the Gram-positive model organism Corynebacterium glutamicum by conjugation and electroporation, with the latter proving to be the more robust technique. Overall, the AutoBioTech platform excels at versatility due to the modularity of workflows and seamless transitions between modules. This will accelerate strain engineering of Gram-negative and Gram-positive bacteria.


Subject(s)
CRISPR-Cas Systems , Corynebacterium glutamicum , Escherichia coli , Gene Editing , Plasmids , Escherichia coli/genetics , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Plasmids/genetics , Gene Editing/methods , CRISPR-Cas Systems/genetics , Electroporation/methods , Genetic Engineering/methods
5.
Biofabrication ; 16(4)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38996414

ABSTRACT

Riboflavin overproduction byCorynebacterium glutamicumwas achieved by screening synthetic operons, enabling fine-tuned expression of the riboflavin biosynthetic genesribGCAH.The synthetic operons were designed by means of predicted translational initiation rates of each open reading frame, with the best-performing selection enabling riboflavin overproduction without negatively affecting cell growth. Overexpression of the fructose-1,6-bisphosphatase (fbp) and 5-phosphoribosyl 1-pyrophosphate aminotransferase (purF) encoding genes was then done to redirect the metabolic flux towards the riboflavin precursors. The resulting strain produced 8.3 g l-1of riboflavin in glucose-based fed-batch fermentations, which is the highest reported riboflavin titer withC. glutamicum. Further genetic engineering enabled both xylose and mannitol utilization byC. glutamicum, and we demonstrated riboflavin overproduction with the xylose-rich feedstocks rice husk hydrolysate and spent sulfite liquor, and the mannitol-rich feedstock brown seaweed hydrolysate. Remarkably, rice husk hydrolysate provided 30% higher riboflavin yields compared to glucose in the bioreactors.


Subject(s)
Corynebacterium glutamicum , Metabolic Engineering , Riboflavin , Riboflavin/biosynthesis , Riboflavin/chemistry , Riboflavin/metabolism , Corynebacterium glutamicum/metabolism , Corynebacterium glutamicum/genetics , Xylose/metabolism , Fermentation , Glucose/metabolism , Operon , Mannitol/metabolism , Mannitol/chemistry , Bioreactors , Genetic Engineering
6.
ACS Synth Biol ; 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946081

ABSTRACT

l-Valine, an essential amino acid, serves as a valuable compound in various industries. However, engineering strains with both high yield and purity are yet to be delivered for microbial l-valine production. We engineered a Corynebacterium glutamicum strain capable of highly efficient production of l-valine. We initially introduced an acetohydroxy acid synthase mutant from an industrial l-valine producer and optimized a cofactor-balanced pathway, followed by the activation of the nonphosphoenolpyruvate-dependent carbohydrate phosphotransferase system and the introduction of an exogenous Entner-Doudoroff pathway. Subsequently, we weakened anaplerotic pathways, and attenuated the tricarboxylic acid cycle via start codon substitution in icd, encoding isocitrate dehydrogenase. Finally, to balance bacterial growth and l-valine production, an l-valine biosensor-dependent genetic circuit was established to dynamically repress citrate synthase expression. The engineered strain Val19 produced 103 g/L of l-valine with a high yield of 0.35 g/g glucose and a productivity of 2.67 g/L/h. This represents the highest reported l-valine production in C. glutamicum via direct fermentation and exhibits potential for its industrial-scale production, leveraging the advantages of C. glutamicum over other microbes.

7.
Synth Syst Biotechnol ; 9(4): 752-758, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39007091

ABSTRACT

3-Hydroxypropionic Acid (3-HP) is recognized as a high value-added chemical with a broad range of applications. Among the various biosynthetic pathways for 3-HP production, the ß-alanine pathway is particularly noteworthy due to its capacity to generate 3-HP from glucose at a high theoretical titer. In this study, the ß-alanine biosynthesis pathway was introduced and optimized in Corynebacterium glutamicum. By strategically regulating the supply of precursors, we successfully engineered a strain capable of efficiently synthesizing 3-HP through the ß-alanine pathway, utilizing glucose as the substrate. The engineered strain CgP36 produced 47.54 g/L 3-HP at a yield of 0.295 g/g glucose during the fed-batch fermentation in a 5 L fermenter, thereby attaining the highest 3-HP titer obtained from glucose via the ß-alanine pathway.

8.
World J Microbiol Biotechnol ; 40(9): 267, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004689

ABSTRACT

As an efficient and safe industrial bacterium, Corynebacterium glutamicum has extensive application in amino acid production. However, it often faces oxidative stress induced by reactive oxygen species (ROS), leading to diminished production efficiency. To enhance the robustness of C. glutamicum, numerous studies have focused on elucidating its regulatory mechanisms under various stress conditions such as heat, acid, and sulfur stress. However, a comprehensive review of its defense mechanisms against oxidative stress is needed. This review offers an in-depth overview of the mechanisms C. glutamicum employs to manage oxidative stress. It covers both enzymatic and non-enzymatic systems, including antioxidant enzymes, regulatory protein families, sigma factors involved in transcription, and physiological redox reduction pathways. This review provides insights for advancing research on the antioxidant mechanisms of C. glutamicum and sheds light on its potential applications in industrial production.


Subject(s)
Antioxidants , Bacterial Proteins , Corynebacterium glutamicum , Gene Expression Regulation, Bacterial , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species , Sigma Factor , Corynebacterium glutamicum/metabolism , Corynebacterium glutamicum/genetics , Antioxidants/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Reactive Oxygen Species/metabolism , Sigma Factor/metabolism , Sigma Factor/genetics
9.
FEBS J ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080980

ABSTRACT

Pyruvate:quinone oxidoreductase (PQO) is a flavin-containing peripheral membrane enzyme catalyzing the decarboxylation of pyruvate to acetate and CO2 with quinone as an electron acceptor. Here, we investigate PQO activity in Corynebacterium glutamicum, examine purified PQO, and describe the crystal structure of the native enzyme and a truncated version. The specific PQO activity was highest in stationary phase cells grown in complex medium, lower in cells grown in complex medium containing glucose or acetate, and lowest in cells grown in minimal acetate-medium. A similar pattern with about 30-fold higher specific PQO activities was observed in C. glutamicum with plasmid-bound pqo expression under the control of the tac promoter, indicating that the differences in PQO activity are likely due to post-transcriptional control. Continuous cultivation of C. glutamicum at dilution rates between 0.05 and 0.4 h-1 revealed a negative correlation between PQO activity and growth rate. Kinetic analysis of PQO enzymes purified from cells grown in complex or in minimal acetate-medium revealed substantial differences in specific activity (72.3 vs. 11.9 U·mg protein-1) and turnover number (kcat: 440 vs. 78 s-1, respectively), suggesting post-translational modifications affecting PQO activity. Structural analysis of PQO revealed a homotetrameric arrangement very similar to the Escherichia coli pyruvate oxidase PoxB except for the C-terminal membrane binding domain, which exhibited a conformation markedly different from its PoxB counterpart. A truncated PQO variant lacking 17 C-terminal amino acids showed higher affinity to pyruvate and was independent of detergent activation, highlighting the importance of the C-terminus for enzyme activation and lipid binding.

10.
Biotechnol Biofuels Bioprod ; 17(1): 88, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918796

ABSTRACT

BACKGROUND: ß-Arbutin, a hydroquinone glucoside found in pears, bearberry leaves, and various plants, exhibits antioxidant, anti-inflammatory, antimicrobial, and anticancer effects. ß-Arbutin has wide applications in the pharmaceutical and cosmetic industries. However, the limited availability of high-performance strains limits the biobased production of ß-arbutin. RESULTS: This study established the ß-arbutin biosynthetic pathway in C. glutamicum ATCC13032 by introducing codon-optimized ubiC, MNX1, and AS. Additionally, the production titer of ß-arbutin was increased by further inactivation of csm and trpE to impede the competitive metabolic pathway. Further modification of the upstream metabolic pathway and supplementation of UDP-glucose resulted in the final engineered strain, C. glutamicum AR11, which achieved a ß-arbutin production titer of 7.94 g/L in the optimized fermentation medium. CONCLUSIONS: This study represents the first successful instance of de novo ß-arbutin production in C. glutamicum, offering a chassis cell for ß-arbutin biosynthesis.

11.
Metab Eng ; 84: 117-127, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38901555

ABSTRACT

Effective utilization of glucose, xylose, and acetate, common carbon sources in lignocellulose hydrolysate, can boost biomanufacturing economics. However, carbon leaks into biomass biosynthesis pathways instead of the intended target product remain to be optimized. This study aimed to enhance α-carotene production by optimizing glucose, xylose, and acetate utilization in a high-efficiency Corynebacterium glutamicum cell factory. Heterologous xylose pathway expression in C. glutamicum resulted in strain m4, exhibiting a two-fold increase in α-carotene production from xylose compared to glucose. Xylose utilization was found to boost the biosynthesis of pyruvate and acetyl-CoA, essential precursors for carotenoid biosynthesis. Additionally, metabolic engineering including pck, pyc, ppc, and aceE deletion, completely disrupted the metabolic connection between glycolysis and the TCA cycle, further enhancing α-carotene production. This strategic intervention directed glucose and xylose primarily towards target chemical production, while acetate supplied essential metabolites for cell growth recovery. The engineered strain C. glutamicum m8 achieved 30 mg/g α-carotene, 67% higher than strain m4. In fed-batch fermentation, strain m8 produced 1802 mg/L of α-carotene, marking the highest titer reported to date in microbial fermentation. Moreover, it exhibited excellent performance in authentic lignocellulosic hydrolysate, producing 216 mg/L α-carotene, 1.45 times higher than the initial strain (m4). These labor-division strategies significantly contribute to the development of clean processes for producing various valuable chemicals from lignocellulosic resources.


Subject(s)
Corynebacterium glutamicum , Metabolic Engineering , Corynebacterium glutamicum/metabolism , Corynebacterium glutamicum/genetics , Glucose/metabolism , Xylose/metabolism , Carotenoids/metabolism , Carbon/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/biosynthesis
12.
Molecules ; 29(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38930958

ABSTRACT

The phosphoenol pyruvate-oxaloacetate-pyruvate-derived amino acids (POP-AAs) comprise native intermediates in cellular metabolism, within which the phosphoenol pyruvate-oxaloacetate-pyruvate (POP) node is the switch point among the major metabolic pathways existing in most living organisms. POP-AAs have widespread applications in the nutrition, food, and pharmaceutical industries. These amino acids have been predominantly produced in Escherichia coli and Corynebacterium glutamicum through microbial fermentation. With the rapid increase in market requirements, along with the global food shortage situation, the industrial production capacity of these two bacteria has encountered two bottlenecks: low product conversion efficiency and high cost of raw materials. Aiming to push forward the update and upgrade of engineered strains with higher yield and productivity, this paper presents a comprehensive summarization of the fundamental strategy of metabolic engineering techniques around phosphoenol pyruvate-oxaloacetate-pyruvate node for POP-AA production, including L-tryptophan, L-tyrosine, L-phenylalanine, L-valine, L-lysine, L-threonine, and L-isoleucine. Novel heterologous routes and regulation methods regarding the carbon flux redistribution in the POP node and the formation of amino acids should be taken into consideration to improve POP-AA production to approach maximum theoretical values. Furthermore, an outlook for future strategies of low-cost feedstock and energy utilization for developing amino acid overproducers is proposed.


Subject(s)
Amino Acids , Metabolic Engineering , Metabolic Engineering/methods , Amino Acids/metabolism , Oxaloacetic Acid/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Phosphoenolpyruvate/metabolism , Corynebacterium glutamicum/metabolism , Corynebacterium glutamicum/genetics , Pyruvic Acid/metabolism , Metabolic Networks and Pathways , Fermentation
13.
J Biosci Bioeng ; 138(3): 225-231, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38937154

ABSTRACT

Anaplerotic reactions catalyzed by pyruvate carboxylase (PC) and phosphoenolpyruvate carboxylase (PEPC) have important roles in the production of l-lysine to replenish oxaloacetic acid (OAA) in Corynebacterium glutamicum. However, the relative contributions of these enzymes to l-lysine production in C. glutamicum are not fully understood. In this study, using a parent strain (P) carrying a feedback inhibition-resistant aspartokinase with the T311I mutation, we constructed a PC gene-deleted mutant strain (PΔPC) and a PEPC gene-deleted mutant strain (PΔPEPC). Although the growth of both mutant strains was comparable to the growth of strain P, the maximum l-lysine production in strains PΔPC and PΔPEPC decreased by 14% and 49%, respectively, indicating that PEPC strongly contributed to OAA supply. l-Lysine production in strain PΔPC slightly decreased during the logarithmic phase, while production during the early stationary phase was comparable to production in strain P. By contrast, strain PΔPEPC produced l-lysine in an amount comparable to the production of strain P during the logarithmic phase; l-lysine production after the early stationary phase was completely stopped in strain PΔPEPC. These results indicate that OAA is supplied by both PC and PEPC during the logarithmic phase, while only PEPC can continuously supply OAA after the logarithmic phase.


Subject(s)
Corynebacterium glutamicum , Lysine , Phosphoenolpyruvate Carboxylase , Pyruvate Carboxylase , Corynebacterium glutamicum/metabolism , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/enzymology , Lysine/metabolism , Lysine/biosynthesis , Pyruvate Carboxylase/metabolism , Pyruvate Carboxylase/genetics , Phosphoenolpyruvate Carboxylase/metabolism , Phosphoenolpyruvate Carboxylase/genetics , Oxaloacetic Acid/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Mutation , Aspartate Kinase/metabolism , Aspartate Kinase/genetics , Gene Deletion
14.
Microb Cell Fact ; 23(1): 147, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783320

ABSTRACT

Aminopyrrolnitrin (APRN), a natural halogenated phenylpyrrole derivative (HPD), has strong antifungal and antiparasitic activities. Additionally, it showed 2.8-fold increased photostability compared to pyrrolnitrin, a commercially available HPD with antimicrobial activity. For microbial production of APRN, we first engineered anthranilate phosphoribosyltransferase encoded by trpD from Corynebacterium glutamicum, resulting in a TrpDA162D mutation that exhibits feedback-resistant against L-tryptophan and higher substrate affinity compared to wild-type TrpD. Plasmid-borne expression of trpDA162D in C. glutamicum TP851 strain with two copies of trpDA162D in the genome led to the production of 3.1 g/L L-tryptophan in flask culture. Subsequent step for L-tryptophan chlorination into 7-chloro-L-tryptophan was achieved by introducing diverse sources of genes encoding tryptophan 7-halogenase (PrnA or RebH) and flavin reductase (Fre, PrnF, or RebF). The combined expression of prnA from Serratia grimesii or Serratia plymuthica with flavin reductase gene from Escherichia coli, Pseudomonas fluorescens, or Lechevalieria aerocolonigenes yielded higher production of 7-chloro-L-tryptophan in comparison to other sets of two-component systems. In the next step, production of putative monodechloroaminopyrrolnitrin (MDAP) from 7-chloro-L-tryptophan was achieved through the expression of prnB encoding MDAP synthase from S. plymuthica or P. fluorescens. Finally, an artificial APRN biosynthetic pathway was constructed by simultaneously expressing genes coding for tryptophan 7-halogenase, flavin reductase, MDAP synthase, and MDAP halogenase (PrnC) from different microbial sources within the L-tryptophan-producing TP851 strain. As prnC from S. grimesii or S. plymuthica was introduced into the host strain, which carried plasmids expressing prnA from S. plymuthica, fre from E. coli, and prnB from S. plymuthica, APN3639 and APN3638 accumulated 29.5 mg/L and 28.1 mg/L of APRN in the culture broth. This study represents the first report on the fermentative APRN production by metabolically engineered C. glutamicum.


Subject(s)
Corynebacterium glutamicum , Metabolic Engineering , Corynebacterium glutamicum/metabolism , Corynebacterium glutamicum/genetics , Metabolic Engineering/methods , Pyrrolnitrin/biosynthesis , Pyrrolnitrin/metabolism , Fermentation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Tryptophan/biosynthesis , Tryptophan/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Oxidoreductases
15.
Bioresour Technol ; 402: 130774, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701983

ABSTRACT

Formate as an ideal mediator between the physicochemical and biological realms can be obtained from electrochemical reduction of CO2 and used to produce bio-chemicals. Yet, limitations arise when employing natural formate-utilizing microorganisms due to restricted product range and low biomass yield. This study presents a breakthrough: engineered Corynebacterium glutamicum strains (L2-L4) through modular engineering. L2 incorporates the formate-tetrahydrofolate cycle and reverse glycine cleavage pathway, L3 enhances NAD(P)H regeneration, and L4 reinforces metabolic flux. Metabolic modeling elucidates C1 assimilation, guiding strain optimization for co-fermentation of formate and glucose. Strain L4 achieves an OD600 of 0.5 and produces 0.6 g/L succinic acid. 13C-labeled formate confirms C1 assimilation, and further laboratory evolution yields 1.3 g/L succinic acid. This study showcases a successful model for biologically assimilating formate in C. glutamicum that could be applied in C1-based biotechnological production, ultimately forming a formate-based bioeconomy.


Subject(s)
Biomass , Corynebacterium glutamicum , Formates , Metabolic Engineering , Succinic Acid , Corynebacterium glutamicum/metabolism , Formates/metabolism , Metabolic Engineering/methods , Succinic Acid/metabolism , Fermentation , Models, Biological , Glucose/metabolism
16.
Biotechnol Biofuels Bioprod ; 17(1): 58, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693567

ABSTRACT

BACKGROUND: Vanillin is a flavoring substance derived from vanilla. We are currently developing a biotransformation method for vanillin production using glucose. This report describes the last step in vanillin production: the conversion of vanillic acid to vanillin. First, we selected Corynebacterium glutamicum as the host owing to its high vanillin resistance. The aromatic aldehyde reductase gene (NCgl0324) and vanillic acid demethylase protein subunits A and B gene (vanAB, NCgl2300-NCgl2301) were deleted in C. glutamicum genome to avoid vanillin degradation. Next, we searched for an aromatic carboxylic acid reductase (ACAR), which converts vanillic acid to vanillin. Seventeen ACAR homologs from various organisms were introduced into C. glutamicum. RESULTS: In vivo conversion experiments showed that eight ACARs were successfully expressed and produced vanillin. In terms of conversion activity and substrate specificity, the ACARs from Gordonia effusa, Coccomyxa subellipsoidea, and Novosphingobium malaysiense are promising candidates for commercial production. CONCLUSIONS: Corynebacterium glutamicum harboring Gordonia effusa ACAR produced 22 g/L vanillin, which is, to the best of our knowledge, the highest accumulation reported in the literature. At the same time, we discovered ACAR from Novosphingobium malaysiense and Coccomyxa subellipsoidea C-169 with high substrate specificity. These findings are useful for reducing the byproducts.

17.
Molecules ; 29(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38792114

ABSTRACT

Flavonoids and stilbenoids, crucial secondary metabolites abundant in plants and fungi, display diverse biological and pharmaceutical activities, including potent antioxidant, anti-inflammatory, and antimicrobial effects. However, conventional production methods, such as chemical synthesis and plant extraction, face challenges in sustainability and yield. Hence, there is a notable shift towards biological production using microorganisms like Escherichia coli and yeast. Yet, the drawbacks of using E. coli and yeast as hosts for these compounds persist. For instance, yeast's complex glycosylation profile can lead to intricate protein production scenarios, including hyperglycosylation issues. Consequently, Corynebacterium glutamicum emerges as a promising alternative, given its adaptability and recent advances in metabolic engineering. Although extensively used in biotechnological applications, the potential production of flavonoid and stilbenoid in engineered C. glutamicum remains largely untapped compared to E. coli. This review explores the potential of metabolic engineering in C. glutamicum for biosynthesis, highlighting its versatility as a cell factory and assessing optimization strategies for these pathways. Additionally, various metabolic engineering methods, including genomic editing and biosensors, and cofactor regeneration are evaluated, with a focus on C. glutamicum. Through comprehensive discussion, the review offers insights into future perspectives in production, aiding researchers and industry professionals in the field.


Subject(s)
Corynebacterium glutamicum , Flavonoids , Metabolic Engineering , Stilbenes , Corynebacterium glutamicum/metabolism , Corynebacterium glutamicum/genetics , Metabolic Engineering/methods , Flavonoids/biosynthesis , Flavonoids/metabolism , Stilbenes/metabolism
18.
J Agric Food Chem ; 72(21): 12219-12228, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38747135

ABSTRACT

Phycocyanobilin, an algae-originated light-harvesting pigment known for its antioxidant properties, has gained attention as it plays important roles in the food and medication industries and has surged in demand owing to its low-yield extraction from natural resources. In this study, engineered Corynebacterium glutamicum was developed to achieve high PCB production, and three strategies were proposed: reinforcement of the heme biosynthesis pathway with the introduction of two PCB-related enzymes, strengthening of the pentose phosphate pathway to generate an efficient cycle of NADPH, and fed-batch fermentation to maximize PCB production. Each approach increased PCB synthesis, and the final engineered strain successfully produced 78.19 mg/L in a flask and 259.63 mg/L in a 5 L bioreactor, representing the highest bacterial production of PCB reported to date, to our knowledge. The strategies applied in this study will be useful for the synthesis of PCB derivatives and can be applied in the food and pharmaceutical industries.


Subject(s)
Corynebacterium glutamicum , Metabolic Engineering , Phycobilins , Phycocyanin , Corynebacterium glutamicum/metabolism , Corynebacterium glutamicum/genetics , Phycocyanin/metabolism , Phycocyanin/genetics , Phycobilins/metabolism , Phycobilins/genetics , Fermentation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pentose Phosphate Pathway/genetics , Bioreactors/microbiology
19.
Sci Rep ; 14(1): 8081, 2024 04 06.
Article in English | MEDLINE | ID: mdl-38582923

ABSTRACT

Astaxanthin, a versatile C40 carotenoid prized for its applications in food, cosmetics, and health, is a bright red pigment with powerful antioxidant properties. To enhance astaxanthin production in Corynebacterium glutamicum, we employed rational pathway engineering strategies, focused on improving precursor availability and optimizing terminal oxy-functionalized C40 carotenoid biosynthesis. Our efforts resulted in an increased astaxanthin precursor supply with 1.5-fold higher ß-carotene production with strain BETA6 (18 mg g-1 CDW). Further advancements in astaxanthin production were made by fine-tuning the expression of the ß-carotene hydroxylase gene crtZ and ß-carotene ketolase gene crtW, yielding a nearly fivefold increase in astaxanthin (strain ASTA**), with astaxanthin constituting 72% of total carotenoids. ASTA** was successfully transferred to a 2 L fed-batch fermentation with an enhanced titer of 103 mg L-1 astaxanthin with a volumetric productivity of 1.5 mg L-1 h-1. Based on this strain a pathway expansion was achieved towards glycosylated C40 carotenoids under heterologous expression of the glycosyltransferase gene crtX. To the best of our knowledge, this is the first time astaxanthin-ß-D-diglucoside was produced with C. glutamicum achieving high titers of microbial C40 glucosides of 39 mg L-1. This study showcases the potential of pathway engineering to unlock novel C40 carotenoid variants for diverse industrial applications.


Subject(s)
Carotenoids , Corynebacterium glutamicum , Carotenoids/metabolism , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Xanthophylls/metabolism , beta Carotene/metabolism , Metabolic Engineering/methods
20.
EFSA J ; 22(4): e8726, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38585213

ABSTRACT

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of l-isoleucine produced by fermentation with Corynebacterium glutamicum CGMCC 20437 as a nutritional feed additive for use in feed and in water for drinking for all animal species. The production strain is non-genetically modified, qualifies for the QPS approach to safety assessment when used for production purposes, is susceptible to the relevant antibiotics and contains no antimicrobial resistance genes of concern. No viable cells of the production strain were detected in the final product. The additive does not give rise to any safety concern regarding the production strain. l-Isoleucine produced by fermentation with Corynebacterium glutamicum CGMCC 20437 is considered safe for the target species, the consumer and the environment. Regarding the use in water, the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) reiterates its concerns over the safety for the target species of l-isoleucine administered simultaneously via water for drinking and feed owing to the risk of nutritional imbalances and hygienic reasons. In the absence of data, the FEEDAP Panel is not in a position to conclude on the potential of l-isoleucine produced by fermentation with Corynebacterium glutamicum CGMCC 20437 to be irritant to skin and/or eyes, or as a dermal sensitiser. Due to the high dusting potential, exposure by inhalation is likely. l-Isoleucine produced by fermentation with Corynebacterium glutamicum CGMCC 20437 is considered as an efficacious source of the essential amino acid l-isoleucine for non-ruminant animal species. For the supplemental l-isoleucine to be as efficacious in ruminants as in non-ruminant species, it would require protection against degradation in the rumen.

SELECTION OF CITATIONS
SEARCH DETAIL