Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.042
Filter
1.
Odontology ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969870

ABSTRACT

Angiogenesis serves as the determinate element of pulp regeneration. Dental pulp stem cell (DPSC) implantation can promote the regeneration of dental pulp tissue. Herein, the role of m6A methyltransferase methyltransferase-like 3 (METTL3) in regulating DPSCs-induced angiogenesis during pulp regeneration therapy was investigated. Cell DPSC viability, HUVEC migration, and angiogenesis ability were analyzed by CCK-8 assay, wound healing, Transwell assay, and tube formation assay. The global and EST1 mRNA m6A levels were detected by m6A dot blot and Me-RIP. The interactions between E26 transformation-specific proto-oncogene 1(ETS1), human antigen R(HuR), and METTL3 were analyzed by RIP assay. The relationship between METTL3 and the m6A site of ETS1 was performed by dual-luciferase reporter assay. ETS1 mRNA stability was examined with actinomycin D. Herein, our results revealed that human immature DPSCs (hIDPSCs) showed stronger ability to induce angiogenesis than human mature DPSCs (hMDPSCs), which might be related to ETS1 upregulation. ETS1 knockdown inhibited DPSCs-induced angiogenesis. Our mechanistic experiments demonstrated that METTL3 increased ETS1 mRNA stability and expression level on DPSCs in an m6A-HuR-dependent manner. ETS1 upregulation abolished sh-METTL3's inhibition on DPSCs-induced angiogenesis. METTL3 upregulation promoted DPSCs-induced angiogenesis by enhancing ETS1 mRNA stability in an m6A-HuR-dependent manner. This study reveals a new mechanism by which m6A methylation regulates angiogenesis in DPSCs, providing new insights for stem cell-based tissue engineering.

2.
J Biomater Sci Polym Ed ; : 1-25, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953859

ABSTRACT

Fe-Ca-SAPO-34/CS/PANI, a novel hybrid bio-composite scaffold with potential application in dental tissue engineering, was prepared by freeze drying technique. The scaffold was characterized using FT-IR and SEM methods. The effects of PANI on the physicochemical properties of the Fe-Ca-SAPO-34/CS scaffold were investigated, including changes in swelling ratio, mechanical behavior, density, porosity, biodegradation, and biomineralization. Compared to the Fe-Ca-SAPO-34/CS scaffold, adding PANI decreased the pore size, porosity, swelling ratio, and biodegradation, while increasing the mechanical strength and biomineralization. Cell viability, cytotoxicity, and adhesion of human dental pulp stem cells (hDPSCs) on the scaffolds were investigated by MTT assay and SEM. The Fe-Ca-SAPO-34/CS/PANI scaffold promoted hDPSC proliferation and osteogenic differentiation compared to the Fe-Ca-SAPO-34/CS scaffold. Alizarin red staining, alkaline phosphatase activity, and qRT-PCR results revealed that Fe-Ca-SAPO-34/CS/PANI triggered osteoblast/odontoblast differentiation in hDPSCs through the up-regulation of osteogenic marker genes BGLAP, RUNX2, and SPARC. The significance of this study lies in developing a novel scaffold that synergistically combines the beneficial properties of Fe-Ca-SAPO-34, chitosan, and PANI to create an optimized microenvironment for dental tissue regeneration. These findings highlight the potential of the Fe-Ca-SAPO-34/CS/PANI scaffold as a promising biomaterial for dental tissue engineering applications, paving the way for future research and clinical translation in regenerative dentistry.

3.
J Contemp Dent Pract ; 25(4): 313-319, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38956844

ABSTRACT

AIMS: This study aims to assess the synergistic effect of utilizing a bioceramic sealer, NeoPutty, with photobiomodulation (PBM) on dental pulp stem cells (DPSCs) for odontogenesis. MATERIALS AND METHODS: Dental pulp stem cells were collected from 10 premolars extracted from healthy individuals. Dental pulp stem cells were characterized using an inverted-phase microscope to detect cell shape and flow cytometry to detect stem cell-specific surface antigens. Three experimental groups were examined: the NP group, the PBM group, and the combined NP and PBM group. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) experiment was conducted to assess the viability of DPSCs. The odontogenic differentiation potential was analyzed using Alizarin red staining, RT-qPCR analysis of odontogenic genes DMP-1, DSPP, and alkaline phosphatase (ALP), and western blot analysis for detecting BMP-2 and RUNX-2 protein expression. An analysis of variance (ANOVA) followed by a post hoc t-test was employed to examine and compare the mean values of the results. RESULTS: The study showed a notable rise in cell viability when NP and PBM were used together. Odontogenic gene expression and the protein expression of BMP-2 and RUNX-2 were notably increased in the combined group. The combined effect of NeoPutty and PBM was significant in enhancing the odontogenic differentiation capability of DPSCs. CONCLUSION: The synergistic effect of NeoPutty and PBM produced the most positive effect on the cytocompatibility and odontogenic differentiation potential of DPSCs. CLINICAL SIGNIFICANCE: Creating innovative regenerative treatments to efficiently and durably repair injured dental tissues. How to cite this article: Alshawkani HA, Mansy M, Al Ankily M, et al. Regenerative Potential of Dental Pulp Stem Cells in Response to a Bioceramic Dental Sealer and Photobiomodulation: An In Vitro Study. J Contemp Dent Pract 2024;25(4):313-319.


Subject(s)
Bone Morphogenetic Protein 2 , Cell Differentiation , Dental Pulp , Low-Level Light Therapy , Odontogenesis , Stem Cells , Dental Pulp/cytology , Humans , Stem Cells/drug effects , Low-Level Light Therapy/methods , Cell Differentiation/drug effects , Odontogenesis/drug effects , Root Canal Filling Materials/pharmacology , Alkaline Phosphatase/metabolism , In Vitro Techniques , Cell Survival/drug effects , Regeneration/drug effects , Ceramics , Extracellular Matrix Proteins , Cells, Cultured , Core Binding Factor Alpha 1 Subunit , Sialoglycoproteins , Phosphoproteins
4.
J Conserv Dent Endod ; 27(6): 598-602, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38989496

ABSTRACT

Aim: The aim of the study was to evaluate the ability of cultivated odontoblast to form dentin-like tissue using fibroblast growth factor (FGF) and insulin-like growth factor (IGF). Materials and Methods: Dental pulp stem cells (DPSCs) were extracted from 10 human teeth. They were isolated and cultivated in vitro with the use of stem cell markers. The human DPSCs were characterized for trilineage differentiation. They were then differentiated into odontoblasts. The ability of cultivated odontoblasts to form dentin-like tissue was evaluated using FGF and IGF. Results: IGF showed superior ability to form dentin-like tissue as compared to FGF. The addition of FGF showed no significant difference in the formation of dentin-like tissue. A combination of FGF and IGF in odontoblast showed an enhanced ability to form dentin-like tissue. Conclusion: The use of growth factors IGF and FGF with dental stem cells showed a greater potential to form dentin-like tissue. This can profoundly alter the paradigms of conservative vital pulp therapy, which may eventually make it possible to treat dental diseases by regeneration of lost dentine.

5.
Int J Stem Cells ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38993099

ABSTRACT

Mesenchymal stem cells in the dental tissue indicate a disposition for differentiation into diverse dental lineages and contain enormous potential as the important means for regenerative medicine in dentistry. Among various dental tissues, the dental pulp contains stem cells, progenitor cells and odontoblasts for maintaining dentin homeostasis. The conventional culture of stem cells holds a limit as the living tissue constitutes the three-dimensional (3D) structure. Recent development in the organoid cultures have successfully recapitulated 3D structure and advanced to the assembling of different types. In the current study, the protocol for 3D explant culture of the human dental pulp tissue has been established by adopting the organoid culture. After isolating dental pulp from human tooth, the intact tissue was placed between two layers for Matrigel with addition of the culture medium. The reticular outgrowth of pre-odontoblast layer continued for a month and the random accumulation of dentin was observed near the end. Electron microscopy showed the cellular organization and in situ development of dentin, and immunohistochemistry exhibited the expression of odontoblast and stem cell markers in the outgrowth area. Three-dimensional explant culture of human dental pulp will provide a novel platform for understanding stem cell biology inside the tooth and developing the regenerative medicine.

6.
Cell Biochem Biophys ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987441

ABSTRACT

The potential therapeutic benefits of human dental pulp stem cells (HDPSCs) in dental regenerative medicine have been demonstrated. However, little is known about the molecular mechanisms regulating the biological characteristics of HDPSCs. The experiment aims to explore whether VEGF activates signaling pathways such as FAK, PI3K, Akt, and p38 in HDPSCs, and to investigate the molecular mechanisms by which VEGF influences proliferation and migration of HDPSCs. Normal and inflamed human dental pulp (HDP) samples were collected, and the levels of VEGF in HDP were assessed. HDPSCs were cultured and purified. HDPSCs were stimulated with lipopolysaccharide (LPS) at gradient concentrations, and real-time quantitative polymerase chain reaction (qPCR) was used to assess changes in VEGF mRNA. Gradient concentrations of VEGF were used to stimulate HDPSCs, and cell migration ability was evaluated through scratch assays and Transwell chamber experiments. Phosphorylation levels of FAK, AKT, and P38 were assessed using Western blotting. Inhibitors of VEGFR2, FAK, AKT, P38, and VEGF were separately applied to HDPSCs, and cell migration ability and phosphorylation levels of FAK, AKT, and P38 were determined. The results indicated significant differences in VEGF levels between normal and inflamed HDP tissues, with levels in the inflamed state reaching 435% of normal levels (normal: 87.91 ng/mL, inflamed: 382.76 ng/mL, P < 0.05). LPS stimulation of HDPSCs showed a significant increase in VEGF mRNA expression with increasing LPS concentrations (LPS concentrations of 0.01, 0.1, 1, and 10 µg/mL resulted in VEGF mRNA expressions of 181.2%, 274.2%, 345.8%, and 460.9%, respectively, P < 0.05). VEGF treatment significantly enhanced the migration ability of HDPSCs in Transwell chamber experiments, with migration rates increasing with VEGF concentrations (VEGF concentrations of 0, 1, 10, 20, 50, and 100 ng/mL resulted in migration rates of 8.41%, 9.34%, 21.33%, 28.41%, 42.87%, and 63.15%, respectively, P < 0.05). Inhibitors of VEGFR2, FAK, AKT, P38, and combined VEGF stimulation demonstrated significant migration inhibition, with migration rates decreasing to 8.31%, 12.64%, 13.43%, 18.32%, and 74.17%, respectively. The migration rate with combined VEGF stimulation showed a significant difference (P < 0.05). The analysis of phosphorylation levels revealed that VEGF stimulation significantly activated phosphorylation of FAK, AKT, and P38, with phosphorylation levels increasing with VEGF concentrations (P < 0.05). The VEGF/VEGFR2 signaling axis regulated the migration ability of HDPSCs through the FAK/PI3K/AKT and P38MAPK pathways. This finding highlighted not only the crucial role of VEGF in injury repair of HDPSCs but also provided important clues for a comprehensive understanding of the potential applications of this signaling axis in dental regenerative medicine.

7.
World J Stem Cells ; 16(6): 656-669, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38948092

ABSTRACT

BACKGROUND: Validation of the reference gene (RG) stability during experimental analyses is essential for correct quantitative real-time polymerase chain reaction (RT-qPCR) data normalisation. Commonly, in an unreliable way, several studies use genes involved in essential cellular functions [glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 18S rRNA, and ß-actin] without paying attention to whether they are suitable for such experimental conditions or the reason for choosing such genes. Furthermore, such studies use only one gene when Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines recommend two or more genes. It impacts the credibility of these studies and causes distortions in the gene expression findings. For tissue engineering, the accuracy of gene expression drives the best experimental or therapeutical approaches. AIM: To verify the most stable RG during osteogenic differentiation of human dental pulp stem cells (DPSCs) by RT-qPCR. METHODS: We cultivated DPSCs under two conditions: Undifferentiated and osteogenic differentiation, both for 35 d. We evaluated the gene expression of 10 candidates for RGs [ribosomal protein, large, P0 (RPLP0), TATA-binding protein (TBP), GAPDH, actin beta (ACTB), tubulin (TUB), aminolevulinic acid synthase 1 (ALAS1), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (YWHAZ), eukaryotic translational elongation factor 1 alpha (EF1a), succinate dehydrogenase complex, subunit A, flavoprotein (SDHA), and beta-2-microglobulin (B2M)] every 7 d (1, 7, 14, 21, 28, and 35 d) by RT-qPCR. The data were analysed by the four main algorithms, ΔCt method, geNorm, NormFinder, and BestKeeper and ranked by the RefFinder method. We subdivided the samples into eight subgroups. RESULTS: All of the data sets from clonogenic and osteogenic samples were analysed using the RefFinder algorithm. The final ranking showed RPLP0/TBP as the two most stable RGs and TUB/B2M as the two least stable RGs. Either the ΔCt method or NormFinder analysis showed TBP/RPLP0 as the two most stable genes. However, geNorm analysis showed RPLP0/EF1α in the first place. These algorithms' two least stable RGs were B2M/GAPDH. For BestKeeper, ALAS1 was ranked as the most stable RG, and SDHA as the least stable RG. The pair RPLP0/TBP was detected in most subgroups as the most stable RGs, following the RefFinfer ranking. CONCLUSION: For the first time, we show that RPLP0/TBP are the most stable RGs, whereas TUB/B2M are unstable RGs for long-term osteogenic differentiation of human DPSCs in traditional monolayers.

8.
J Mol Med (Berl) ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002004

ABSTRACT

Physiological root resorption of deciduous teeth is a normal phenomenon occurring during the developmental stages of children. Previous research has indicated the pivotal role of the inflammatory microenvironment in this process, although the specific mechanisms remain unclear. This study is aimed at elucidating the involvement of the alpha7 nicotinic acetylcholine receptors (α7 nAChR)-autophagy axis in the regulation of the inflammatory microenvironment during physiological root resorption in deciduous teeth. Samples were collected from deciduous teeth at various stages of physiological root resorption, and deciduous dental pulp stem cells (DDPSCs) were isolated and cultured during the mid-phase of root resorption. The findings revealed a substantial infiltration of the pulp of deciduous teeth at the mid-phase of root resorption, characterized by elevated expression levels of α7 nAChR and IL-1ß. Significantly increased IL-1ß and α7 nAChR expressions were observed in DDPSCs during the mid-phase of root resorption, with α7 nAChR demonstrating a regulatory effect on IL-1ß. Moreover, evidence suggested that mechanical stress may act as a trigger, regulating autophagy and IL-1 expression via α7 nAChR. In conclusion, mechanical stress was identified as a regulator of autophagy in DDPSCs through α7 nAChR, influencing the expression of IL-1ß and contributing to the formation of the inflammatory microenvironment. This mechanism plays a crucial role in the physiological root resorption of deciduous teeth. KEY MESSAGES: The pulp of deciduous teeth at mid-phase of root resorption was heavily infiltrated with high expression of α7nAChR and IL-1ß. α7 nAChR acts as an initiating factor to regulate IL-1ß through autophagy in DDPSCs. Mechanical stress can regulate autophagy of DDPSCs through α7 nAChR and thus affect IL-1ß expression and inflammatory microenvironment formation in physiological root resorption in deciduous teeth.

9.
J Extracell Vesicles ; 13(7): e12473, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965648

ABSTRACT

Extracellular vesicles (EVs) derived from dental pulp stem cells (DPSC) have been shown an excellent efficacy in a variety of disease models. However, current production methods fail to meet the needs of clinical treatment. In this study, we present an innovative approach to substantially enhance the production of 'Artificial Cell-Derived Vesicles (ACDVs)' by extracting and purifying the contents released by the DPSC lysate, namely intracellular vesicles. Comparative analysis was performed between ACDVs and those obtained through ultracentrifugation. The ACDVs extracted from the cell lysate meet the general standard of EVs and have similar protein secretion profile. The new ACDVs also significantly promoted wound healing, increased or decreased collagen regeneration, and reduced the production of inflammatory factors as the EVs. More importantly, the extraction efficiency is improved by 16 times compared with the EVs extracted using ultracentrifuge method. With its impressive attributes, this new subtype of ACDVs emerge as a prospective candidate for the future clinical applications in regenerative medicine.


Subject(s)
Dental Pulp , Extracellular Vesicles , Stem Cells , Dental Pulp/cytology , Dental Pulp/metabolism , Extracellular Vesicles/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Humans , Animals , Wound Healing , Regenerative Medicine/methods
10.
Sci Rep ; 14(1): 16396, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013921

ABSTRACT

Most of the conditions involving cartilaginous tissues are irreversible and involve degenerative processes. The aim of the present study was to fabricate a biocompatible fibrous and film scaffolds using electrospinning and casting techniques to induce chondrogenic differentiation for possible application in cartilaginous tissue regeneration. Polycaprolactone (PCL) electrospun nanofibrous scaffolds and PCL film were fabricated and incorporated with multi-walled carbon nanotubes (MWCNTs). Thereafter, coating of chondroitin sulfate (CS) on the fibrous and film structures was applied to promote chondrogenic differentiation of human dental pulp stem cells (hDPSCs). First, the morphology, hydrophilicity and mechanical properties of the scaffolds were characterized by scanning electron microscopy (SEM), spectroscopic characterization, water contact angle measurements and tensile strength testing. Subsequently, the effects of the fabricated scaffolds on stimulating the proliferation of human dental pulp stem cells (hDPSCs) and inducing their chondrogenic differentiation were evaluated via electron microscopy, flow cytometry and RT‒PCR. The results of the study demonstrated that the different forms of the fabricated PCL-MWCNTs scaffolds analyzed demonstrated biocompatibility. The nanofilm structures demonstrated a higher rate of cellular proliferation, while the nanofibrous architecture of the scaffolds supported the cellular attachment and differentiation capacity of hDPSCs and was further enhanced with CS addition. In conclusion, the results of the present investigation highlighted the significance of this combination of parameters on the viability, proliferation and chondrogenic differentiation capacity of hDPSCs seeded on PCL-MWCNT scaffolds. This approach may be applied when designing PCL-based scaffolds for future cell-based therapeutic approaches developed for chondrogenic diseases.


Subject(s)
Cell Differentiation , Chondrogenesis , Chondroitin Sulfates , Dental Pulp , Nanofibers , Nanotubes, Carbon , Polyesters , Stem Cells , Tissue Scaffolds , Humans , Dental Pulp/cytology , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/pharmacology , Polyesters/chemistry , Polyesters/pharmacology , Nanofibers/chemistry , Cell Differentiation/drug effects , Chondrogenesis/drug effects , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism , Tissue Scaffolds/chemistry , Nanotubes, Carbon/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Tissue Engineering/methods
11.
Sci Rep ; 14(1): 14702, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926433

ABSTRACT

The aim of this study is to introduce a dental capping agent for the treatment of pulp inflammation (pulpitis). Nanohydroxyapatite with Elaeagnus angustifolia L. extract (nHAEA) loaded with metronidazole (nHAEA@MTZ) was synthesized and evaluated using a lipopolysaccharide (LPS) in vitro model of pulpitis. nHAEA was synthesized through sol-gel method and analyzed using Scanning Electron Microscopy, Transmission Electron Microscopy, and Brunauer Emmett Teller. Inflammation in human dental pulp stem cells (HDPSCs) induced by LPS. A scratch test assessed cell migration, RT PCR measured cytokines levels, and Alizarin red staining quantified odontogenesis. The nHAEA nanorods were 17-23 nm wide and 93-146 nm length, with an average pore diameter of 27/312 nm, and a surface area of 210.89 m2/g. MTZ loading content with controlled release, suggesting suitability for therapeutic applications. nHAEA@MTZ did not affect the odontogenic abilities of HDPSCs more than nHAEA. However, it was observed that nHAEA@MTZ demonstrated a more pronounced anti-inflammatory effect. HDPSCs treated with nanoparticles exhibited improved migration compared to other groups. These findings demonstrated that nHAEA@MTZ could be an effective material for pulp capping and may be more effective than nHAEA in reducing inflammation and activating HDPSCs to enhance pulp repair after pulp damage.


Subject(s)
Dental Pulp , Durapatite , Metronidazole , Plant Extracts , Pulpitis , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Pulpitis/drug therapy , Pulpitis/metabolism , Pulpitis/pathology , Metronidazole/pharmacology , Dental Pulp/drug effects , Dental Pulp/metabolism , Dental Pulp/cytology , Durapatite/chemistry , Nanoparticles/chemistry , Green Chemistry Technology , Drug Carriers/chemistry , Stem Cells/drug effects , Stem Cells/metabolism , Cell Movement/drug effects , Cells, Cultured
12.
Dent J (Basel) ; 12(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38920890

ABSTRACT

BACKGROUND: Amelogenesis imperfecta is a hereditary disorder affecting dental enamel. Among its phenotypes, hypocalcified AI is characterized by mineral deficiency, leading to tissue wear and, consequently, dental sensitivity. Excessive fluoride intake (through drinking water, fluoride supplements, toothpaste, or by ingesting products such as pesticides or insecticides) can lead to a condition known as dental fluorosis, which manifests as stains and teeth discoloration affecting their structure. Our recent studies have shown that extracts from Colombian native plants, Ilex guayusa and Piper marginatum, deposit mineral ions such as phosphate and orthophosphate into the dental enamel structure; however, it is unknown whether these extracts produce toxic effects on the dental pulp. OBJECTIVE: To assess cytotoxicity effects on human dental pulp stem cells (hDPSCs) exposed to extracts isolated from I. guayusa and P. marginatum and, hence, their safety for clinical use. METHODS: Raman spectroscopy, fluorescence microscopy, and flow cytometry techniques were employed. For Raman spectroscopy, hDPSCs were seeded onto nanobiochips designed to provide surface-enhanced Raman spectroscopy (SERS effect), which enhances their Raman signal by several orders of magnitude. After eight days in culture, I. guayusa and P. marginatum extracts at different concentrations (10, 50, and 100 ppm) were added. Raman measurements were performed at 0, 12, and 24 h following extract application. Fluorescence microscopy was conducted using an OLIMPUS fv1000 microscope, a live-dead assay was performed using a kit employing a BD FACS Canto TM II flow cytometer, and data analysis was determined using a FlowJo program. RESULTS: The Raman spectroscopy results showed spectra consistent with viable cells. These findings were corroborated using fluorescence microscopy and flow cytometry techniques, confirming high cellular viability. CONCLUSIONS: The analyzed extracts exhibited low cytotoxicity, suggesting that they could be safely applied on enamel for remineralization purposes. The use of nanobiochips for SERS effect improved the cell viability assessment.

13.
Front Chem ; 12: 1417763, 2024.
Article in English | MEDLINE | ID: mdl-38887698

ABSTRACT

Introduction: Facial nerve injury significantly impacts both the physical and psychological] wellbeing of patients. Despite advancements, there are still limitations associated with autografts transplantation. Consequently, there is an urgent need for effective artificial grafts to address these limitations and repair injuries. Recent years have witnessed the recognition of the beneficial effects of chitosan (CS) and graphene in the realm of nerve repair. Dental pulp stem cells (DPSCs) hold great promise due to their high proliferative and multi-directional differentiation capabilities. Methods: In this study, Graphene/CS (G/CST) composite tubes were synthesized and their physical, chemical and biological properties were evaluated, then DPSCs were employed as seed cells and G/CST as a scaffold to investigate their combined effect on promoting facial nerve injury repair. Results and Disscussion: The experimental results indicate that G/CST possesses favorable physical and chemical properties, along with good cyto-compatibility. making it suitable for repairing facial nerve transection injuries. Furthermore, the synergistic application of G/CST and DPSCs significantly enhanced the repair process for a 10 mm facial nerve defect in rabbits, highlighting the efficacy of graphene as a reinforcement material and DPSCs as a functional material in facial nerve injury repair. This approach offers an effective treatment strategy and introduces a novel concept for clinically managing facial nerve injuries.

14.
Methods Cell Biol ; 188: 237-254, 2024.
Article in English | MEDLINE | ID: mdl-38880526

ABSTRACT

The prevalence of central nervous system (CNS) dysfunction as a result of disease or trauma remains a clinically unsolved problem which is raising increased awareness in our aging society. Human Dental Pulp Stem Cells (hDPSCs) are excellent candidates to be used in tissue engineering and regenerative therapies of the CNS due to their neural differentiation ability and lack of tumorigenicity. Accordingly, they have been successfully used in animal models of spinal cord injury, stroke and peripheral neuropathies. The ideal therapy in brain injury should combine strategies aiming to protect the damaged lesion and, at the same time, accelerate brain tissue regeneration, thus promoting fast recovery while minimizing side or long-term effects. The use of bioresorbable nanopatterned poly(lactide-co-ɛ-caprolactone) (PLCL) polymeric scaffolds as hDPCSs carriers can represent an advantage for tissue regeneration. In this chapter, we describe the surgical procedures to implant functionalized bioresorbable scaffolds loaded with hDPSCs to improve the brain lesion microenvironment in an intracranial stab wound injury model severing the rostral migratory stream (RMS) that connects the brain subventricular zone (SVZ) and the olfactory bulb in nude mice. Additionally, we also describe the technical steps after animal sacrifice for histological tissue observation and characterization.


Subject(s)
Dental Pulp , Disease Models, Animal , Mice, Nude , Stem Cells , Tissue Scaffolds , Dental Pulp/cytology , Animals , Humans , Tissue Scaffolds/chemistry , Mice , Stem Cells/cytology , Stem Cell Transplantation/methods , Wounds, Stab/therapy , Absorbable Implants , Brain Injuries/therapy , Brain Injuries/pathology , Tissue Engineering/methods
15.
Mater Today Bio ; 26: 101102, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38883420

ABSTRACT

Regenerative endodontic therapy is a promising approach to restore the vitality of necrotic teeth, however, pulp regeneration in mature permanent teeth remains a substantial challenge due to insufficient developmental signals. The dentin is embryologically and histologically similar to the pulp, which contains a cocktail of pulp-specific structural proteins and growth factors, thus we proposed an optimizing strategy to obtain dentin matrix extracted proteins (DMEP) and engineered a DMEP functionalized double network hydrogel, whose physicochemical property was tunable by adjusting polymer concentrations to synchronize with regenerated tissues. In vitro models showed that the biomimetic hydrogel with sustained release of DMEP provided a beneficial microenvironment for the encapsulation, propagation and migration of human dental pulp stem cells (hDPSCs). The odontogenic and angiogenic differentiation of hDPSCs were enhanced as well. To elicit the mechanism hidden in the microenvironment to guide cell fate, RNA sequencing was performed and 109 differential expression of genes were identified, the majority of which enriched in cell metabolism, cell differentiation and intercellular communications. The involvement of ERK, p38 and JNK MAPK signaling pathways in the process was confirmed. Of note, in vivo models showed that the injectable and in situ photo-crosslinkable hydrogel was user-friendly for root canal systems and was capable of inducing the regeneration of highly organized and vascularized pulp-like tissues in root segments that subcutaneously implanted into nude mice. Taken together, this study reported a facile and efficient way to fabricate a cell delivery hydrogel with pulp-specific developmental cues, which exhibited promising application and translation potential in future regenerative endodontic fields.

16.
Saudi Dent J ; 36(6): 894-898, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38883894

ABSTRACT

Despite that, the odontoblasts of the dental pulp are considered a terminally differentiated type of cell. We were interested in investigating if they express any embryonic, mesenchymal, or neural stem cell markers, along with other differentiation markers they were reported to express previously. Methods: An immunohistochemistry study was performed on wisdom teeth extracted from healthy donors aged between 17 and 19 for dental reasons. Nine markers were tested: c-Myc, SOX2, MCAM, CD73, NCAM1, STRO1, osteocalcin, S100, and Thy1. Results: Odontoblasts expressed the following markers: embryonic stem cell markers SOX2, c-Myc, mesenchymal stem cell marker MCAM, the neural differentiation marker S100, and the osteogenic differentiation marker osteocalcin. Odontoblasts did not express the following markers: mesenchymal stem cell markers CD73, STRO1, Thy1, and neural stem cell marker NCAM1. Conclusion: These findings suggest that odontoblasts' expression of these stem cell markers may enable them to dedifferentiate under certain conditions. Further investigation is needed into whether dental materials could induce such dedifferentiation for functional dentin regeneration.

17.
Front Biosci (Landmark Ed) ; 29(6): 211, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38940041

ABSTRACT

BACKGROUND: Dental pulp stem cells (DPSCs) have self-renewal and multidirectional differentiation potentials. As such, DPSCs have a wide range of clinical applications. Low-level laser therapy (LLLT) has positive photobiostimulatory effects on cell proliferation, angiogenesis, osteogenic differentiation, bone regeneration, and fracture healing. However, there have been few studies on the effect of low-energy lasers on DPSC proliferation. METHODS: DPSCs were obtained from dental pulp tissue. The effects of LLLT on the proliferation of DPSCs and the associated mechanisms were investigated by in vitro culture and laser irradiation. RESULTS: LLLT with energy densities of 3.5 J/cm2 and 14 J/cm2promoted the proliferation of DPSCs. Differential protein expression studies suggested the stimulation of DPSC proliferation by LLLT involved the PI3K-Akt and Rap1 signaling pathways, as well as the apoptosis-related pathway. CONCLUSION: This preliminary study demonstrated that low-energy lasers have a pro-proliferative effect on DPSCs, and identified possible associated mechanisms. Our findings provide a theoretical basis for the clinical application of DPSCs and suggest novel strategies for the treatment of related diseases.


Subject(s)
Cell Proliferation , Dental Pulp , Low-Level Light Therapy , Stem Cells , Dental Pulp/cytology , Dental Pulp/radiation effects , Cell Proliferation/radiation effects , Humans , Stem Cells/radiation effects , Stem Cells/cytology , Stem Cells/metabolism , Low-Level Light Therapy/methods , Cells, Cultured , Signal Transduction/radiation effects , Apoptosis/radiation effects , Cell Differentiation/radiation effects
18.
Int J Nanomedicine ; 19: 5459-5478, 2024.
Article in English | MEDLINE | ID: mdl-38863648

ABSTRACT

Graphene family nanomaterials (GFNs) have attracted considerable attention in diverse fields from engineering and electronics to biomedical applications because of their distinctive physicochemical properties such as large specific surface area, high mechanical strength, and favorable hydrophilic nature. Moreover, GFNs have demonstrated the ability to create an anti-inflammatory environment and exhibit antibacterial effects. Consequently, these materials hold immense potential in facilitating cell adhesion, proliferation, and differentiation, further promoting the repair and regeneration of various tissues, including bone, nerve, oral, myocardial, and vascular tissues. Note that challenges still persist in current applications, including concerns regarding biosecurity risks, inadequate adhesion performance, and unsuitable degradability as matrix materials. This review provides a comprehensive overview of current advancements in the utilization of GFNs in regenerative medicine, as well as their molecular mechanism and signaling targets in facilitating tissue repair and regeneration. Future research prospects for GFNs, such as potential in promoting ocular tissue regeneration, are also discussed in details. We hope to offer a valuable reference for the clinical application of GFNs in the treatment of bone defects, nerve damage, periodontitis, and atherosclerosis.


Subject(s)
Graphite , Nanostructures , Regenerative Medicine , Tissue Engineering , Humans , Regenerative Medicine/methods , Graphite/chemistry , Nanostructures/chemistry , Tissue Engineering/methods , Animals
19.
Dent Mater ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908960

ABSTRACT

OBJECTIVES: Silicon-releasing biomaterials are widely used in the field of dentistry. However, unlike bone, very little is known about the role of silicon on dental tissue formation and repair. This study investigates the influence of silicic acid on the survival, differentiation and mineralizing ability of human dental pulp stem cells (hDPSCs) in 3D pulp-like environments METHODS: Dense type I collagen hydrogels seeded with hDPSCs were cultured over 4 weeks in the presence of silicic acid at physiological (10 µM) and supraphysiological (100 µM) concentrations. Cell viability and proliferation were studied by Alamar Blue and live/dead staining. The collagen network was investigated using second harmonic generation imaging. Mineral deposition was monitored by histology and scanning electron microscopy. Gene expression of mineralization- and matrix remodeling-associated proteins was studied by qPCR. RESULTS: Presence of silicic acid did not show any significant influence on cell survival, metabolic activity and gene expression of key mineralization-related proteins (ALP, OCN, BSP). However, it induced enhanced cell clustering and delayed expression of matrix remodeling-associated proteins (MMP13, Col I). OPN expression and mineral deposition were inhibited at 100 µM. It could be inferred that silicic acid has no direct cellular effect but rather interacts with the collagen network, leading to a modification of the cell-matrix interface. SIGNIFICANCE: Our results offer advanced insights on the possible role of silicic acid, as released by pulp capping calcium silicates biomaterials, in reparative dentine formation. More globally, these results interrogate the possible role of Si in pulp pathophysiology.

20.
Int Dent J ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38692961

ABSTRACT

OBJECTIVES: The present study aimed to (1) investigate biocompatibility and cytotoxicity of pulp-capping materials on viability of human dental pulp stem cells (hDPSCs); (2) determine angiogenic, odontogenic, and osteogenic marker mRNA expressions; and (3) observe changes in surface morphology of the hDPSCs using scanning electron microscopy (SEM). METHODS: Impacted third molars were used to isolate the hDPSCs, which were treated with extract-release fluids of the pulp-capping materials (Harvard BioCal-Cap, NeoPUTTY MTA, TheraCal LC, and Dycal). Effects of the capping materials on cell viability were assessed using 3-(4,5-di-methyl-thiazol-2-yl)-5-(3-carboxy-methoxy-phenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium (MTS) assay and the apoptotic/necrotic cell ratios and reactive oxygen species (ROS) levels from flow cytometry. Marker expressions (alkaline phosphatase [ALP], osteocalcin [OCN], collagen type I alpha 1 [Col1A], secreted protein acidic and rich in cysteine [SPARC], osteonectin [ON], and vascular endothelial growth factor [VEGF]) were determined by quantitative reverse-transcription polymerase chain reaction. Changes in surface morphology of the hDPSCs were visualised by SEM. RESULTS: The MTS assay results at days 1, 3, 5, and 7 indicated that Harvard BioCal-Cap, NeoPUTTY MTA, and TheraCal LC did not adversely affect cell viability when compared with the control group. According to the MTS assay results at day 14, no significant difference was found amongst Dycal, Harvard BioCal-Cap, NeoPUTTY MTA, and TheraCal LC affecting cell viability. Dycal was the only capping material that increased ROS level. High levels of VEGF expression were observed with Harvard BioCal-Cap, TheraCal LC, and NeoPUTTY MTA. NeoPUTTY MTA, and Dycal upregulated OCN expression, whereas TheraCal LC upregulated Col1A and SPARC expression. Only Dycal increased ALP expression. HDSCs were visualized in characteristic spindle morphology on SEM when treated with TheraCal LC and Harvard BioCal-Cap. CONCLUSIONS: NeoPUTTY MTA and Harvard BioCal-Cap showed suitable biocompatibility values; in particular, these pulp-capping materials were observed to support the angiogenic marker.

SELECTION OF CITATIONS
SEARCH DETAIL
...