Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters











Publication year range
1.
Article in English | MEDLINE | ID: mdl-38966754

ABSTRACT

Galaxies are observed to host magnetic fields with a typical total strength of around 15  µ G. A coherent large-scale field constitutes up to a few microgauss of the total, while the rest is built from strong magnetic fluctuations over a wide range of spatial scales. This represents sufficient magnetic energy for it to be dynamically significant. Several questions immediately arise: What is the physical mechanism that gives rise to such magnetic fields? How do these magnetic fields affect the formation and evolution of galaxies? In which physical processes do magnetic fields play a role, and how can that role be characterized? Numerical modelling of magnetized flows in galaxies is playing an ever-increasing role in finding those answers. We review major techniques used for these models. Current results strongly support the conclusion that field growth occurs during the formation of the first galaxies on timescales shorter than their accretion timescales due to small-scale turbulent dynamos. The saturated small-scale dynamo maintains field strengths at only a few percent of equipartition with turbulence. This is in contradiction with the observed magnitude of turbulent fields, but may be reconciled by the further contribution to the turbulent field of the large-scale dynamo. The subsequent action of large-scale dynamos in differentially rotating discs produces field strengths observed in low redshift galaxies, where it reaches equipartition with the turbulence and has substantial power at large scales. The field structure resulting appears consistent with observations including Faraday rotation and polarisation from synchrotron and dust thermal emission. Major remaining challenges include scaling numerical models toward realistic scale separations and Prandtl and Reynolds numbers.

2.
Sci Rep ; 14(1): 5617, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453962

ABSTRACT

In this study, we, for the first time, compiled all publicly available annually or biannually resolved 14 C records, which fully covers 7 grand solar minima at an annual and bi-annual resolution. Our results from 7 grand solar minima showed a clear relationship between the rate of increase (decrease) in solar activity levels and how long the onset (termination) of the grand solar minima will last. Additionally, we show a weaker relationship between the durations of onsets and terminations and between the rate of increase and decrease of solar activity levels. Our results also suggest there might be two or more types of grand solar minima.

3.
Space Sci Rev ; 219(8): 87, 2023.
Article in English | MEDLINE | ID: mdl-38106531

ABSTRACT

The solar tachocline is an internal region of the Sun possessing strong radial and latitudinal shears straddling the base of the convective envelope. Based on helioseismic inversions, the tachocline is known to be thin (less than 5% of the solar radius). Since the first theory of the solar tachocline in 1992, this thinness has not ceased to puzzle solar physicists. In this review, we lay out the grounds of our understanding of this fascinating region of the solar interior. We detail the various physical mechanisms at stake in the solar tachocline, and put a particular focus on the mechanisms that have been proposed to explain its thinness. We also examine the full range of MHD processes including waves and instabilities that are likely to occur in the tachocline, as well as their possible connection with active region patterns observed at the surface. We reflect on the most recent findings for each of them, and highlight the physical understanding that is still missing and that would allow the research community to understand, in a generic sense, how the solar tachocline and stellar tachocline are formed, are sustained, and evolve on secular timescales.

4.
Space Sci Rev ; 219(7): 58, 2023.
Article in English | MEDLINE | ID: mdl-37840839

ABSTRACT

We review the state of the art of three dimensional numerical simulations of solar and stellar dynamos. We summarize fundamental constraints of numerical modelling and the techniques to alleviate these restrictions. Brief summary of the relevant observations that the simulations seek to capture is given. We survey the current progress of simulations of solar convection and the resulting large-scale dynamo. We continue to studies that model the Sun at different ages and to studies of stars of different masses and evolutionary stages. Both simulations and observations indicate that rotation, measured by the Rossby number which is the ratio of rotation period and convective turnover time, is a key ingredient in setting the overall level and characteristics of magnetic activity. Finally, efforts to understand global 3D simulations in terms of mean-field dynamo theory are discussed.

5.
Proc Natl Acad Sci U S A ; 120(32): e2221696120, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37523545

ABSTRACT

Paleomagnetic records of iron meteorites of the IVA group suggest that their parent body (an inward-solidified metal asteroid) possessed an internal magnetic field. The origin of this magnetism is enigmatic because inward solidification typically leads to light element release from the top of the liquid, which depresses convection and dynamo activity. Here, we propose a possible scenario to help resolve this paradox. The formation of a metal asteroid must involve a disruptive, mantle-stripping collision and the reaccretion of metal fragments. We hypothesize that a small portion of metal fragments may have substantially cooled before being reaccreted. These fragments could have formed a cold, rubble-pile inner core, which extracted heat from the liquid layer, leading to solidification and light element expulsion at the inner core boundary to power a dynamo. In the portions of the inward-growing crust that cooled below the remanence acquisition temperature, the magnetic field could be recorded.

6.
Space Sci Rev ; 219(3): 22, 2023.
Article in English | MEDLINE | ID: mdl-37007705

ABSTRACT

The objective of the Psyche Magnetometry Investigation is to test the hypothesis that asteroid (16) Psyche formed from the core of a differentiated planetesimal. To address this, the Psyche Magnetometer will measure the magnetic field around the asteroid to search for evidence of remanent magnetization. Paleomagnetic measurements of meteorites and dynamo theory indicate that a diversity of planetesimals once generated dynamo magnetic fields in their metallic cores. Likewise, the detection of a strong magnetic moment ( > 2 × 10 14 Am 2 ) at Psyche would likely indicate that the body once generated a core dynamo, implying that it formed by igneous differentiation. The Psyche Magnetometer consists of two three-axis fluxgate Sensor Units (SUs) mounted 0.7 m apart along a 2.15-m long boom and connected to two Electronics Units (EUs) located within the spacecraft bus. The Magnetometer samples at up to 50 Hz, has a range of ± 80 , 000 nT , and an instrument noise of 39 pT axis - 1 3 σ integrated over 0.1 to 1 Hz. The two pairs of SUs and EUs provide redundancy and enable gradiometry measurements to suppress noise from flight system magnetic fields. The Magnetometer will be powered on soon after launch and acquire data for the full duration of the mission. The ground data system processes the Magnetometer measurements to obtain an estimate of Psyche's dipole moment.

7.
Methods Mol Biol ; 2646: 211-248, 2023.
Article in English | MEDLINE | ID: mdl-36842118

ABSTRACT

Bacterial surface nanomachines are often refractory to structural determination in their intact form due to their extensive association with the cell envelope preventing them from being properly purified for traditional structural biology methods. Cryo-electron tomography (cryo-ET) is an emerging branch of cryo-electron microscopy that can visualize supramolecular complexes directly inside frozen-hydrated cells in 3D at nanometer resolution, therefore posing a unique capability to study the intact structures of bacterial surface nanomachines in situ and reveal their molecular association with other cellular components. Furthermore, the resolution of cryo-ET is continually improving alongside methodological advancement. Here, using the type IV pilus machine in Myxococcus xanthus as an example, we describe a step-by-step workflow for in situ structure determination including sample preparation and screening, microscope and camera tuning, tilt series acquisition, data processing and tomogram reconstruction, subtomogram averaging, and structural analysis.


Subject(s)
Electron Microscope Tomography , Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Electron Microscope Tomography/methods , Cryoelectron Microscopy/methods , Workflow
8.
Proc Math Phys Eng Sci ; 478(2264): 20220313, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35966215

ABSTRACT

In magnetostrophic rotating magnetoconvection, a fluid layer heated from below and cooled from above is equidominantly influenced by the Lorentz and the Coriolis forces. Strong rotation and magnetism each act separately to suppress thermal convective instability. However, when they act in concert and are near in strength, convective onset occurs at less extreme Rayleigh numbers ( R a , thermal forcing) in the form of a stationary, large-scale, inertia-less, inviscid magnetostrophic mode. Estimates suggest that planetary interiors are in magnetostrophic balance, fostering the idea that magnetostrophic flow optimizes dynamo generation. However, it is unclear if such a mono-modal theory is realistic in turbulent geophysical settings. Donna Elbert first discovered that there is a range of Ekman ( E k , rotation) and Chandrasekhar ( C h , magnetism) numbers, in which stationary large-scale magnetostrophic and small-scale geostrophic modes coexist. We extend her work by differentiating five regimes of linear stationary rotating magnetoconvection and by deriving asymptotic solutions for the critical wavenumbers and Rayleigh numbers. Coexistence is permitted if E k < 16 / ( 27 π ) 2 and C h ≥ 27 π 2 . The most geophysically relevant regime, the Elbert range, is bounded by the Elsasser numbers 4 3 ( 4 4 π 2 E k ) 1 / 3 ≤ Λ ≤ 1 2 ( 3 4 π 2 E k ) - 1 / 3 . Laboratory and Earth's core predictions both exhibit stationary, oscillatory, and wall-attached multi-modality within the Elbert range.

9.
Proc Natl Acad Sci U S A ; 119(19): e2119831119, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35512093

ABSTRACT

SignificanceAstronomical observations indicate that dynamically important magnetic fields are ubiquitous in the Universe, while their origin remains a profound mystery. This work provides a paradigm for understanding the origin of cosmic magnetism by taking into account the effects of the microphysics of collisionless plasmas on macroscopic astrophysical processes. We demonstrate that the first magnetic fields can be spontaneously generated in the Universe by generic motions of astrophysical turbulence through kinetic plasma physics, and cosmic plasmas are thereby ubiquitously magnetized. Our theoretical and numerical results set the stage for determining how these "seed" magnetic fields are further amplified by the turbulent dynamo (another central and long-standing question) and thus advance a fully self-consistent explanation of cosmic magnetogenesis.

10.
Cell ; 185(4): 690-711.e45, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35108499

ABSTRACT

Single-cell (sc)RNA-seq, together with RNA velocity and metabolic labeling, reveals cellular states and transitions at unprecedented resolution. Fully exploiting these data, however, requires kinetic models capable of unveiling governing regulatory functions. Here, we introduce an analytical framework dynamo (https://github.com/aristoteleo/dynamo-release), which infers absolute RNA velocity, reconstructs continuous vector fields that predict cell fates, employs differential geometry to extract underlying regulations, and ultimately predicts optimal reprogramming paths and perturbation outcomes. We highlight dynamo's power to overcome fundamental limitations of conventional splicing-based RNA velocity analyses to enable accurate velocity estimations on a metabolically labeled human hematopoiesis scRNA-seq dataset. Furthermore, differential geometry analyses reveal mechanisms driving early megakaryocyte appearance and elucidate asymmetrical regulation within the PU.1-GATA1 circuit. Leveraging the least-action-path method, dynamo accurately predicts drivers of numerous hematopoietic transitions. Finally, in silico perturbations predict cell-fate diversions induced by gene perturbations. Dynamo, thus, represents an important step in advancing quantitative and predictive theories of cell-state transitions.


Subject(s)
Single-Cell Analysis , Transcriptome/genetics , Algorithms , Female , Gene Expression Regulation , HL-60 Cells , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Humans , Kinetics , Models, Biological , RNA, Messenger/metabolism , Staining and Labeling
11.
Proc Natl Acad Sci U S A ; 118(11)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33729988

ABSTRACT

Understanding magnetic-field generation and amplification in turbulent plasma is essential to account for observations of magnetic fields in the universe. A theoretical framework attributing the origin and sustainment of these fields to the so-called fluctuation dynamo was recently validated by experiments on laser facilities in low-magnetic-Prandtl-number plasmas ([Formula: see text]). However, the same framework proposes that the fluctuation dynamo should operate differently when [Formula: see text], the regime relevant to many astrophysical environments such as the intracluster medium of galaxy clusters. This paper reports an experiment that creates a laboratory [Formula: see text] plasma dynamo. We provide a time-resolved characterization of the plasma's evolution, measuring temperatures, densities, flow velocities, and magnetic fields, which allows us to explore various stages of the fluctuation dynamo's operation on seed magnetic fields generated by the action of the Biermann-battery mechanism during the initial drive-laser target interaction. The magnetic energy in structures with characteristic scales close to the driving scale of the stochastic motions is found to increase by almost three orders of magnitude and saturate dynamically. It is shown that the initial growth of these fields occurs at a much greater rate than the turnover rate of the driving-scale stochastic motions. Our results point to the possibility that plasma turbulence produced by strong shear can generate fields more efficiently at the driving scale than anticipated by idealized magnetohydrodynamics (MHD) simulations of the nonhelical fluctuation dynamo; this finding could help explain the large-scale fields inferred from observations of astrophysical systems.

12.
Philos Trans A Math Phys Eng Sci ; 378(2187): 20190479, 2020 Dec 25.
Article in English | MEDLINE | ID: mdl-33161852

ABSTRACT

The Voyager 2 flybys of Uranus and Neptune revealed the first multipolar planetary magnetic fields and highlighted how much we have yet to learn about ice giant planets. In this review, we summarize observations of Uranus' and Neptune's magnetic fields and place them in the context of other planetary dynamos. The ingredients for dynamo action in general, and for the ice giants in particular, are discussed, as are the factors thought to control magnetic field strength and morphology. These ideas are then applied to Uranus and Neptune, where we show that no models are yet able to fully explain their observed magnetic fields. We then propose future directions for missions, modelling, experiments and theory necessary to answer outstanding questions about the dynamos of ice giant planets, both within our solar system and beyond. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

13.
Rev. chil. nutr ; 47(4): 604-611, ago. 2020. tab
Article in Spanish | LILACS | ID: biblio-1138595

ABSTRACT

RESUMEN La relevancia que tiene la medición de la fuerza de agarre (FA) se ha incrementado en los últimos años como marcador del estado nutricional, por su relación con la morbilidad y mortalidad y por su creciente aplicación clínica y epidemiológica. Estudios de FA en adultos jóvenes sanos, revelan que se asocia positivamente con variables antropométricas y de composición corporal, mismas que se vincularían con la promoción de la salud en esta población. El objetivo de este estudio fue determinar la correlación entre la FA con variables de antropometría, composición corporal medida por bioimpedancia eléctrica y con la realización de ejercicio, para evaluar su utilidad como indicador del estado nutricional en jóvenes universitarias. Los resultados mostraron que en las estudiantes universitarias la FA se correlacionó positiva y significativamente con variables antropométricas (talla), y de composición corporal (masa muscular). Los profesionales de la salud requieren promover entre este grupo de población la reducción de los factores de riesgo como la baja fuerza muscular a través de la promoción de un estilo de vida activo y en específico de la realización de ejercicio físico de fuerza.


ABSTRACT The relevance of measuring handgrip strength (HGS) has increased in recent years as a marker of nutritional status, due to its relationship with morbidity and mortality and its increasing clinical and epidemiological application. HGS studies in healthy young adults reveal that it is positively associated with anthropometric and body composition variables, the same indicators used for health promotion among young university students. The objective of this study was to determine the correlation between the HGS with anthropometry variables, body composition measured by electrical bioimpedance and with exercise performance, to evaluate its usefulness as an indicator of nutritional status in college students. The results showed that the HGS of female college students was positively and significantly correlated with anthropometric variables (height), and body composition (muscle mass). Among this population group, health professionals need to promote the reduction of risk factors such as low muscle strength through the promotion of an active lifestyle and, specifically, strength exercises.


Subject(s)
Adolescent , Adult , Body Composition , Anthropometry , Nutritional Status , Exercise , Health , Risk Factors
14.
Proc Math Phys Eng Sci ; 476(2233): 20190675, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32082068

ABSTRACT

A variational optimization approach is used to optimize kinematic dynamos in a unit sphere and locate the enstrophy-based critical magnetic Reynolds number for dynamo action. The magnetic boundary condition is chosen to be either pseudo-vacuum or perfectly conducting. Spectra of the optimal flows corresponding to these two magnetic boundary conditions are identical since theory shows that they are relatable by reversing the flow field (Favier & Proctor 2013 Phys. Rev. E 88, 031001 (doi:10.1103/physreve.88.031001)). A no-slip boundary for the flow field gives a critical magnetic Reynolds number of 62.06, while a free-slip boundary reduces this number to 57.07. Optimal solutions are found to possess certain rotation symmetries (or anti-symmetries) and optimal flows share certain common features. The flows localize in a small region near the sphere's centre and spiral upwards with very large velocity and vorticity, so that they are locally nearly Beltrami. We also derive a new lower bound on the magnetic Reynolds number for dynamo action, which, for the case of enstrophy normalization, is five times larger than the previous best bound.

15.
Int J Public Health ; 65(2): 129-138, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31781804

ABSTRACT

OBJECTIVES: We investigated the potential impact of reduced tobacco use scenarios on total life expectancy and health expectancies, i.e., healthy life years and unhealthy life years. METHODS: Data from the Belgian Health Interview Survey 2013 were used to estimate smoking and disability prevalence. Disability was based on the Global Activity Limitation Indicator. We used DYNAMO-HIA to quantify the impacts of risk factor changes and to compare the "business-as-usual" with alternative scenarios. RESULTS: The "business-as-usual" scenario estimated that in 2028 the 15-year-old men/women would live additional 50/52 years without disability and 14/17 years with disability. The "smoking-free population" scenario added 3.4/2.8 healthy life years and reduced unhealthy life years by 0.79/1.9. Scenarios combining the prevention of smoking initiation with smoking cessation programs are the most effective, yielding the largest increase in healthy life years (1.9/1.7) and the largest decrease in unhealthy life years (- 0.80/- 1.47). CONCLUSIONS: Health impact assessment tools provide different scenarios for evidence-informed public health actions. New anti-smoking strategies or stricter enforcement of existing policies potentially gain more healthy life years and reduce unhealthy life years in Belgium.


Subject(s)
Life Expectancy/trends , Tobacco Use/trends , Aged , Belgium/epidemiology , Disabled Persons , Female , Health Impact Assessment , Health Surveys , Humans , Male , Middle Aged , Prevalence , Public Health , Risk Factors , Smoking Cessation , Tobacco Use/epidemiology
16.
Proc Math Phys Eng Sci ; 475(2229): 20190308, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31611726

ABSTRACT

Planetary magnetic fields are generated by the motion of conductive fluid in the planet's interior. Complex flows are not required for dynamo action; simple flows have been shown to act as efficient kinematic dynamos, whose physical characteristics are more straightforward to study. Recently, Chen et al. (2018, J. Fluid Mech. 839, 1-32. (doi:10.1017/jfm.2017.924)) found the optimal, unconstrained kinematic dynamo in a sphere, which, despite being of theoretical importance, is of limited practical use. We extend their work by restricting the optimization to three simple two-mode axisymmetric flows based on the kinematic dynamos of Dudley & James (1989, Proc. R. Soc. Lond. A 425, 407-429. (doi:10.1098/rspa.1989.0112)). Using a Lagrangian optimization, we find the smallest critical magnetic Reynolds number for each flow type, measured using an enstrophy-based norm. A Galerkin method is used, in which the spectral coefficients of the fluid flow and magnetic field are updated in order to maximize the final magnetic energy. We consider the t 0 1 s 0 1, t 0 1 s 0 2 and t 0 2 s 0 2 flows and find enstrophy-based critical magnetic Reynolds numbers of 107.7, 142.4 and 125.5 (13.7, 19.6 and 16.4, respectively, with the energy-based definition). These are up to four times smaller than the original flows. These simple and efficient flows may be used as benchmarks in future studies.

17.
Proc Math Phys Eng Sci ; 475(2223): 20180591, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31007546

ABSTRACT

We consider the kinematic fluctuation dynamo problem in a flow that is random, white-in-time, with both solenoidal and potential components. This model is a generalization of the well-studied Kazantsev model. If both the solenoidal and potential parts have the same scaling exponent, then, as the compressibility of the flow increases, the growth rate decreases but remains positive. If the scaling exponents for the solenoidal and potential parts differ, in particular if they correspond to typical Kolmogorov and Burgers values, we again find that an increase in compressibility slows down the growth rate but does not turn it off. The slow down is, however, weaker and the critical magnetic Reynolds number is lower than when both the solenoidal and potential components display the Kolmogorov scaling. Intriguingly, we find that there exist cases, when the potential part is smoother than the solenoidal part, for which an increase in compressibility increases the growth rate. We also find that the critical value of the scaling exponent above which a dynamo is seen is unity irrespective of the compressibility. Finally, we realize that the dimension d = 3 is special, as for all other values of d the critical exponent is higher and depends on the compressibility.

18.
Entropy (Basel) ; 21(2)2019 Feb 01.
Article in English | MEDLINE | ID: mdl-33266856

ABSTRACT

Characterizing and modeling processes at the sun and space plasma in our solar system are difficult because the underlying physics is often complex, nonlinear, and not well understood. The drivers of a system are often nonlinearly correlated with one another, which makes it a challenge to understand the relative effects caused by each driver. However, entropy-based information theory can be a valuable tool that can be used to determine the information flow among various parameters, causalities, untangle the drivers, and provide observational constraints that can help guide the development of the theories and physics-based models. We review two examples of the applications of the information theoretic tools at the Sun and near-Earth space environment. In the first example, the solar wind drivers of radiation belt electrons are investigated using mutual information (MI), conditional mutual information (CMI), and transfer entropy (TE). As previously reported, radiation belt electron flux (Je) is anticorrelated with solar wind density (nsw) with a lag of 1 day. However, this lag time and anticorrelation can be attributed mainly to the Je(t + 2 days) correlation with solar wind velocity (Vsw)(t) and nsw(t + 1 day) anticorrelation with Vsw(t). Analyses of solar wind driving of the magnetosphere need to consider the large lag times, up to 3 days, in the (Vsw, nsw) anticorrelation. Using CMI to remove the effects of Vsw, the response of Je to nsw is 30% smaller and has a lag time <24 h, suggesting that the loss mechanism due to nsw or solar wind dynamic pressure has to start operating in <24 h. Nonstationarity in the system dynamics is investigated using windowed TE. The triangle distribution in Je(t + 2 days) vs. Vsw(t) can be better understood with TE. In the second example, the previously identified causal parameters of the solar cycle in the Babcock-Leighton type model such as the solar polar field, meridional flow, polar faculae (proxy for polar field), and flux emergence are investigated using TE. The transfer of information from the polar field to the sunspot number (SSN) peaks at lag times of 3-4 years. Both the flux emergence and the meridional flow contribute to the polar field, but at different time scales. The polar fields from at least the last 3 cycles contain information about SSN.

19.
Entropy (Basel) ; 21(8)2019 Aug 19.
Article in English | MEDLINE | ID: mdl-33267524

ABSTRACT

Solar magnetism is believed to originate through dynamo action in the tachocline. Statistical mechanics, in turn, tells us that dynamo action is an inherent property of magnetohydrodynamic (MHD) turbulence, depending essentially on magnetic helicity. Here, we model the tachocline as a rotating, thin spherical shell containing MHD turbulence. Using this model, we find an expression for the entropy and from this develop the thermodynamics of MHD turbulence. This allows us to introduce the macroscopic parameters that affect magnetic self-organization and dynamo action, parameters that include magnetic helicity, as well as tachocline thickness and turbulent energy.

20.
J Geophys Res Space Phys ; 123(3): 2424-2440, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29938155

ABSTRACT

We use a set of ground-based instruments (Global Positioning System receivers, ionosondes, magnetometers) along with data of multiple satellite missions (Swarm, C/NOFS, DMSP, GUVI) to analyze the equatorial and low-latitude electrodynamic and ionospheric disturbances caused by the geomagnetic storm of 22-23 June 2015, which is the second largest storm in the current solar cycle. Our results show that at the beginning of the storm, the equatorial electrojet (EEJ) and the equatorial zonal electric fields were largely impacted by the prompt penetration electric fields (PPEF). The PPEF were first directed eastward and caused significant ionospheric uplift and positive ionospheric storm on the dayside, and downward drift on the nightside. Furthermore, about 45 min after the storm commencement, the interplanetary magnetic field (IMF) Bz component turned northward, leading to the EEJ changing sign to westward, and to overall decrease of the vertical total electron content (VTEC) and electron density on the dayside. At the end of the main phase of the storm, and with the second long-term IMF Bz southward turn, we observed several oscillations of the EEJ, which led us to conclude that at this stage of the storm, the disturbance dynamo effect was already in effect, competing with the PPEF and reducing it. Our analysis showed no significant upward or downward plasma motion during this period of time; however, the electron density and the VTEC drastically increased on the dayside (over the Asian region). We show that this second positive storm was largely influenced by the disturbed thermospheric conditions.

SELECTION OF CITATIONS
SEARCH DETAIL