Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34.401
Filter
1.
Methods Mol Biol ; 2834: 303-332, 2025.
Article in English | MEDLINE | ID: mdl-39312172

ABSTRACT

In the last three decades, the development of nanoparticles or nano-formulations as drug delivery systems has emerged as a promising tool to overcome the limitations of conventional delivery, potentially to improve the stability and solubility of active molecules, promote their transport across the biological membranes, and prolong circulation times to increase efficacy of a therapy. Despite several nano-formulations having applications in drug delivery, some issues concerning their safety and toxicity are still debated. This chapter describes the recent available information regarding safety, toxicity, and efficacy of nano-formulations for drug delivery. Several key factors can influence the behavior of nanoparticles in a biological environment, and their evaluation is crucial to design non-toxic and effective nano-formulations. Among them, we have focused our attention on materials and methods for their preparation (including the innovative microfluidic technique), mechanisms of interactions with biological systems, purification of nanoparticles, manufacture impurities, and nano-stability. This chapter places emphasis on the utilization of in silico, in vitro, and in vivo models for the assessment and prediction of toxicity associated with these nano-formulations. Furthermore, the chapter includes specific examples of in vitro and in vivo studies conducted on nanoparticles, illustrating their application in this field.


Subject(s)
Drug Delivery Systems , Nanoparticles , Humans , Nanoparticles/chemistry , Animals , Drug Delivery Systems/methods , Drug Compounding/methods , Nanoparticle Drug Delivery System/chemistry
2.
Biomaterials ; 313: 122778, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39213978

ABSTRACT

Thyroid cancer is increasing globally, with anaplastic thyroid carcinoma (ATC) being the most aggressive type and having a poor prognosis. Current clinical treatments for thyroid cancer present numerous challenges, including invasiveness and the necessity of lifelong medication. Furthermore, a significant portion of patients with ATC experience cancer recurrence and metastasis. To overcome this dilemma, we developed a pH-responsive biomimetic nanocarrier (CLP@HP-A) through the incorporation of Chlorin e6 (Ce6) and Lenvatinib (Len) within hollow polydopamine nanoparticles (HP) that were further modified with platinum nanoparticles (Pt), enabling synergistic chemotherapy and sonodynamic therapy. The CLP@HP-A nanocarriers exhibited specific binding with galectin-3 receptors, facilitating their internalization through receptor-mediated endocytosis for targeted drug delivery. Upon exposure to ultrasound (US) irradiation, Ce6 rapidly generated reactive oxygen species (ROS) to induce significant oxidative stress and trigger apoptosis in tumor cells. Additionally, Pt not only alleviated tumor hypoxia by catalyzing the conversion of H2O2 to oxygen (O2) but also augmented intracellular ROS levels through the production of hydroxyl radicals (•OH), thereby enhancing the efficacy of sonodynamic therapy. Moreover, Len demonstrated a potent cytotoxic effect on thyroid cancer cells through the induction of apoptosis. Transcriptomics analysis findings additionally corroborated that CLP@HP-A effectively triggered cancer cell apoptosis, thereby serving as a crucial mechanism for its cytotoxic effects. In conclusion, the integration of sonodynamic/chemo combination therapy with targeted drug delivery systems offers a novel approach to the management of malignant tumors.


Subject(s)
Chlorophyllides , Indoles , Platinum , Polymers , Porphyrins , Thyroid Neoplasms , Tumor Microenvironment , Ultrasonic Therapy , Thyroid Neoplasms/pathology , Thyroid Neoplasms/therapy , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/metabolism , Humans , Cell Line, Tumor , Tumor Microenvironment/drug effects , Indoles/chemistry , Ultrasonic Therapy/methods , Porphyrins/chemistry , Porphyrins/pharmacology , Polymers/chemistry , Animals , Platinum/chemistry , Platinum/therapeutic use , Platinum/pharmacology , Reactive Oxygen Species/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Apoptosis/drug effects , Nanoparticles/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Mice , Quinolines/pharmacology , Quinolines/chemistry , Mice, Nude , Drug Carriers/chemistry
3.
Biomaterials ; 313: 122767, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39216327

ABSTRACT

Peripheral artery disease is commonly treated with balloon angioplasty, a procedure involving minimally invasive, transluminal insertion of a catheter to the site of stenosis, where a balloon is inflated to open the blockage, restoring blood flow. However, peripheral angioplasty has a high rate of restenosis, limiting long-term patency. Therefore, angioplasty is sometimes paired with delivery of cytotoxic drugs like paclitaxel to reduce neointimal tissue formation. We pursue intravascular drug delivery strategies that target the underlying cause of restenosis - intimal hyperplasia resulting from stress-induced vascular smooth muscle cell switching from the healthy contractile into a pathological synthetic phenotype. We have established MAPKAP kinase 2 (MK2) as a driver of this phenotype switch and seek to establish convective and contact transfer (coated balloon) methods for MK2 inhibitory peptide delivery to sites of angioplasty. Using a flow loop bioreactor, we showed MK2 inhibition in ex vivo arteries suppresses smooth muscle cell phenotype switching while preserving vessel contractility. A rat carotid artery balloon injury model demonstrated inhibition of intimal hyperplasia following MK2i coated balloon treatment in vivo. These studies establish both convective and drug coated balloon strategies as promising approaches for intravascular delivery of MK2 inhibitory formulations to improve efficacy of balloon angioplasty.


Subject(s)
Intracellular Signaling Peptides and Proteins , Protein Serine-Threonine Kinases , Rats, Sprague-Dawley , Animals , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , Male , Peptides/chemistry , Peptides/pharmacology , Rats , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/cytology , Angioplasty, Balloon/methods , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Drug Delivery Systems , Hyperplasia/prevention & control , Angioplasty , Neointima/prevention & control , Neointima/pathology
4.
Methods Mol Biol ; 2848: 259-267, 2025.
Article in English | MEDLINE | ID: mdl-39240528

ABSTRACT

Controlled release or controlled drug delivery comprises the set of techniques and approaches to improve bioavailability through improved safety and/or efficacy using a carrier material for the molecule of interest. The predictability and tunability of these carriers make them ideal for protection, localization, and sustained presentation of a wide range of therapeutics, including growth factors implicated in cell survival and regeneration. Here we provide a method for encapsulating epidermal growth factor in a degradable polymer matrix for delivery to the cornea. Additional notes are included to demonstrate the wide-ranging capabilities of such methods for other materials, therapeutic agents, and sites of action within the eye.


Subject(s)
Cell Survival , Delayed-Action Preparations , Cell Survival/drug effects , Humans , Regeneration , Epidermal Growth Factor/metabolism , Animals , Cornea/metabolism , Cornea/cytology , Drug Delivery Systems/methods , Polymers/chemistry , Drug Carriers/chemistry
5.
Biomaterials ; 312: 122750, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39126779

ABSTRACT

Infiltration of immunosuppressive cells into the breast tumor microenvironment (TME) is associated with suppressed effector T cell (Teff) responses, accelerated tumor growth, and poor clinical outcomes. Previous studies from our group and others identified infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) as critical contributors to immune dysfunction in the orthotopic claudin-low tumor model, limiting the efficacy of adoptive cellular therapy. However, approaches to target these cells in the TME are currently lacking. To overcome this barrier, polymeric micellular nanoparticles (PMNPs) were used for the co-delivery of small molecule drugs activating Toll-like receptors 7 and 8 (TLR7/8) and inhibiting PI3K delta (PI3Kδ). The immunomodulation of the TME by TLR7/8 agonist and PI3K inhibitor led to type 1 macrophage polarization, decreased MDSC accumulation and selectively decreased tissue-resident Tregs in the TME, while enhancing the T and B cell adaptive immune responses. PMNPs significantly enhanced the anti-tumor activity of local radiation therapy (RT) in mice bearing orthotopic claudin-low tumors compared to RT alone. Taken together, these data demonstrate that RT combined with a nanoformulated immunostimulant diminished the immunosuppressive TME resulting in tumor regression. These findings set the stage for clinical studies of this approach.


Subject(s)
Nanoparticles , Toll-Like Receptor 7 , Toll-Like Receptor 8 , Tumor Microenvironment , Animals , Tumor Microenvironment/drug effects , Toll-Like Receptor 7/agonists , Female , Nanoparticles/chemistry , Mice , Toll-Like Receptor 8/agonists , Immunomodulation/drug effects , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Mice, Inbred BALB C , Micelles , Humans
6.
Biomaterials ; 313: 122766, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39180916

ABSTRACT

The immune resistance of tumor microenvironment (TME) causes immune checkpoint blockade therapy inefficient to hepatocellular carcinoma (HCC). Emerging strategies of using chemotherapy regimens to reverse the immune resistance provide the promise for promoting the efficiency of immune checkpoint inhibitors. The induction of cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) in tumor cells evokes the adaptive immunity and remodels the immunosuppressive TME. In this study, we report that mitoxantrone (MIT, a chemotherapeutic drug) activates the cGAS-STING signaling pathway of HCC cells. We provide an approach to augment the efficacy of MIT using a signal transducer and activator of transcription 3 (STAT3) inhibitor called napabucasin (NAP). We prepare an aminoethyl anisamide (AEAA)-targeted polyethylene glycol (PEG)-modified poly (lactic-co-glycolic acid) (PLGA)-based nanocarrier for co-delivery of MIT and NAP. The resultant co-nanoformulation can elicit the cGAS-STING-based immune responses to reshape the immunoresistant TME in the mice orthotopically grafted with HCC. Consequently, the resultant co-nanoformulation can promote anti-PD-1 antibody for suppressing HCC development, generating long-term survival, and inhibiting tumor recurrence. This study reveals the potential of MIT to activate the cGAS-STING signaling pathway, and confirms the feasibility of nano co-delivery for MIT and NAP on achieving HCC chemo-immunotherapy.


Subject(s)
Carcinoma, Hepatocellular , Immunotherapy , Liver Neoplasms , Membrane Proteins , Mitoxantrone , Nucleotidyltransferases , STAT3 Transcription Factor , Mitoxantrone/pharmacology , Mitoxantrone/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Animals , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Humans , Nucleotidyltransferases/metabolism , Membrane Proteins/metabolism , STAT3 Transcription Factor/metabolism , Mice , Immunotherapy/methods , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Signal Transduction/drug effects , Tumor Microenvironment/drug effects , Benzofurans , Naphthoquinones
7.
Biomaterials ; 312: 122718, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39084097

ABSTRACT

Functional hydrogels are used for numerous biomedical applications such as tissue engineering, wound dressings, lubricants, contact lenses and advanced drug delivery systems. Most of them are based on synthetic or natural polymers forming a three-dimensional network that contains aqueous media. Among synthetic polymers, poly(meth)acrylates, polyethyleneglycols, poly(vinylalcohols), poly(vinylpyrrolidones), PLGA and poly(urethanes) are of high relevance, whereas natural polymers are mainly polysaccharides such as hyaluronic acid, alginate or chitosan and proteins such as albumin, collagen or elastin. In contrast to most synthetic polymers, natural polymers are biodegradable. Both synthetic and natural polymers are often chemically modified in order to improve or induce favorable properties and functions like high mechanical strength, stiffness, elasticity, high porosity, adhesive properties, in situ gelling properties, high water binding capacity or drug release controlling properties. Within this review we provide an overview about the broad spectrum of biomedical applications of functional hydrogels, summarize innovative approaches, discuss the concept of relevant functional hydrogels that are in clinical trials and highlight advanced products as examples for successful developments.


Subject(s)
Hydrogels , Tissue Engineering , Hydrogels/chemistry , Humans , Tissue Engineering/methods , Clinical Trials as Topic , Animals , Biocompatible Materials/chemistry , Drug Delivery Systems/methods , Polymers/chemistry
8.
Biomaterials ; 312: 122745, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39098306

ABSTRACT

Stimulator of interferon genes (STING) agonists have shown promise in cancer treatment by stimulating the innate immune response, yet their clinical potential has been limited by inefficient cytosolic entry and unsatisfactory pharmacological activities. Moreover, aggressive tumors with "cold" and immunosuppressive microenvironments may not be effectively suppressed solely through innate immunotherapy. Herein, we propose a multifaceted immunostimulating nanoparticle (Mn-MC NP), which integrates manganese II (Mn2+) coordinated photosensitizers (chlorin e6, Ce6) and STING agonists (MSA-2) within a PEGylated nanostructure. In Mn-MC NPs, Ce6 exerts potent phototherapeutic effects, facilitating tumor ablation and inducing immunogenic cell death to elicit robust adaptive antitumor immunity. MSA-2 activates the STING pathway powered by Mn2+, thereby promoting innate antitumor immunity. The Mn-MC NPs feature a high drug-loading capacity (63.42 %) and directly ablate tumor tissue while synergistically boosting both adaptive and innate immune responses. In subsutaneous tumor mouse models, the Mn-MC NPs exhibit remarkable efficacy in not only eradicating primary tumors but also impeding the progression of distal and metastatic tumors through synergistic immunotherapy. Additionally, they contribute to preventing tumor recurrence by fostering long-term immunological memory. Our multifaceted immunostimulating nanoparticle holds significant potential for overcoming limitations associated with insufficient antitumor immunity and ineffective cancer treatment.


Subject(s)
Immunotherapy , Manganese , Nanoparticles , Animals , Immunotherapy/methods , Manganese/chemistry , Nanoparticles/chemistry , Mice , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Cell Line, Tumor , Humans , Porphyrins/chemistry , Porphyrins/pharmacology , Chlorophyllides , Neoplasms/therapy , Neoplasms/immunology , Photochemotherapy/methods , Immunity, Innate/drug effects , Female , Mice, Inbred C57BL , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry
9.
Biomaterials ; 312: 122751, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39121726

ABSTRACT

Tumor immunotherapies have emerged as a promising frontier in the realm of cancer treatment. However, challenges persist in achieving localized, durable immunostimulation while counteracting the tumor's immunosuppressive environment. Here, we develop a natural mussel foot protein-based nanomedicine with spatiotemporal control for tumor immunotherapy. In this nanomedicine, an immunoadjuvant prodrug and a photosensitizer are integrated, which is driven by their dynamic bonding and non-covalent assembling with the protein carrier. Harnessing the protein carrier's bioadhesion, this nanomedicine achieves a drug co-delivery with spatiotemporal precision, by which it not only promotes tumor photothermal ablation but also broadens tumor antigen repertoire, facilitating in situ immunotherapy with durability and maintenance. This nanomedicine also modulates the tumor microenvironment to overcome immunosuppression, thereby amplifying antitumor responses against tumor progression. Our strategy underscores a mussel foot protein-derived design philosophy of drug delivery aimed at refining combinatorial immunotherapy, offering insights into leveraging natural proteins for cancer treatment.


Subject(s)
Immunotherapy , Nanomedicine , Animals , Immunotherapy/methods , Nanomedicine/methods , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/pharmacology , Photothermal Therapy/methods , Mice , Humans , Tumor Microenvironment/drug effects , Cell Line, Tumor , Proteins/chemistry , Female , Neoplasms/therapy , Neoplasms/immunology , Adhesives/chemistry , Mice, Inbred C57BL , Adjuvants, Immunologic/pharmacology
10.
Ther Deliv ; : 1-8, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225592
11.
Biomed Microdevices ; 26(4): 41, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39312013

ABSTRACT

Transdermal drug delivery (TDD) has significantly advanced medical practice in recent years due to its ability to prevent the degradation of substances in the gastrointestinal tract and avoid hepatic metabolism. Among different available approaches, microneedle arrays (MNAs) technology represents a fascinating delivery tool for enhancing TDD by penetrating the stratum corneum painless and minimally invasive for delivering antibacterial, antifungal, and antiviral medications. Polymeric MNAs are extensively utilized among many available materials due to their biodegradability, biocompatibility, and low toxicity. Therefore, this review provides a comprehensive discussion of polymeric MNAs, starting with understanding stratum corneum and developing MNA technology. Furthermore, the engineering concepts, fundamental considerations, challenges, and future perspectives of polymeric MNAs in clinical applications are properly outlined, offering a comprehensive and unique overview of polymeric MNAs and their potential for a broad spectrum of clinical applications.


Subject(s)
Needles , Polymers , Polymers/chemistry , Humans , Drug Delivery Systems/instrumentation , Animals , Administration, Cutaneous
12.
Molecules ; 29(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39274893

ABSTRACT

Ferritin (Ft) is a protein with a peculiar three-dimensional architecture. It is characterized by a hollow cage structure and is responsible for iron storage and detoxification in almost all living organisms. It has attracted the interest of the scientific community thanks to its appealing features, such as its nano size, thermal and pH stability, ease of functionalization, and low cost for large-scale production. Together with high storage capacity, these properties qualify Ft as a promising nanocarrier for the development of delivery systems for numerous types of biologically active molecules. In this paper, we introduce the basic structural and functional aspects of the protein, and summarize the methods employed to load bioactive molecules within the ferritin nanocage.


Subject(s)
Ferritins , Nanoparticles , Ferritins/chemistry , Nanoparticles/chemistry , Humans , Drug Carriers/chemistry , Drug Delivery Systems , Animals
13.
Discov Nano ; 19(1): 151, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289310

ABSTRACT

With the size of the aging population increasing worldwide, the effective diagnosis and treatment of neurodegenerative diseases (NDDs) has become more important. Two-dimensional (2D) materials offer specific advantages for the diagnosis and treatment of NDDs due to their high sensitivity, selectivity, stability, and biocompatibility, as well as their excellent physical and chemical characteristics. As such, 2D materials offer a promising avenue for the development of highly sensitive, selective, and biocompatible theragnostics. This review provides an interdisciplinary overview of advanced 2D materials and their use in biosensors, drug delivery, and tissue engineering/regenerative medicine for the diagnosis and/or treatment of NDDs. The development of 2D material-based biosensors has enabled the early detection and monitoring of NDDs via the precise detection of biomarkers or biological changes, while 2D material-based drug delivery systems offer the targeted and controlled release of therapeutics to the brain, crossing the blood-brain barrier and enhancing treatment effectiveness. In addition, when used in tissue engineering and regenerative medicine, 2D materials facilitate cell growth, differentiation, and tissue regeneration to restore neuronal functions and repair damaged neural networks. Overall, 2D materials show great promise for use in the advanced treatment of NDDs, thus improving the quality of life for patients in an aging population.

14.
Fluids Barriers CNS ; 21(1): 74, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289695

ABSTRACT

BACKGROUND: The most crucial area to focus on when thinking of novel pathways for drug delivery into the CNS is the blood brain barrier (BBB). A number of nanoparticulate formulations have been shown in earlier research to target receptors at the BBB and transport therapeutics into the CNS. However, no mechanism for CNS entrance and movement throughout the CNS parenchyma has been proposed yet. Here, the truncated mini low-density lipoprotein receptor-related protein 1 mLRP1_DIV* was presented as blood to brain transport carrier, exemplified by antibodies and immunoliposomes using a systematic approach to screen the receptor and its ligands' route across endothelial cells in vitro. METHODS: The use of mLRP1_DIV* as liposomal carrier into the CNS was validated based on internalization and transport assays across an in vitro model of the BBB using hcMEC/D3 and bEnd.3 cells. Trafficking routes of mLRP1_DIV* and corresponding cargo across endothelial cells were analyzed using immunofluorescence. Modulation of γ-secretase activity by immunoliposomes loaded with the γ-secretase modulator BB25 was investigated in co-cultures of bEnd.3 mLRP1_DIV* cells and CHO cells overexpressing human amyloid precursor protein (APP) and presenilin 1 (PSEN1). RESULTS: We showed that while expressed in vitro, mLRP1_DIV* transports both, antibodies and functionalized immunoliposomes from luminal to basolateral side across an in vitro model of the BBB, followed by their mLRP1_DIV* dependent release of the cargo. Importantly, functionalized liposomes loaded with the γ-secretase modulator BB25 were demonstrated to effectively reduce toxic Aß42 peptide levels after mLRP1_DIV* mediated transport across a co-cultured endothelial monolayer. CONCLUSION: Together, the data strongly suggest mLRP1_DIV* as a promising tool for drug delivery into the CNS, as it allows a straight transport of cargo from luminal to abluminal side across an endothelial monolayer and it's release into brain parenchyma in vitro, where it exhibits its intended therapeutic effect.


Subject(s)
Blood-Brain Barrier , Cricetulus , Low Density Lipoprotein Receptor-Related Protein-1 , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Animals , Humans , CHO Cells , Endothelial Cells/metabolism , Liposomes , Biological Transport/physiology , Amyloid Precursor Protein Secretases/metabolism , Protein Transport/physiology , Protein Transport/drug effects , Mice , Coculture Techniques
15.
Int J Pharm ; 665: 124725, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39293581

ABSTRACT

In the current study, a core-shell inorganic nanostructure comprising a gold nanorod core and -mesoporous manganese dioxide shell was synthesized. Then, the mesoporous manganese dioxide shell was loaded with doxorubicin (DOX) and then coated with pluronic F127 and pluronic F127-folic acid conjugate (1.5:1 wt ratio of pluronic F127: pluronic F127-folic acid conjugate) to prepare targeted final platform. In this design, mesoporous manganese dioxide acted as a reservoir for DOX loading, anti-hypoxia, and MRI contrast agent, while the gold nanorod core acted as a photothermal and CT scan imaging agent. DOX was encapsulated in the mesoporous manganese dioxide shell with a loading capacity and loading efficiency of 19.8 % ± 0.2 and 99.0 % ± 0.9, respectively. The in vitro release experiment showed the impact of glutathione (GSH), mildly acidic pH, and laser irradiating toward accelerated stimuli-responsive DOX release. The ·OH production of the prepared platform was verified by methylene blue (MB) decomposition reaction. Furthermore, thermal imaging exhibited the ability of the prepared platform to convert the NIR irradiation to heat. In vitro cytotoxicity tests on the folate receptor-positive 4 T1 cell line revealed the remarkable cytotoxicity of the targeted formulation compared to the nontargeted formulation (statistically significant). The MTT experiment demonstrated that exposure to laser 808 irradiation enhanced cytotoxicity of the targeted formulation (p < 0.0001). The production of ROS in 4 T1 cells following treatment with the targeted formulation was demonstrated by the dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay. Furthermore, in vivo investigations by implementing subcutaneous 4 T1 tumorized female BABL/c mice indicated that the prepared platform was an effective system in suppressing tumor growth by combining chemotherapy with PTT (photothermal therapy). Additionally, simultanous PTT and anti-hypoxic activity of this system showed potent tumor growth suppression impact. The percent of tumor size reduction in mice treated with FA-F127-DOX@Au-MnO2 + 808 nm laser compared to the control group was 99.7 %. The results of the biodistribution investigation showed tumor accumulation and modified pharmacokinetics of the targeted system. Lastly, 6 and 24 h post-intravenous injection, CT-scan and MR imagings capability of the prepared platform was verified in preclinical stage. The prepared multipurpose system introduces great opportunity to provide multiple treatment strategy along with multimodal imaging capability in a single platform for breast cancer treatment.

16.
Heliyon ; 10(17): e37373, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39296216

ABSTRACT

The growing interest in the therapeutic potential of cannabidiol (CBD) has led to the need for effective and reliable delivery methods that overcome its low oral absorption. Zeolites, a class of porous nanoparticles, offer unique advantages as drug carriers due to their high surface area and adjustable pore size. In this study, a zeolite-based drug delivery system was developed for the encapsulation of CBD. The zeolite particles were characterized using various techniques such as Scanning Electron Microscopy (SEM), N2 adsorption analysis, Solid-state Fourier Transform Infrared (FTIR), Direct Light Scattering (DLS), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) before and after the loading. The drug encapsulation efficiency, and the release profile of CBD from the zeolite matrix were evaluated in addition to in vitro dissolution experiments in the intestinal and gastric simulated fluids. The results showed that the loaded zeolite particles exhibited high encapsulation efficiency of 73.5 %. XRD analysis proved that the USY structure remained intact after loading with CBD. DLS and N2 adsorption analysis indicated that CBD was successfully loaded into the zeolite matrix. When compared to CBD containing particles in a commercialized capsule, the in-vitro dissolution rate of CBD loaded zeolite was significantly higher after 30 min in the simulated stomach (pH 1.8) and the intestinal (pH 6.8) fluids, 67.8 % versus 43.6 % and 62.6 % vs 38.4 % respectively. Our findings open new avenues for the use of zeolites as an efficient drug delivery system for drugs with low bioavailability like CBD.

17.
Mater Today Bio ; 28: 101229, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39296355

ABSTRACT

Glaucoma presents a significant global health concern and affects millions of individuals worldwide and predicted a high increase in prevalence of about 111 million by 2040. The current standard treatment involves hypotensive eye drops; however, challenges such as patient adherence and limited drug bioavailability hinder the treatment effectiveness. Nanopharmaceuticals or nanomedicines offer promising solutions to overcome these obstacles. In this manuscript, we summarized the current limitations of conventional antiglaucoma treatment, role of nanomedicine in glaucoma treatment, rational design, factors effecting the performance of nanomedicine and different types of nanocarriers in designing of nanomedicine along with their applications in glaucoma treatment from recent literature. Current clinical challenges that hinder real-time application of antiglaucoma nanomedicine are highlighted. Lastly, future directions are identified for improving the therapeutic potential and translation of antiglaucoma nanomedicine into clinic.

18.
Int J Nanomedicine ; 19: 9503-9547, 2024.
Article in English | MEDLINE | ID: mdl-39296940

ABSTRACT

Over the course of several decades, anticancer treatment with chemotherapy drugs for lung cancer has not changed significantly. Unfortunately, this treatment prolongs the patient's life only by a few months, causing many side effects in the human body. It has also been proven that drugs such as Cisplatin, Carboplatin, Oxaliplatin and others can react with other substances containing an aromatic ring in which the nitrogen atom has a free electron group in its structure. Thus, such structures may have a competitive effect on the nucleobases of DNA. Therefore, scientists are looking not only for new drugs, but also for new alternative ways of delivering the drug to the cancer site. Nanotechnology seems to be a great hope in this matter. Creating a new nanomedicine would reduce the dose of the drug to an absolute minimum, and thus limit the toxic effect of the drug; it would allow for the exclusion of interactions with competitive compounds with a structure similar to nucleobases; it would also permit using the so-called targeted treatment and bypassing healthy cells; it would allow for the introduction of other treatment options, such as radiotherapy directly to the cancer site; and it would provide diagnostic possibilities. This article is a review that aims to systematize the knowledge regarding the anticancer treatment of lung cancer, but not only. It shows the clear possibility of interactions of chemotherapeutics with compounds competitive to the nitrogenous bases of DNA. It also shows the possibilities of using nanostructures as potential Platinum drug carriers, and proves that nanomedicine can easily become a new medicinal product in personalized medicine.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Nanomedicine , Nanostructures , Humans , Lung Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Nanostructures/chemistry , Nanostructures/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Small Cell Lung Carcinoma/drug therapy , Drug Interactions
19.
Int J Pharm X ; 8: 100281, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39297017

ABSTRACT

Cancer is the leading cause of death globally, and conventional treatments have limited efficacy with severe side effects. The use of nanotechnology has the potential to reduce the side effects of drugs by creating efficient and controlled anticancer drug delivery systems. Nanoparticles (NPs) used as drug carriers offer several advantages, including enhanced drug protection, biodistribution, selectivity and, pharmacokinetics. Therefore, this review is devoted to various organic (lipid, polymeric) as well as inorganic nanoparticles based on different building units and providing a wide range of potent anticancer drug delivery systems. Within these nanoparticulate systems, chitosan (CS)-based NPs are discussed with particular emphasis due to the unique properties of CS and its derivatives including non-toxicity, biodegradability, mucoadhesivity, and tunable physico-chemical as well as biological properties allowing their alteration to specifically target cancer cells. In the context of streamlining the nanoparticulate drug delivery systems (DDS), innovative nanoplatform-based cancer therapy pathways involving passive and active targeting as well as stimuli-responsive DDS enhancing overall orthogonality of developed NP-DDS towards the target are included. The most up-to-date information on delivering anti-cancer drugs using modern dosage forms based on various nanoparticulate systems and, specifically, CSNPs, are summarised and evaluated concerning their benefits, limitations, and advanced applications.

20.
J Trace Elem Med Biol ; 86: 127526, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39298835

ABSTRACT

BACKGROUND: Breast cancer (BC) is the most prevalent cancer among women worldwide and poses significant treatment challenges. Traditional therapies often lead to adverse side effects and resistance, necessitating innovative approaches for effective management. OBJECTIVE: This review aims to explore the potential of copper nanoparticles (CuNPs) in enhancing breast cancer therapy through targeted drug delivery, improved imaging, and their antiangiogenic properties. METHODS: The review synthesizes existing literature on the efficacy of CuNPs in breast cancer treatment, addressing common challenges in nanotechnology, such as nanoparticle toxicity, scalability, and regulatory hurdles. It proposes a novel hybrid method that combines CuNPs with existing therapeutic modalities to optimize treatment outcomes. RESULTS: CuNPs demonstrate the ability to selectively target cancer cells while sparing healthy tissues, leading to improved therapeutic efficacy. Their unique physicochemical properties facilitate efficient biodistribution and enhanced imaging capabilities. Additionally, CuNPs exhibit antiangiogenic activity, which can inhibit tumor growth by preventing the formation of new blood vessels. CONCLUSION: The findings suggest that CuNPs represent a promising avenue for advancing breast cancer treatment. By addressing the limitations of current therapies and proposing innovative solutions, this review contributes valuable insights into the future of nanotechnology in oncology.

SELECTION OF CITATIONS
SEARCH DETAIL