Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.344
Filter
1.
Odontology ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969870

ABSTRACT

Angiogenesis serves as the determinate element of pulp regeneration. Dental pulp stem cell (DPSC) implantation can promote the regeneration of dental pulp tissue. Herein, the role of m6A methyltransferase methyltransferase-like 3 (METTL3) in regulating DPSCs-induced angiogenesis during pulp regeneration therapy was investigated. Cell DPSC viability, HUVEC migration, and angiogenesis ability were analyzed by CCK-8 assay, wound healing, Transwell assay, and tube formation assay. The global and EST1 mRNA m6A levels were detected by m6A dot blot and Me-RIP. The interactions between E26 transformation-specific proto-oncogene 1(ETS1), human antigen R(HuR), and METTL3 were analyzed by RIP assay. The relationship between METTL3 and the m6A site of ETS1 was performed by dual-luciferase reporter assay. ETS1 mRNA stability was examined with actinomycin D. Herein, our results revealed that human immature DPSCs (hIDPSCs) showed stronger ability to induce angiogenesis than human mature DPSCs (hMDPSCs), which might be related to ETS1 upregulation. ETS1 knockdown inhibited DPSCs-induced angiogenesis. Our mechanistic experiments demonstrated that METTL3 increased ETS1 mRNA stability and expression level on DPSCs in an m6A-HuR-dependent manner. ETS1 upregulation abolished sh-METTL3's inhibition on DPSCs-induced angiogenesis. METTL3 upregulation promoted DPSCs-induced angiogenesis by enhancing ETS1 mRNA stability in an m6A-HuR-dependent manner. This study reveals a new mechanism by which m6A methylation regulates angiogenesis in DPSCs, providing new insights for stem cell-based tissue engineering.

2.
Int J Stem Cells ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38993099

ABSTRACT

Mesenchymal stem cells in the dental tissue indicate a disposition for differentiation into diverse dental lineages and contain enormous potential as the important means for regenerative medicine in dentistry. Among various dental tissues, the dental pulp contains stem cells, progenitor cells and odontoblasts for maintaining dentin homeostasis. The conventional culture of stem cells holds a limit as the living tissue constitutes the three-dimensional (3D) structure. Recent development in the organoid cultures have successfully recapitulated 3D structure and advanced to the assembling of different types. In the current study, the protocol for 3D explant culture of the human dental pulp tissue has been established by adopting the organoid culture. After isolating dental pulp from human tooth, the intact tissue was placed between two layers for Matrigel with addition of the culture medium. The reticular outgrowth of pre-odontoblast layer continued for a month and the random accumulation of dentin was observed near the end. Electron microscopy showed the cellular organization and in situ development of dentin, and immunohistochemistry exhibited the expression of odontoblast and stem cell markers in the outgrowth area. Three-dimensional explant culture of human dental pulp will provide a novel platform for understanding stem cell biology inside the tooth and developing the regenerative medicine.

3.
World J Stem Cells ; 16(6): 656-669, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38948092

ABSTRACT

BACKGROUND: Validation of the reference gene (RG) stability during experimental analyses is essential for correct quantitative real-time polymerase chain reaction (RT-qPCR) data normalisation. Commonly, in an unreliable way, several studies use genes involved in essential cellular functions [glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 18S rRNA, and ß-actin] without paying attention to whether they are suitable for such experimental conditions or the reason for choosing such genes. Furthermore, such studies use only one gene when Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines recommend two or more genes. It impacts the credibility of these studies and causes distortions in the gene expression findings. For tissue engineering, the accuracy of gene expression drives the best experimental or therapeutical approaches. AIM: To verify the most stable RG during osteogenic differentiation of human dental pulp stem cells (DPSCs) by RT-qPCR. METHODS: We cultivated DPSCs under two conditions: Undifferentiated and osteogenic differentiation, both for 35 d. We evaluated the gene expression of 10 candidates for RGs [ribosomal protein, large, P0 (RPLP0), TATA-binding protein (TBP), GAPDH, actin beta (ACTB), tubulin (TUB), aminolevulinic acid synthase 1 (ALAS1), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (YWHAZ), eukaryotic translational elongation factor 1 alpha (EF1a), succinate dehydrogenase complex, subunit A, flavoprotein (SDHA), and beta-2-microglobulin (B2M)] every 7 d (1, 7, 14, 21, 28, and 35 d) by RT-qPCR. The data were analysed by the four main algorithms, ΔCt method, geNorm, NormFinder, and BestKeeper and ranked by the RefFinder method. We subdivided the samples into eight subgroups. RESULTS: All of the data sets from clonogenic and osteogenic samples were analysed using the RefFinder algorithm. The final ranking showed RPLP0/TBP as the two most stable RGs and TUB/B2M as the two least stable RGs. Either the ΔCt method or NormFinder analysis showed TBP/RPLP0 as the two most stable genes. However, geNorm analysis showed RPLP0/EF1α in the first place. These algorithms' two least stable RGs were B2M/GAPDH. For BestKeeper, ALAS1 was ranked as the most stable RG, and SDHA as the least stable RG. The pair RPLP0/TBP was detected in most subgroups as the most stable RGs, following the RefFinfer ranking. CONCLUSION: For the first time, we show that RPLP0/TBP are the most stable RGs, whereas TUB/B2M are unstable RGs for long-term osteogenic differentiation of human DPSCs in traditional monolayers.

4.
Odontology ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958828

ABSTRACT

Hyaluronic acid (HA), known for diverse properties, was investigated for its potential in dental pulp therapy. This study investigated the potential of HA in dental pulp therapy by examining the physical properties and effects of zinc oxide eugenol (ZOE) pulpotomy materials containing varying HA concentrations on rat molar teeth. In vitro tests assessed compressive strength and hardness of ZOE materials blended with HA (0.5%, 1%, 3%) and HA gels (0.54%, 0.8%). 120 samples, encompassing the control group, underwent compressive strength testing, while 60 samples were designated for hardness assessment. In vivo experiments on rat molars studied histological effects of HA-containing ZOE on dental pulp over 1 week and 1 month. Gels with HA concentrations of 0.5%, 1%, and 0.54% were used in pulpotomy on 22 rats. Each rat underwent the procedure on four teeth, with one tooth serving as a control, totaling 88 teeth subjected to the intervention. In the analyses, SPSS 22.0 was used and the significance level was set at P = 0.05. Findings showed that HA at 0.5% maintained compressive strength, but higher concentrations decreased mechanical properties significantly (P = 0.001). Histological assessments indicated better outcomes with lower HA concentrations in terms of odontoblast layer continuity (P = 0.005 at 1 month) and pulp vitality (P = 0.001 at 1 week and P = 0.018 at 1 month). The study suggests HA holds promise for pulpotomy and regenerative endodontic treatments, but further research is needed to understand long-term clinical implications.

5.
J Conserv Dent Endod ; 27(6): 598-602, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38989496

ABSTRACT

Aim: The aim of the study was to evaluate the ability of cultivated odontoblast to form dentin-like tissue using fibroblast growth factor (FGF) and insulin-like growth factor (IGF). Materials and Methods: Dental pulp stem cells (DPSCs) were extracted from 10 human teeth. They were isolated and cultivated in vitro with the use of stem cell markers. The human DPSCs were characterized for trilineage differentiation. They were then differentiated into odontoblasts. The ability of cultivated odontoblasts to form dentin-like tissue was evaluated using FGF and IGF. Results: IGF showed superior ability to form dentin-like tissue as compared to FGF. The addition of FGF showed no significant difference in the formation of dentin-like tissue. A combination of FGF and IGF in odontoblast showed an enhanced ability to form dentin-like tissue. Conclusion: The use of growth factors IGF and FGF with dental stem cells showed a greater potential to form dentin-like tissue. This can profoundly alter the paradigms of conservative vital pulp therapy, which may eventually make it possible to treat dental diseases by regeneration of lost dentine.

6.
J Conserv Dent Endod ; 27(6): 639-643, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38989497

ABSTRACT

Aims: This ex vivo study aimed to assess the dissolving capacity of 2.5% sodium hypochlorite using eight agitation protocols within swine pulp tissue. Subjects and Methods: Twelve lower first premolars were prepared and split into the fragments with a groove housing porcine dental pulp. Groups were assigned based on agitation systems: manual, passive ultrasonic, Easy Clean and XP-Endo Finisher. Two agitation time protocols were applied: One min (3 s × 20 s cycles) and 2 min (6 s × 20 s cycles). Wilcoxon Mann-Whitney U test was used to compare the groups. Results: Both time frames demonstrated superior results compared to manual group (P > 0.5). However, in the two min groups, no significant differences were observed among the other protocols (P < 0.5). Intriguingly, increasing cycle numbers significantly improved results within each group (P > 0.5). Conclusion: Extending the chemical agitation time during final irrigation enhances tissue removal, regardless of the irrigation protocol employed.

7.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999956

ABSTRACT

The transforming growth factor ß (TGFß) superfamily is a master regulator of development, adult homeostasis, and wound repair. Dysregulated TGFß signaling can lead to cancer, fibrosis, and musculoskeletal malformations. We previously demonstrated that TGFß receptor 2 (Tgfbr2) signaling regulates odontoblast differentiation, dentin mineralization, root elongation, and sensory innervation during tooth development. Sensory innervation also modulates the homeostasis and repair response in adult teeth. We hypothesized that Tgfbr2 regulates the neuro-pulpal responses to dentin injury. To test this, we performed a shallow dentin injury with a timed deletion of Tgfbr2 in the dental pulp mesenchyme of mice and analyzed the levels of tertiary dentin and calcitonin gene-related peptide (CGRP) axon sprouting. Microcomputed tomography imaging and histology indicated lower dentin volume in Tgfbr2cko M1s compared to WT M1s 21 days post-injury, but the volume was comparable by day 56. Immunofluorescent imaging of peptidergic afferents demonstrated that the duration of axon sprouting was longer in injured Tgfbr2cko compared to WT M1s. Thus, CGRP+ sensory afferents may provide Tgfbr2-deficient odontoblasts with compensatory signals for healing. Harnessing these neuro-pulpal signals has the potential to guide the development of treatments for enhanced dental healing and to help patients with TGFß-related diseases.


Subject(s)
Calcitonin Gene-Related Peptide , Dental Pulp , Dentin , Receptor, Transforming Growth Factor-beta Type II , Signal Transduction , Animals , Dental Pulp/metabolism , Receptor, Transforming Growth Factor-beta Type II/genetics , Receptor, Transforming Growth Factor-beta Type II/metabolism , Mice , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/genetics , Dentin/metabolism , Mice, Knockout , Odontoblasts/metabolism
8.
Cells ; 13(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38994993

ABSTRACT

The reparative and regenerative capabilities of dental pulp stem cells (DPSCs) are crucial for responding to pulp injuries, with protein phosphatase 1 (PP1) playing a significant role in regulating cellular functions pertinent to tissue healing. Accordingly, this study aimed to explore the effects of a novel cell-penetrating peptide Modified Sperm Stop 1-MSS1, that disrupts PP1, on the proliferation and odontogenic differentiation of DPSCs. Employing MSS1 as a bioportide, DPSCs were cultured and characterized for metabolic activity, cell proliferation, and cell morphology alongside the odontogenic differentiation through gene expression and alkaline phosphatase (ALP) activity analysis. MSS1 exposure induced early DPSC proliferation, upregulated genes related to odontogenic differentiation, and increased ALP activity. Markers associated with early differentiation events were induced at early culture time points and those associated with matrix mineralization were upregulated at mid-culture stages. This investigation is the first to document the potential of a PP1-disrupting bioportide in modulating DPSC functionality, suggesting a promising avenue for enhancing dental tissue regeneration and repair.


Subject(s)
Cell Differentiation , Cell Proliferation , Dental Pulp , Odontogenesis , Protein Phosphatase 1 , Stem Cells , Dental Pulp/cytology , Dental Pulp/drug effects , Stem Cells/drug effects , Stem Cells/cytology , Stem Cells/metabolism , Humans , Protein Phosphatase 1/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Odontogenesis/drug effects , Peptides/pharmacology , Peptides/metabolism , Cells, Cultured , Alkaline Phosphatase/metabolism
9.
J Biomater Sci Polym Ed ; : 1-25, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953859

ABSTRACT

Fe-Ca-SAPO-34/CS/PANI, a novel hybrid bio-composite scaffold with potential application in dental tissue engineering, was prepared by freeze drying technique. The scaffold was characterized using FT-IR and SEM methods. The effects of PANI on the physicochemical properties of the Fe-Ca-SAPO-34/CS scaffold were investigated, including changes in swelling ratio, mechanical behavior, density, porosity, biodegradation, and biomineralization. Compared to the Fe-Ca-SAPO-34/CS scaffold, adding PANI decreased the pore size, porosity, swelling ratio, and biodegradation, while increasing the mechanical strength and biomineralization. Cell viability, cytotoxicity, and adhesion of human dental pulp stem cells (hDPSCs) on the scaffolds were investigated by MTT assay and SEM. The Fe-Ca-SAPO-34/CS/PANI scaffold promoted hDPSC proliferation and osteogenic differentiation compared to the Fe-Ca-SAPO-34/CS scaffold. Alizarin red staining, alkaline phosphatase activity, and qRT-PCR results revealed that Fe-Ca-SAPO-34/CS/PANI triggered osteoblast/odontoblast differentiation in hDPSCs through the up-regulation of osteogenic marker genes BGLAP, RUNX2, and SPARC. The significance of this study lies in developing a novel scaffold that synergistically combines the beneficial properties of Fe-Ca-SAPO-34, chitosan, and PANI to create an optimized microenvironment for dental tissue regeneration. These findings highlight the potential of the Fe-Ca-SAPO-34/CS/PANI scaffold as a promising biomaterial for dental tissue engineering applications, paving the way for future research and clinical translation in regenerative dentistry.

10.
Heliyon ; 10(12): e32108, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975143

ABSTRACT

Lipopolysaccharide (LPS)-triggered damage in human dental pulp cells (hDPCs) is associated with the progression of gingivitis, which is inflammation of the gingival tissue. Nesfatin-1 is a peptide secreted by neurons and peripheral tissues. Here, we report a novel property of Nesfatin-1 in ameliorating LPS-induced inflammatory response and senescence in hDPCs. First, we demonstrate that Nesfatin-1 repressed LPS-triggered expression of inflammatory factors. Secondly, Nesfatin-1 restored telomerase activity and the expression of human telomerase reverse transcriptase (hTERT) and telomeric repeat binding factor 2 (TERF2) against LPS. Senescence-associated ß-galactosidase (SA-ß-gal) staining assay revealed that Nesfatin-1 attenuated LPS-induced cellular senescence in hDPCs. We also found that Nesfatin-1 increased telomerase activity in LPS-challenged hDPCs. It is also shown that Nesfatin-1 reduced the expression of plasminogen activator inhibitor-1 (PAI-1) and p16. Additionally, LPS stimulation reduced the expression of SIRT1, which was rescued by Nesfatin-1. However, the silencing of sirtuin1 (SIRT1) abrogated the protective property of Nesfatin-1 in preventing cellular senescence, implying that the function of Nesfatin-1 is regulated by SIRT1. Taken together, our findings suggest that Nesfatin-1 might possess a protective effect against gingivitis.

11.
DNA Cell Biol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959180

ABSTRACT

Teeth are vulnerable to structural compromise, primarily attributed to carious lesions, in which microorganisms originating from the oral cavity deteriorate the mineralized structures of enamel and dentin, subsequently infiltrating the underlying soft connective tissue, known as the dental pulp. Nonetheless, dental pulp possesses the necessary capabilities to detect and defend against bacteria and their by-products, using a variety of intricate defense mechanisms. The pulp houses specialized cells known as odontoblasts, which encounter harmful substances produced by oral bacteria. These cells identify pathogens at an early stage and commence the immune system response. As bacteria approach the pulp, various cell types within the pulp, such as different immune cells, stem cells, fibroblasts, as well as neuronal and vascular networks, contribute a range of defense mechanisms. Therefore, the immune system is present in the healthy pulp to restrain the initial spread of pathogens, and then in the inflamed pulp, it prepares the conditions for necrosis or regeneration, so inflammatory response mechanisms play a critical role in maintaining tissue homeostasis. This review aims to consolidate the existing literature on the immune system in dental pulp, encompassing current knowledge on this topic that explains the diverse mechanisms of recognition and defense against pathogens exhibited by dental pulp cells, elucidates the mechanisms of innate and adaptive immunity in inflamed pulp, and highlights the difference between inflamed and normal pulp tissue.

12.
Int Endod J ; 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973098

ABSTRACT

AIM: The regenerative capacity of dental pulp relies on the odonto/osteogenic differentiation of dental pulp cells (DPCs), but dynamic microenvironmental changes hinder the process. Bone morphogenetic protein 9 (BMP9) promotes differentiation of DPCs towards an odonto/osteogenic lineage, forming dentinal-like tissue. However, the molecular mechanism underlying its action remains unclear. This study investigates the role of DLX6 antisense RNA 1 (DLX6-AS1) in odonto/osteogenic differentiation induced by BMP9. METHODOLOGY: Custom RT2 profiler PCR array, quantitative Real-Time PCR (qRT-PCR) and western blots were used to investigate the expression pattern of DLX6-AS1 and its potential signal axis. Osteogenic ability was evaluated using alkaline phosphatase and alizarin red S staining. Interactions between lncRNA and miRNA, as well as miRNA and mRNA, were predicted through bioinformatic assays, which were subsequently validated via RNA immunoprecipitation and dual luciferase reporter assays. Student's t-test or one-way ANOVA with post hoc Tukey HSD tests were employed for data analysis, with a p-value of less than .05 considered statistically significant. RESULTS: DLX6-AS1 was upregulated upon BMP9 overexpression in DPCs, thereby promoting odonto/osteogenic differentiation. Additionally, miR-128-3p participated in BMP9-induced odonto/osteogenic differentiation by interacting with the downstream signal MAPK14. Modifying the expression of miR-128-3p and transfecting pcMAPK14/siMAPK14 had a rescue impact on odonto/osteogenic differentiation downstream of DLX6-AS1. Lastly, miR-128-3p directly interacted with both MAPK14 and DLX6-AS1. CONCLUSIONS: DLX6-AS1 could regulate the odonto/osteogenic differentiation of DPCs under the control of BMP9 through the miR-128-3p/MAPK14 axis.

13.
J Extracell Vesicles ; 13(7): e12473, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965648

ABSTRACT

Extracellular vesicles (EVs) derived from dental pulp stem cells (DPSC) have been shown an excellent efficacy in a variety of disease models. However, current production methods fail to meet the needs of clinical treatment. In this study, we present an innovative approach to substantially enhance the production of 'Artificial Cell-Derived Vesicles (ACDVs)' by extracting and purifying the contents released by the DPSC lysate, namely intracellular vesicles. Comparative analysis was performed between ACDVs and those obtained through ultracentrifugation. The ACDVs extracted from the cell lysate meet the general standard of EVs and have similar protein secretion profile. The new ACDVs also significantly promoted wound healing, increased or decreased collagen regeneration, and reduced the production of inflammatory factors as the EVs. More importantly, the extraction efficiency is improved by 16 times compared with the EVs extracted using ultracentrifuge method. With its impressive attributes, this new subtype of ACDVs emerge as a prospective candidate for the future clinical applications in regenerative medicine.


Subject(s)
Dental Pulp , Extracellular Vesicles , Stem Cells , Dental Pulp/cytology , Dental Pulp/metabolism , Extracellular Vesicles/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Humans , Animals , Wound Healing , Regenerative Medicine/methods
14.
J Dent (Shiraz) ; 25(2): 97-107, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38962085

ABSTRACT

Statement of the Problem: Treatment of immature necrotic teeth is a problematic situation. Conventional root canal therapy is challenging and leaves a weak, fragile, and undeveloped tooth for lifetime. Purpose: This review was aimed to assess the outcome of available randomized clinical trials (RCTs) on the efficacy of platelet concentrates (PC) in dentine-pulp complex regeneration. Materials and Method: In this systematic review, an electronic search was conducted on MEDLINE, EMBASE, Cochrane, and Google scholar databases. A further manual search was performed on the list of related articles in order to ensure inclusion of potentially missed articles in earlier electronic search. Those proved RCTs matched with the standard criteria were included following an initial assessment of abstracts and the text independently by the reviewers. Results: From the total 602 harvested articles, only 13 met the criteria and were evaluated with 11 having parallel design and 2 split mouth. Only one study featured low risk of bias, while three had moderate risk and the rest were at high risk of bias. Six studies had used platelet rich plasma (PRP), 4 employed platelet rich fibrin (PRF), one utilized injectable platelet rich fibrin (I-PRF), and three used both PRF and PRP for their experimental groups while blood clot (BC) was used as the control group for all. The success rate was reported at 87.3% judged by the absence of pathologic signs and symptoms. Conclusion: Dentin wall thickening, root lengthening and apex closure were higher in PC groups, however, these differences were not statistically significant in reported studies. It can be concluded that PCs promote the pulp tissue revitalization and continuation of root development. However, a consensus on its potency for true pulp regeneration is yet to be reached.

15.
Cell Biochem Biophys ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987441

ABSTRACT

The potential therapeutic benefits of human dental pulp stem cells (HDPSCs) in dental regenerative medicine have been demonstrated. However, little is known about the molecular mechanisms regulating the biological characteristics of HDPSCs. The experiment aims to explore whether VEGF activates signaling pathways such as FAK, PI3K, Akt, and p38 in HDPSCs, and to investigate the molecular mechanisms by which VEGF influences proliferation and migration of HDPSCs. Normal and inflamed human dental pulp (HDP) samples were collected, and the levels of VEGF in HDP were assessed. HDPSCs were cultured and purified. HDPSCs were stimulated with lipopolysaccharide (LPS) at gradient concentrations, and real-time quantitative polymerase chain reaction (qPCR) was used to assess changes in VEGF mRNA. Gradient concentrations of VEGF were used to stimulate HDPSCs, and cell migration ability was evaluated through scratch assays and Transwell chamber experiments. Phosphorylation levels of FAK, AKT, and P38 were assessed using Western blotting. Inhibitors of VEGFR2, FAK, AKT, P38, and VEGF were separately applied to HDPSCs, and cell migration ability and phosphorylation levels of FAK, AKT, and P38 were determined. The results indicated significant differences in VEGF levels between normal and inflamed HDP tissues, with levels in the inflamed state reaching 435% of normal levels (normal: 87.91 ng/mL, inflamed: 382.76 ng/mL, P < 0.05). LPS stimulation of HDPSCs showed a significant increase in VEGF mRNA expression with increasing LPS concentrations (LPS concentrations of 0.01, 0.1, 1, and 10 µg/mL resulted in VEGF mRNA expressions of 181.2%, 274.2%, 345.8%, and 460.9%, respectively, P < 0.05). VEGF treatment significantly enhanced the migration ability of HDPSCs in Transwell chamber experiments, with migration rates increasing with VEGF concentrations (VEGF concentrations of 0, 1, 10, 20, 50, and 100 ng/mL resulted in migration rates of 8.41%, 9.34%, 21.33%, 28.41%, 42.87%, and 63.15%, respectively, P < 0.05). Inhibitors of VEGFR2, FAK, AKT, P38, and combined VEGF stimulation demonstrated significant migration inhibition, with migration rates decreasing to 8.31%, 12.64%, 13.43%, 18.32%, and 74.17%, respectively. The migration rate with combined VEGF stimulation showed a significant difference (P < 0.05). The analysis of phosphorylation levels revealed that VEGF stimulation significantly activated phosphorylation of FAK, AKT, and P38, with phosphorylation levels increasing with VEGF concentrations (P < 0.05). The VEGF/VEGFR2 signaling axis regulated the migration ability of HDPSCs through the FAK/PI3K/AKT and P38MAPK pathways. This finding highlighted not only the crucial role of VEGF in injury repair of HDPSCs but also provided important clues for a comprehensive understanding of the potential applications of this signaling axis in dental regenerative medicine.

16.
J Contemp Dent Pract ; 25(4): 313-319, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38956844

ABSTRACT

AIMS: This study aims to assess the synergistic effect of utilizing a bioceramic sealer, NeoPutty, with photobiomodulation (PBM) on dental pulp stem cells (DPSCs) for odontogenesis. MATERIALS AND METHODS: Dental pulp stem cells were collected from 10 premolars extracted from healthy individuals. Dental pulp stem cells were characterized using an inverted-phase microscope to detect cell shape and flow cytometry to detect stem cell-specific surface antigens. Three experimental groups were examined: the NP group, the PBM group, and the combined NP and PBM group. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) experiment was conducted to assess the viability of DPSCs. The odontogenic differentiation potential was analyzed using Alizarin red staining, RT-qPCR analysis of odontogenic genes DMP-1, DSPP, and alkaline phosphatase (ALP), and western blot analysis for detecting BMP-2 and RUNX-2 protein expression. An analysis of variance (ANOVA) followed by a post hoc t-test was employed to examine and compare the mean values of the results. RESULTS: The study showed a notable rise in cell viability when NP and PBM were used together. Odontogenic gene expression and the protein expression of BMP-2 and RUNX-2 were notably increased in the combined group. The combined effect of NeoPutty and PBM was significant in enhancing the odontogenic differentiation capability of DPSCs. CONCLUSION: The synergistic effect of NeoPutty and PBM produced the most positive effect on the cytocompatibility and odontogenic differentiation potential of DPSCs. CLINICAL SIGNIFICANCE: Creating innovative regenerative treatments to efficiently and durably repair injured dental tissues. How to cite this article: Alshawkani HA, Mansy M, Al Ankily M, et al. Regenerative Potential of Dental Pulp Stem Cells in Response to a Bioceramic Dental Sealer and Photobiomodulation: An In Vitro Study. J Contemp Dent Pract 2024;25(4):313-319.


Subject(s)
Bone Morphogenetic Protein 2 , Cell Differentiation , Dental Pulp , Low-Level Light Therapy , Odontogenesis , Stem Cells , Dental Pulp/cytology , Humans , Stem Cells/drug effects , Low-Level Light Therapy/methods , Cell Differentiation/drug effects , Odontogenesis/drug effects , Root Canal Filling Materials/pharmacology , Alkaline Phosphatase/metabolism , In Vitro Techniques , Cell Survival/drug effects , Regeneration/drug effects , Ceramics , Extracellular Matrix Proteins , Cells, Cultured , Core Binding Factor Alpha 1 Subunit , Sialoglycoproteins , Phosphoproteins
17.
J Contemp Dent Pract ; 25(4): 392-401, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38956856

ABSTRACT

AIM: To elucidate the factors that determine the success of direct pulp capping (DPC) in permanent teeth with pulp exposure due to dental caries. MATERIALS AND METHODS: A comprehensive electronic search from 1980 to 2023 across PubMed, Scopus, and ISI Web databases was conducted using specific keywords and MeSH terms in Q1 or Q2 journals. Only prospective/retrospective clinical studies in English on 15 or more human permanent teeth with carious pulpal exposure treated with DPC agents-mineral trioxide aggregate (MTA), Biodentine, or calcium hydroxide with a rubber dam and minimum 1-year follow-up, were considered. The factors retrieved and analyzed were based on study design, patient age, sample size, type of cavity, exposure size and location, pulp diagnosis, solutions to achieve hemostasis, hemostasis time, capping material, restoration type, follow-up period, methods of evaluation, and overall success. REVIEW RESULTS: Out of 680 articles, only 16 articles were selected for the present systematic review on application of the selection criteria. A wide age range of patients from 6 to 88 years were considered among these studies with sample sizes ranging from 15 to 245 teeth with reversible pulpitis being the predominant diagnosis of the cases. Mineral trioxide aggregate as a capping material was evaluated in 4 studies as a lone agent, while compared with other capping agents such as biodentine or calcium hydroxide in 7 studies. The follow-up period ranged from 9 days to nearly 80 months. While both clinical and radiographic evaluation was carried out in all studies, cold testing dominated the clinical tests while IOPR was the common radiograph considered. Mineral trioxide aggregate success rate was higher and similar to biodentine than calcium hydroxide. CONCLUSION: Direct pulp capping has a high and predictable success rate in permanent teeth with carious exposure to reversible and irreversible pulpitis. Currently, mineral trioxide aggregate and biodentine have better long-term results in DPC than calcium hydroxide, hence, they should be used as an alternative to calcium hydroxide. Definitive restoration within a short period improves long-term prognosis. CLINICAL SIGNIFICANCE: The significance of this review lies in its provision of evidence-based information on the effectiveness of DPC and the factors that influence its success. By considering these factors, clinicians can optimize treatment outcomes and improve the long-term prognosis of the treated teeth. This systematic review serves as a valuable resource for clinicians and researchers in the field of endodontics. How to cite this article: Gomez-Sosa JF, Granone-Ricella M, Rosciano-Alvarez M, et al. Determining Factors in the Success of Direct Pulp Capping: A Systematic Review. J Contemp Dent Pract 2024;25(4):392-401.


Subject(s)
Calcium Compounds , Dental Caries , Dental Pulp Capping , Humans , Dental Pulp Capping/methods , Dental Caries/therapy , Calcium Compounds/therapeutic use , Silicates/therapeutic use , Calcium Hydroxide/therapeutic use , Pulp Capping and Pulpectomy Agents/therapeutic use , Oxides/therapeutic use , Aluminum Compounds/therapeutic use , Drug Combinations , Treatment Outcome , Dental Pulp Exposure/therapy
18.
Dent Mater ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908960

ABSTRACT

OBJECTIVES: Silicon-releasing biomaterials are widely used in the field of dentistry. However, unlike bone, very little is known about the role of silicon on dental tissue formation and repair. This study investigates the influence of silicic acid on the survival, differentiation and mineralizing ability of human dental pulp stem cells (hDPSCs) in 3D pulp-like environments METHODS: Dense type I collagen hydrogels seeded with hDPSCs were cultured over 4 weeks in the presence of silicic acid at physiological (10 µM) and supraphysiological (100 µM) concentrations. Cell viability and proliferation were studied by Alamar Blue and live/dead staining. The collagen network was investigated using second harmonic generation imaging. Mineral deposition was monitored by histology and scanning electron microscopy. Gene expression of mineralization- and matrix remodeling-associated proteins was studied by qPCR. RESULTS: Presence of silicic acid did not show any significant influence on cell survival, metabolic activity and gene expression of key mineralization-related proteins (ALP, OCN, BSP). However, it induced enhanced cell clustering and delayed expression of matrix remodeling-associated proteins (MMP13, Col I). OPN expression and mineral deposition were inhibited at 100 µM. It could be inferred that silicic acid has no direct cellular effect but rather interacts with the collagen network, leading to a modification of the cell-matrix interface. SIGNIFICANCE: Our results offer advanced insights on the possible role of silicic acid, as released by pulp capping calcium silicates biomaterials, in reparative dentine formation. More globally, these results interrogate the possible role of Si in pulp pathophysiology.

19.
J Pharm Bioallied Sci ; 16(Suppl 2): S1420-S1422, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882760

ABSTRACT

Aim: To assess clinically and histologically the efficacy of TheraCal LC and Biodentine as Direct Pulp Capping agents. Materials and Method: Sixty caries-free maxillary first premolar teeth which were scheduled for orthodontic extraction were selected for the study and were divided equally into Group 1 (Theracal LC) and Group 2 (Biodentine). Thermal and electric pulp testing was performed on the teeth to assess pulp vitality followed by tooth preparation to expose pulp horns under local anesthesia. After achieving hemostasis, the direct pulp capping agent was placed and composite restoration was done. All the teeth were evaluated and compared in terms of clinical and histological findings after 6 weeks. The statistical analysis used was the Kruskal-Wallis test. Results: Teeth with Theracal LC showed no sensitivity to heat, cold, or percussion, whereas sensitivity to heat, cold, or percussion was noted with Biodentine. Histological evaluation revealed that TheraCal LC has higher efficiency in complete dentin bridge formation, had maximum dentin thickness, and showed minimal or no pulpal disorganization and pulpal inflammation as compared to Biodentine. Conclusion: TheraCal LC proves to be a promising future as a direct pulp capping agent.

20.
Am J Transl Res ; 16(5): 1521-1530, 2024.
Article in English | MEDLINE | ID: mdl-38883345

ABSTRACT

Tissue regeneration is the procedure of renewal, restoration and growth of injured tissues and defective organs including nerve, bone, tooth, cartilage and blood vessels. Repair process of damaged tissues needs non-invasive methods; so, the scientists have recently focused on alternative treatment pathways. Nano gels based on Poly Lactic-co-Glycolic Acid have been designed for different purposes in medicine. It is a biodegradable and biocompatible polymer composite. Also, human dental pulp stem cells embedded in the Poly Lactic-co-Glycolic Acid scaffold have proliferation ability and differentiation potential. They can differentiate into different cell lineages, including bone, cartilage, nerve, tooth and other tissues. So, this treatment technology can be used for tissue engineering in regenerative medicine. On the other hand, this structure is a promising application for targeted cancer therapy. Therefore, this review studied tissue, especially tooth regeneration based on the new designed Nano composite scaffolds embedded with Poly Lactic-co-Glycolic Acid hydrogel and dental pulp stem cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...