Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters











Publication year range
1.
Transl Oncol ; 46: 102010, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823260

ABSTRACT

BACKGROUND: STIL is an important cell cycle-regulating protein specifically recruited to the mitotic centrosome to promote the replication of centrioles in dividing cells. However, the potential role of STIL in the regulation of the biological functions of triple-negative breast cancer remains still unclear. METHODS: We screened for differentially expressed STIL in the Cancer Genome Atlas database. The expression of STIL protein in 10 pairs of breast cancer tissues and adjacent normal tissues was further assessed by western blotting. Functionally, the knockdown and overexpression of STIL have been used to explore the effects of STIL on breast cancer cell proliferation, migration, and invasion. Mechanistically, RNA-seq, dual-luciferase reporter assay, chromatin immunoprecipitation assay, mass spectrometry, immunoprecipitation assay, and DNA pull-down assay were performed. RESULTS: Breast cancer tissues and cells have higher STIL expression than normal tissues and cells. STIL knockdown impairs breast cancer cell growth, migration, and invasion, whereas STIL overexpression accelerates these processes. STIL promotes breast cancer progression by regulating FANCD2 expression, and exploration of its molecular mechanism demonstrated that STIL interacts with KLF16 to regulate the expression of FANCD2. CONCLUSIONS: Collectively, our findings identified STIL as a critical promoter of breast cancer progression that interacts with KLF16 to regulate Fanconi anemia pathway protein FANCD2. In summary, STIL is a potential novel biomarker and therapeutic target for breast cancer.

2.
Front Endocrinol (Lausanne) ; 15: 1393111, 2024.
Article in English | MEDLINE | ID: mdl-38846492

ABSTRACT

Non-obstructive azoospermia (NOA) is a disease characterized by spermatogenesis failure and comprises phenotypes such as hypospermatogenesis, mature arrest, and Sertoli cell-only syndrome. Studies have shown that FA cross-linked anemia (FA) pathway is closely related to the occurrence of NOA. There are FA gene mutations in male NOA patients, which cause significant damage to male germ cells. The FA pathway is activated in the presence of DNA interstrand cross-links; the key step in activating this pathway is the mono-ubiquitination of the FANCD2-FANCI complex, and the activation of the FA pathway can repair DNA damage such as DNA double-strand breaks. Therefore, we believe that the FA pathway affects germ cells during DNA damage repair, resulting in minimal or even disappearance of mature sperm in males. This review summarizes the regulatory mechanisms of FA-related genes in male azoospermia, with the aim of providing a theoretical reference for clinical research and exploration of related genes.


Subject(s)
Azoospermia , Fanconi Anemia Complementation Group Proteins , Signal Transduction , Animals , Humans , Male , Azoospermia/genetics , Azoospermia/metabolism , Azoospermia/pathology , DNA Damage , DNA Repair , Fanconi Anemia Complementation Group Proteins/metabolism , Fanconi Anemia Complementation Group Proteins/genetics , Spermatogenesis
3.
Adv Sci (Weinh) ; 11(30): e2307751, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38894550

ABSTRACT

Genomic instability is not only a hallmark of senescent cells but also a key factor driving cellular senescence, and replication stress is the main source of genomic instability. Defective prelamin A processing caused by lamin A/C (LMNA) or zinc metallopeptidase STE24 (ZMPSTE24) gene mutations results in premature aging. Although previous studies have shown that dysregulated lamin A interferes with DNA replication and causes replication stress, the relationship between lamin A dysfunction and replication stress remains largely unknown. Here, an increase in baseline replication stress and genomic instability is found in prelamin A-expressing cells. Moreover, prelamin A confers hypersensitivity of cells to exogenous replication stress, resulting in decreased cell survival and exacerbated genomic instability. These effects occur because prelamin A promotes MRE11-mediated resection of stalled replication forks. Fanconi anemia (FA) proteins, which play important roles in replication fork maintenance, are downregulated by prelamin A in a retinoblastoma (RB)/E2F-dependent manner. Additionally, prelamin A inhibits the activation of the FA pathway upon replication stress. More importantly, FA pathway downregulation is an upstream event of p53-p21 axis activation during the induction of prelamin A expression. Overall, these findings highlight the critical role of FA pathway dysfunction in driving replication stress-induced genomic instability and cellular senescence in prelamin A-expressing cells.


Subject(s)
DNA Replication , Genomic Instability , Lamin Type A , Genomic Instability/genetics , Lamin Type A/genetics , Lamin Type A/metabolism , Humans , DNA Replication/genetics , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Cellular Senescence/genetics
4.
DNA Repair (Amst) ; 138: 103667, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554505

ABSTRACT

Formaldehyde is a highly reactive organic compound. Humans can be exposed to exogenous sources of formaldehyde, but formaldehyde is also produced endogenously as a byproduct of cellular metabolism. Because formaldehyde can react with DNA, it is considered a major endogenous source of DNA damage. However, the nature of the lesions underlying formaldehyde toxicity in cells remains vastly unknown. Here, we review the current knowledge of the different types of nucleic acid lesions that are induced by formaldehyde and describe the repair pathways known to counteract formaldehyde toxicity. Taking this knowledge together, we discuss and speculate on the predominant lesions generated by formaldehyde, which underly its natural toxicity.


Subject(s)
DNA Damage , DNA Repair , DNA , Formaldehyde , Formaldehyde/toxicity , Humans , DNA/metabolism , Animals
5.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1007231

ABSTRACT

Fanconi anemia (FA) is an inheritable disorder that presents with bone marrow failure, developmental anomalies, and an increased susceptibility to cancer. The etiology of this condition stems from a genetic mutation that disrupts the proper repair of interstrand DNA cross-links (ICLs). The resultant dysregulation of the DNA damage response mechanism can induce genomic instability, thereby elevating the mutation rates and the likelihood of developing cancer. The FA pathway assumes a pivotal role in safeguarding genome stability through its involvement in the repair of DNA cross-links and the maintenance of overall genomic integrity. A mutation in the germ line of any of the genes responsible for encoding the FA protein results in the development of FA. The prevalence of aberrant FA gene expression in somatic cancer, coupled with the identification of a connection between FA pathway activation and resistance to chemotherapy, has solidified the correlation between the FA pathway and cancer. Consequently, targeted therapies that exploit FA pathway gene abnormalities are being progressively developed and implemented. This review critically examines the involvement of the FA protein in the repair of ICLs, the regulation of the FA signaling network, and its implications in cancer pathogenesis and prognosis. Additionally, it explores the potential utility of small-molecule inhibitors that target the FA pathway.

6.
BMC Med Genomics ; 16(1): 290, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37974167

ABSTRACT

BACKGROUND: Individuals diagnosed with Fanconi anemia (FA), an uncommon disorder characterized by chromosomal instability affecting the FA signaling pathway, exhibit heightened vulnerability to the onset of myelodysplastic syndromes (MDS) or acute myeloid leukemia (AML). METHODS: Herein, we employed diverse bioinformatics and statistical analyses to investigate the potential associations between the expression/mutation patterns of FA pathway genes and MDS/AML. RESULTS: The study included 4295 samples, comprising 3235 AML and 1024 MDS from our and nine other online cohorts. We investigated the distinct proportion of race, age, French-American-British, and gender factors. Compared to the FA wild-type group, we observed a decrease in the expression of FNACD2, FANCI, and RAD51C in the FA mutation group. The FA mutation group exhibited a more favorable clinical overall survival prognosis. We developed a random forest classifier and a decision tree based on FA gene expression for cytogenetic risk assessment. Furthermore, we created an FA-related Nomogram to predict survival rates in AML patients. CONCLUSIONS: This investigation facilitates a deeper understanding of the functional links between FA and MDS/AML.


Subject(s)
Fanconi Anemia , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Myelodysplastic Syndromes/genetics , Leukemia, Myeloid, Acute/genetics , Mutation , Prognosis , Signal Transduction/genetics
7.
Biol Reprod ; 109(5): 570-585, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37669135

ABSTRACT

The Fanconi anemia pathway is a key pathway involved in the repair of deoxyribonucleic acidinterstrand crosslinking damage, which chiefly includes the following four modules: lesion recognition, Fanconi anemia core complex recruitment, FANCD2-FANCI complex monoubiquitination, and downstream events (nucleolytic incision, translesion synthesis, and homologous recombination). Mutations or deletions of multiple Fanconi anemia genes in this pathway can damage the interstrand crosslinking repair pathway and disrupt primordial germ cell development and oocyte meiosis, thereby leading to abnormal follicular development. Premature ovarian insufficiency is a gynecological clinical syndrome characterized by amenorrhea and decreased fertility due to decreased oocyte pool, accelerated follicle atresia, and loss of ovarian function in women <40 years old. Furthermore, in recent years, several studies have detected mutations in the Fanconi anemia gene in patients with premature ovarian insufficiency. In addition, some patients with Fanconi anemia exhibit symptoms of premature ovarian insufficiency and infertility. The Fanconi anemia pathway and premature ovarian insufficiency are closely associated.


Subject(s)
Fanconi Anemia , Humans , Female , Adult , Fanconi Anemia/complications , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , DNA Repair/genetics , DNA Replication , Ubiquitination , Mutation , DNA Damage
8.
Int J Biochem Cell Biol ; 162: 106445, 2023 09.
Article in English | MEDLINE | ID: mdl-37453225

ABSTRACT

The faithful splicing of pre-mRNA is critical for accurate gene expression. Dysregulation of pre-mRNA splicing has been associated with several human diseases including cancer. The ubiquitin-like protein Hub1/UBL5 binds to the substrates non-covalently and promotes pre-mRNA splicing. Additionally, UBL5 promotes the common fragile sites stability and the Fanconi anemia pathway of DNA damage repair. These functions strongly suggests that UBL5 could potentially be implicated in cancer. Therefore, we analyzed the UBL5 expression in TCGA tumor sample datasets and observed the differences between tumor and normal tissues among different tumor subtypes. We have noticed the alteration frequency of UBL5 in TCGA tumor samples. Altogether, this review summarizes the UBL5 functions and discusses its putative role in tumorigenesis.


Subject(s)
RNA Precursors , Ubiquitins , Humans , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing , Ubiquitins/metabolism
9.
Cell Rep ; 42(8): 112907, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37515771

ABSTRACT

The recombinase RAD51 plays a core role in DNA repair by homologous recombination (HR). The assembly and disassembly of RAD51 filament need to be orderly regulated by mediators such as BRCA2 and anti-recombinases. To screen for potential regulators of RAD51, we perform RAD51 proximity proteomics and identify factor C1orf112. We further find that C1orf112 complexed with FIGNL1 facilitates RAD51 filament disassembly in the HR step of Fanconi anemia (FA) pathway. Specifically, C1orf112 physically interacts with FIGNL1 and enhances its protein stability. Meanwhile, the RAD51 filament disassembly activity of FIGNL1 is directly stimulated by C1orf112. BRCA2 directly interacts with C1orf112-FIGNL1 complex and functions upstream of this complex to protect RAD51 filament from premature disassembly. C1orf112- and FIGNL1-deficient cells are primarily sensitive to DNA interstrand cross-link (ICL) agents. Thus, these findings suggest an important function of C1orf112 in RAD51 regulation in the HR step of ICL repair by FA pathway.


Subject(s)
Proteins , Rad51 Recombinase , Rad51 Recombinase/metabolism , Proteins/metabolism , BRCA2 Protein/genetics , DNA Repair , DNA/metabolism , DNA Damage
10.
Genes (Basel) ; 14(2)2023 01 20.
Article in English | MEDLINE | ID: mdl-36833203

ABSTRACT

FANCI was recently identified as a new candidate ovarian cancer (OC)-predisposing gene from the genetic analysis of carriers of FANCI c.1813C>T; p.L605F in OC families. Here, we aimed to investigate the molecular genetic characteristics of FANCI, as they have not been described in the context of cancer. We first investigated the germline genetic landscape of two sisters with OC from the discovery FANCI c.1813C>T; p.L605F family (F1528) to re-affirm the plausibility of this candidate. As we did not find other conclusive candidates, we then performed a candidate gene approach to identify other candidate variants in genes involved in the FANCI protein interactome in OC families negative for pathogenic variants in BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, and FANCI, which identified four candidate variants. We then investigated FANCI in high-grade serous ovarian carcinoma (HGSC) from FANCI c.1813C>T carriers and found evidence of loss of the wild-type allele in tumour DNA from some of these cases. The somatic genetic landscape of OC tumours from FANCI c.1813C>T carriers was investigated for mutations in selected genes, copy number alterations, and mutational signatures, which determined that the profiles of tumours from carriers were characteristic of features exhibited by HGSC cases. As other OC-predisposing genes such as BRCA1 and BRCA2 are known to increase the risk of other cancers including breast cancer, we investigated the carrier frequency of germline FANCI c.1813C>T in various cancer types and found overall more carriers among cancer cases compared to cancer-free controls (p = 0.007). In these different tumour types, we also identified a spectrum of somatic variants in FANCI that were not restricted to any specific region within the gene. Collectively, these findings expand on the characteristics described for OC cases carrying FANCI c.1813C>T; p.L605F and suggest the possible involvement of FANCI in other cancer types at the germline and/or somatic level.


Subject(s)
Fanconi Anemia Complementation Group Proteins , Genetic Predisposition to Disease , Ovarian Neoplasms , Female , Humans , Fanconi Anemia Complementation Group Proteins/genetics , Genes, BRCA2 , Molecular Biology , Mutation , Ovarian Neoplasms/genetics
11.
Adv Sci (Weinh) ; : e2202437, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36382555

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is the most common malignant tumor of the head and neck, and the prognosis of patients is poor due to chemotherapeutic resistance. Interestingly, patients with HNSCC induced by human papillomavirus (HPV) infection are more sensitive to chemotherapy and display a better prognosis than HPV-negative patients. The biological relevance of HPV infection and the mechanism underlying chemosensitivity to cisplatin remain unknown. Herein, SERPINB3 is identified as an important target for regulation of cisplatin sensitivity by HPV-E6/E7 in HNSCC. Downregulation of SERPINB3 inhibits cisplatin-induced DNA damage repair and enhances the cytotoxicity of cisplatin. In detail, decreasing SERPINB3 expression reduces the USP1-mediated deubiquitination of FANCD2-FANCI in the Fanconi anemia pathway, thereby interfering with cisplatin-induced DNA interstrand crosslinks repair and further contributing to HNSCC cell apoptosis. To translate this finding, pH-responsive nanoparticles are used to deliver SERPINB3 small interfering RNA in combination with cisplatin, and this treatment successfully reverses cisplatin chemotherapeutic resistance in a patient-derived xenograft model from HPV-negative HNSCC. Taken together, these findings suggest that targeting SERPINB3 based on HPV-positive HNSCC is a potential strategy to overcome cisplatin resistance in HPV-negative HNSCC and improves the prognosis of this disease.

12.
Proc Natl Acad Sci U S A ; 119(34): e2203208119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35969748

ABSTRACT

Preserving a high degree of genome integrity and stability in germ cells is of utmost importance for reproduction and species propagation. However, the regulatory mechanisms of maintaining genome stability in the developing primordial germ cells (PGCs), in which rapid proliferation is coupled with global hypertranscription, remain largely unknown. Here, we find that mouse PGCs encounter a constitutively high frequency of transcription-replication conflicts (TRCs), which lead to R-loop accumulation and impose endogenous replication stress on PGCs. We further demonstrate that the Fanconi anemia (FA) pathway is activated by TRCs and has a central role in the coordination between replication and transcription in the rapidly proliferating PGCs, as disabling the FA pathway leads to TRC and R-loop accumulation, replication fork destabilization, increased DNA damage, dramatic loss of mitotically dividing mouse PGCs, and consequent sterility of both sexes. Overall, our findings uncover the unique source and resolving mechanism of endogenous replication stress during PGC proliferation, provide a biological explanation for reproductive defects in individuals with FA, and improve our understanding of the monitoring strategies for genome stability during germ cell development.


Subject(s)
Fanconi Anemia , Animals , DNA Damage , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Female , Genomic Instability , Germ Cells/metabolism , Male , Mice , R-Loop Structures
13.
Hum Cell ; 35(5): 1602-1611, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35817884

ABSTRACT

Angiosarcomas (AS) is a rare soft tissue sarcomas with poor treatment options and a dismal prognosis. The abnormal DNA methylation pattern has been determined as the certain clinical relevance with different angiosarcoma subtypes. However, the profound mechanism is not clear. In present study, we studied thirty-six AS with or without chronic lymphedema, and reported that DNA damage was an important factor causing DNA methylation abnormality. Furthermore, we determined that the impaired Fanconi anemia (FA) pathway contributed to severe DNA damage in AS with chronic lymphedema. We also observed that the activated FANCD2 could facilitate DNMT1 recruitment on genomic DNA. Our study uncovers a novel regulatory mechanism of FA pathway on DNA methylation, and is a benefit to advanced understanding the pathogenesis of AS, as well as providing the potential therapeutic targets for AS treatment.


Subject(s)
Fanconi Anemia , Hemangiosarcoma , Lymphedema , DNA/metabolism , DNA Damage , DNA Methylation/genetics , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Hemangiosarcoma/genetics , Hemangiosarcoma/therapy , Humans , Lymphedema/genetics
14.
Cell Cycle ; 21(14): 1468-1478, 2022 07.
Article in English | MEDLINE | ID: mdl-35506981

ABSTRACT

The Fanconi anemia (FA) DNA repair pathway is required for DNA inter-strand crosslink (ICL) repair. Besides its role in ICL repair, FA proteins play a central role in stabilizing stalled replication forks, thereby ensuring genome integrity. We previously demonstrated that depletion of replication protein A (RPA) induces the activation of FA pathway leading to FANCD2 monoubiquitination and FANCD2 foci formation. Thus, we speculated that FA-deficient cells would be more sensitive to RPA inhibition compared to FA-proficient cells. Following treatment with RPA inhibitor HAMNO, we observed significant induction in FANCD2 monoubiquitination and foci formation as observed in RPA depletion. In addition, HAMNO treatment caused increased levels of γ-H2AX and S-phase accumulation in FA-deficient cells. Importantly, FA-deficient cells showed more increased sensitivity to HAMNO than FA-proficient cells. Moreover, in combination with cisplatin, HAMNO further enhanced the cytotoxicity of cisplatin in FA-deficient cells, while being less toxic against FA-proficient cells. This result suggests that RPA inhibition might be a potential therapeutic candidate for the treatment of FA pathway-deficient tumors.


Subject(s)
Fanconi Anemia , Cisplatin/pharmacology , DNA Damage , DNA Repair , Fanconi Anemia/metabolism , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group D2 Protein/metabolism , Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia Complementation Group Proteins/metabolism , Humans , Replication Protein A/metabolism
15.
J Biomol Struct Dyn ; 40(19): 9374-9388, 2022.
Article in English | MEDLINE | ID: mdl-34014148

ABSTRACT

Fanconi anaemia pathway repairs inter-strand cross linking damage (ICL) of the DNA. Monoubiquitination of FANCD2 and FANCI is very crucial for ICL repairing. In this work we have tried to understand the monoubiquitinated FANCD2 structure, which facilitates the FANCD2 for binding the damage part of the chromatin. Crystal structure of the monoubiquitinated FANCD2 alone is not available, therefore we have modelled the optimized structure of the human monoubiquitinated (Lys 561) FANCD2. As there is no suitable software or web server we have developed a method for building up monoubiquitinated product and validated on simplest monoubiquitinated protein, diubiquitin. We have predicted the structure of human monoubiquitinated FANCD2 by using our method and studied the interaction with DNA by docking studies. Molecular Dynamics (MD) simulation has been used to understand the stability of the structure. Large structural differences have been observed between FANCD2 and monoubiquitinated FANCD2. Docking studies with DNA suggest that the binding site varies for the FANCD2 and monoubiquitinated FANCD2.Communicated by Ramaswamy H. Sarma.


Subject(s)
Fanconi Anemia , Humans , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , DNA Damage , Ubiquitination , DNA Repair , DNA/metabolism , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group D2 Protein/metabolism
16.
Mol Oncol ; 16(4): 860-884, 2022 02.
Article in English | MEDLINE | ID: mdl-34058059

ABSTRACT

The Fanconi anemia (FA) pathway safeguards genomic stability through cell cycle regulation and DNA damage repair. The canonical tumor suppressive role of FA proteins in the repair of DNA damage during interphase is well established, but their function in mitosis is incompletely understood. Here, we performed a kinome-wide synthetic lethality screen in FANCA-/- fibroblasts, which revealed multiple mitotic kinases as necessary for survival of FANCA-deficient cells. Among these kinases, we identified the depletion of the centrosome kinase SIK2 as synthetic lethal upon loss of FANCA. We found that FANCA colocalizes with SIK2 at multiple mitotic structures and regulates the activity of SIK2 at centrosomes. Furthermore, we found that loss of FANCA exacerbates cell cycle defects induced by pharmacological inhibition of SIK2, including impaired G2-M transition, delayed mitotic progression, and cytokinesis failure. In addition, we showed that inhibition of SIK2 abrogates nocodazole-induced prometaphase arrest, suggesting a novel role for SIK2 in the spindle assembly checkpoint. Together, these findings demonstrate that FANCA-deficient cells are dependent upon SIK2 for survival, supporting a preclinical rationale for targeting of SIK2 in FA-disrupted cancers.


Subject(s)
Fanconi Anemia , Cell Cycle , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia/pathology , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group A Protein/metabolism , Fanconi Anemia Complementation Group Proteins/genetics , Humans , Mitosis/genetics , Protein Serine-Threonine Kinases , Synthetic Lethal Mutations
17.
Front Cell Dev Biol ; 9: 734794, 2021.
Article in English | MEDLINE | ID: mdl-34869316

ABSTRACT

Fanconi anemia (FA) pathway is a typical and multienzyme-regulated DNA damage repairer that influences the occurrence and development of disease including cancers. Few comprehensive analyses were reported about the role of FA-related genes (FARGs) and their prognostic values in cancers. In this study, a comprehensive pan-cancer analysis on 79 FARGs was performed. According to the correlation analyses between HPV integration sites and FARGs, we found that FARGs played specific and critical roles in HPV-related cancers, especially in cervical cancer (CC). Based on this, a FARGs-associated prognostic risk score (FPS) model was constructed, and subsequently a nomogram model containing the FPS was developed with a good accuracy for CC overall survival (OS) and recurrence-free survival (RFS) outcome prediction. We also used the similar expression pattern of FARGs by consensus clustering analysis to separate the patients into three subgroups that exhibited significant differential OS but not RFS. Moreover, differential expressed genes (DEGs) between the two risk groups or three clusters were identified and immune pathways as well as cell adhesion processes were determined by functional enrichment analysis. Results indicated that FARGs might promote occurrence and development of CC by regulating the immune cells' infiltration and cell adhesion. In addition, through the machine learning models containing decision tree, random forest, naïve bayes, and support vector machine models, screening of important variables on CC prognosis, we finally determined that ZBTB32 and CENPS were the main elements affecting CC OS, while PALB2 and BRCA2 were for RFS. Kaplan-Meier analysis revealed that bivariate prediction of CC outcome was reliable. Our study systematically analyzed the prognostic prediction values of FARGs and demonstrated their potential mechanism in CC aggressiveness. Results provided perspective in FA pathway-associated modification and theoretical basis for CC clinical treatments.

18.
Pathol Oncol Res ; 27: 1609809, 2021.
Article in English | MEDLINE | ID: mdl-34512202

ABSTRACT

Traditionally, clear cell papillary renal cell carcinoma (ccpRCC) was considered to share similar molecular and histological characteristics with clear cell renal cell carcinoma (ccRCC) and papillary renal cell carcinoma (pRCC). Here we aimed to identify somatic and germline variants of ccpRCC. For this purpose, we conducted whole-exome sequencing to detect somatic variants in the tissues of 18 patients with pathologically confirmed ccpRCC, who underwent surgical treatment at Fudan University Shanghai Cancer Center. Targeted sequencing was conducted to detect germline variants in paired tumor or normal tissues or blood. Somatic and germline variants of ccRCC and Renal cell carcinoma included in The Cancer Genome Atlas data and other published data were analyzed as well. The molecular profiles of ccpRCC, ccRCC and pRCC were compared. Among the 387 somatic variants identified, TCEB1 (3/18) and VHL (3/18) variants occurred at the highest frequencies. Germline mutation detection showed that nine variants associated with Fanconi anemia (VAFAs) pathway (FANCA, 6/18; FANCI, 3/18) were identified in 18 ccpRCC patients. Among ccpRCC patients with VAFAs, five out of eight patients had second primary malignancy or family history of cancer. Somatic variants characteristics may distinguish ccpRCC from ccRCC or pRCC and germline VAFAs may be a molecular characterization of ccpRCC. Compared with ccRCC or pRCC, ccpRCC patients may be significantly correlated with higher risk of developing second primary malignancy.


Subject(s)
Carcinoma, Papillary/genetics , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , Neoplasms, Second Primary/genetics , Adult , Aged , Biomarkers, Tumor/genetics , Carcinoma, Papillary/pathology , Carcinoma, Renal Cell/pathology , China , Diagnosis, Differential , Genetic Variation/genetics , Humans , Kidney Neoplasms/pathology , Male , Middle Aged , Neoplasms, Second Primary/pathology , Signal Transduction/genetics
19.
Int J Mol Sci ; 22(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34502293

ABSTRACT

Members of the ubiquitin-like protein family are known for their ability to modify substrates by covalent conjugation. The highly conserved ubiquitin relative UBL5/Hub1, however, is atypical because it lacks a carboxy-terminal di-glycine motif required for conjugation, and the whole E1-E2-E3 enzyme cascade is likely absent. Though the conjugation-mediated role of UBL5/Hub1 is controversial, it undoubtedly functions by interacting non-covalently with its partners. Several interactors of UBL5/Hub1 identified to date have suggested broad stress-responsive functions of the protein, for example, stress-induced control of pre-mRNA splicing, Fanconi anemia pathway of DNA damage repair, and mitochondrial unfolded protein response. While having an atypical mode of function, UBL5/Hub1 is still a stress protein that regulates feedback to various stimuli in a similar manner to other ubiquitin-like proteins. In this review, I discuss recent progress in understanding the functions of UBL5/Hub1 and the fundamental questions which remain to be answered.


Subject(s)
ELAV-Like Protein 2/metabolism , Gene Expression Regulation , Stress, Physiological , Ubiquitin/metabolism , Ubiquitins/metabolism , ELAV-Like Protein 2/genetics , Humans , Ubiquitins/genetics
20.
Cancers (Basel) ; 13(14)2021 Jul 18.
Article in English | MEDLINE | ID: mdl-34298817

ABSTRACT

Replicative repair of interstrand crosslinks (ICL) generated by platinum chemotherapeutics is orchestrated by the Fanconi anemia (FA) repair pathway to ensure resolution of stalled replication forks and the maintenance of genomic integrity. Here, we identify novel regulation of FA repair by the cancer-associated glycolytic enzyme PFKFB3 that has functional consequences for replication-associated ICL repair and cancer cell survival. Inhibition of PFKFB3 displays a cancer-specific synergy with platinum compounds in blocking cell viability and restores sensitivity in treatment-resistant models. Notably, the synergies are associated with DNA-damage-induced chromatin association of PFKFB3 upon cancer transformation, which further increases upon platinum resistance. FA pathway activation triggers the PFKFB3 assembly into nuclear foci in an ATR- and FANCM-dependent manner. Blocking PFKFB3 activity disrupts the assembly of key FA repair factors and consequently prevents fork restart. This results in an incapacity to replicate cells to progress through S-phase, an accumulation of DNA damage in replicating cells, and fork collapse. We further validate PFKFB3-dependent regulation of FA repair in ex vivo cultures from cancer patients. Collectively, targeting PFKFB3 opens up therapeutic possibilities to improve the efficacy of ICL-inducing cancer treatments.

SELECTION OF CITATIONS
SEARCH DETAIL