Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.748
Filter
1.
Int J Biol Macromol ; 279(Pt 3): 135292, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39236956

ABSTRACT

Diabetic kidney disease, known as diabetic nephropathy (DN), is a widespread severe diabetes complication leading to kidney failure. Due to the lack of efficacious therapies, this study endeavors to enhance DN therapeutic effectiveness of ferulic acid (FRA), a natural phenolic with poor oral bioavailability, by developing a transdermal kidney-targeted spanlastic formulation. Spanlastics (SP) nanovesicles were prepared using Span 60 and Labrasol or Brij35 as edge activators (EA). Cationic guar (CG) and hyaluronic acid (HA) were employed as coatings. The formulations were assessed for entrapment efficiency (EE), particle size (PS) and zeta potential (ZP). A 21 × 31 factorial optimization of FRA spanlastic formulations revealed the desirable nanoformula was FRA-L-H-SP comprising Labrasol and hyaluronate coating. Transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR), Diphenylpicrylhydrazyl (DPPH) antioxidant activity, in-vitro release, and rat skin ex-vivo permeation assessed this formula and the uncoated one (FRA-L-SP). Biochemical indicators and histopathology for diabetes and kidney injury were evaluated in the Streptozotocin (STZ)-induced DN rat model. Results showed significant improvements after treatment with FRA-L-H-SP compared to FRA-L-SP and free FRA, with decreased blood glucose, creatinine, and intercellular adhesion molecule-1 (ICAM-1) levels and increased insulin, AMP-activated protein kinase (AMPK), and sirtuins (SIRT). This enhancement can be acknowledged as passive targeting of SP and active targeting properties of hyaluronic to cluster of differentiation 44 (CD44) receptors, revealing the potential to improve DN pathophysiology.

2.
J Inflamm Res ; 17: 5741-5762, 2024.
Article in English | MEDLINE | ID: mdl-39224659

ABSTRACT

Background: Cerebral ischaemia-reperfusion injury (CIRI) could worsen the inflammatory response and oxidative stress in brain tissue. According to previous studies, ferulic acid methyl ester (FAME), as the extract with the strongest comprehensive activity in the traditional Chinese medicine Huang Hua oil dot herb, has significant anti-oxidative stress and neuroprotective functions, and can effectively alleviate CIRI, but its mechanism of action is still unclear. Methods: Firstly, the pharmacological effects of FAME were investigated by in vitro oxidative stress and inflammatory experiments. Secondly, evaluate the therapeutic effects of FAME in the treatment of CIRI by brain histopathological staining and cerebral infarct area by replicating the in vivo MACO model. Thirdly, RNA-Seq and network pharmacology were utilized to predict the possible targets and mechanisms of FAME for CIRI at the molecular level. Finally, the expression of key target proteins, as well as the key regulatory relationships were verified by molecular docking visualization, Western Blotting and immunohistochemistry. Results: The results of in vitro experiments concluded that FAME could significantly reduce the content of TNF-α, IL-1ß and ROS, inhibiting COX-2 and iNOS protein expression in cells(p<0.01). FAME was demonstrated to have anti-oxidative stress and anti-inflammatory effects. The results of in vivo experiments showed that after the administration of FAME, the area of cerebral infarction in rats with CIRI was reduced, the content of Bcl-2 and VEGF was increased(p<0.05). Network pharmacology and RNA-Seq showed that the alleviation of CIRI by FAME may be through PI3K-AKT and HIF-1 signaling pathway. Enhanced expression of HIF-1α, VEGF, p-PI3K, p-AKT proteins in the brain tissues of rats in the FAME group was verified by molecular docking and Western Blotting. Conclusion: FAME possesses significant anti-inflammatory and anti-oxidative stress activities and alleviates CIRI through the PI3K/HIF-1α/VEGF signaling pathway.

3.
Toxicol Appl Pharmacol ; : 117099, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39260469

ABSTRACT

BACKGROUND AND AIM: Hepatic fibrosis, one of the main reasons for death globally, is a serious complication of chronic liver disorders. However, the available therapies for liver fibrosis are limited, ineffective, and often associated with adverse events. Hence, seeking for a novel, effective therapy is warranted. Our objective was to investigate the potential efficacy of ferulic acid (FA), a phenolic phytochemical, at different doses in hindering the progress of concanavalin A (Con A)-induced hepatic fibrosis and explore the involved mechanisms. METHODS: Thirty-six mice were assorted into 6 groups (n = 6): Group I (control); group II received FA (20 mg/kg/day orally for 4 weeks); group III received Con A (6 mg/kg/week/i.v.) for 4 weeks; groups IV, V, and VI received Con A and were offered FA at 5, 10, and 20 mg/kg/day, respectively. RESULTS: The data showed the palliative effect of FA against Con A-induced fibrosis in a dose-dependent manner. This was obvious from the recovery of liver markers and hepatic architecture with the regression of fibrosis in FA-treated mice. FA abolished Con A-mediated oxidative insults and promoted the antioxidant enzyme activities, which run through the Nrf2/HO-1 signaling. Additionally, FA suppressed Con A-induced increase in NF-kB and IL-ß levels, and TNF-α immune-expression. The anti-fibrotic effect of FA was evident from the drop in TGF-ß, smad3 levels, α-SMA expression, and hydroxyproline content. CONCLUSION: FA attenuated Con A-induced liver fibrosis through stimulating Nrf2 signaling, suppressing NF-kB, and inhibiting the TGF-ß/smad3 signaling pathway. Thus FA can be considered as a promising therapy for combating liver fibrosis.

4.
Polymers (Basel) ; 16(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39274085

ABSTRACT

A novel photopolymerizable (meth)acrylate oligomer syrup modified with ferulic acid (FA) was verified as an antimicrobial coating binder against a biofilm of Staphylococcus epidermidis. A solution-free UV-LED-initiated photopolymerization process of aliphatic (meth)acrylates and styrene was performed to prepare the oligomer syrup. The influence of ferulic acid on the UV crosslinking process of the varnish coatings (kinetic studies using photo-DSC) as well as their chemical structure (FTIR) and mechanical (adhesion, hardness), optical (gloss, DOI parameter), and antibacterial properties against S. epidermidis were investigated. The photo-DSC results revealed that FA has a positive effect on reducing the early occurrence of slowing processes and has a favorable effect on the monomer conversion increment. It turned out, unexpectedly, that the more FA in the coating, the greater its adhesion to a glass substrate and hardness. The coating containing 0.9 wt. part of FA exhibited excellent antimicrobial properties against S. epidermidis, i.e., the bacterial number after 24 h was only 1.98 log CFU/mL. All the coatings showed relatively high hardness, gloss (>80 G.U.), and DOI parameter values (30-50 a.u.).

5.
Narra J ; 4(2): e775, 2024 08.
Article in English | MEDLINE | ID: mdl-39280296

ABSTRACT

Ferulic acid (4-hydroxy-3-methoxycinnamic acid) is a phytochemical compound that is commonly found in conjugated forms within mono-, di-, polysaccharides and other organic compounds in cell walls of grain, fruits, and vegetables. This compound is highly abundant in the palm oil waste. The aim of the study was to predict the anticancer activity of ferulic acid against the breast cancer cell lines (MCF-7) receptors through a computational analysis. MCF-7 receptors with PDB IDs of 1R5K, 2IOG, 4IV2, 4IW6, 5DUE, 5T92, and 5U2B were selected based on the Simplified Molecular Input Line Entry System (SMILES) similarity of the native ligand. Thereafter, the protein was prepared on Chimera 1.16 and docked with ferulic acid on Autodock Vina 1.2.5. The ligand-protein complex interaction was validated by computing the root mean square fluctuation (RMSF) and radius of gyration (Rg) through molecular dynamic simulation. In addition, an absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction was performed on ferulic acid using the pkCSM platform. The molecular docking revealed that the ferulic acid could interact with all receptors as indicated by the affinity energy <-5 kcal/mol. The compound had the most optimum interaction with receptor 2IOG (affinity energy=-6.96 kcal/mol), involving hydrophobic interaction (n=12) and polar hydrogen interaction (n=4). The molecular dynamic simulation revealed that the complex had an RMSF of 1.713 Å with a fluctuation of Rg value around 1.000 Å. The ADMET properties of ferulic acid suggested that the compound is an ideal drug candidate. In conclusion, this study suggested that ferulic acid, which can be isolated from palm oil waste, has the potential to interact with MCF-7 receptors.


Subject(s)
Coumaric Acids , Palm Oil , Palm Oil/chemistry , Palm Oil/metabolism , Coumaric Acids/chemistry , Coumaric Acids/metabolism , Coumaric Acids/pharmacology , Humans , MCF-7 Cells , Molecular Docking Simulation , Computer Simulation , Molecular Dynamics Simulation , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism
6.
J Nanobiotechnology ; 22(1): 576, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300534

ABSTRACT

BACKGROUND: Radiation-induced skin injury is a significant adverse reaction to radiotherapy. However, there is a lack of effective prevention and treatment methods for this complication. Ferulic acid (FA) has been identified as an effective anti-radiation agent. Conventional administrations of FA limit the reaching of it on skin. We aimed to develop a novel FA hydrogel to facilitate the use of FA in radiation-induced skin injury. METHODS: We cross-linked carbomer 940, a commonly used adjuvant, with FA at concentrations of 5%, 10%, and 15%. Sweep source optical coherence tomography system, a novel skin structure evaluation method, was applied to investigate the influence of FA on radiation-induced skin injury. Calcein-AM/PI staining, CCK8 assay, hemolysis test and scratch test were performed to investigate the biocompatibility of FA hydrogel. The reducibility of DPPH and ABTS radicals by FA hydrogel was also performed. HE staining, Masson staining, laser Doppler blood flow monitor, and OCT imaging system are used to evaluate the degree of skin tissue damage. Potential differentially expressed genes were screened via transcriptome analysis. RESULTS: Good biocompatibility and in vitro antioxidant ability of the FA hydrogels were observed. 10% FA hydrogel presented a better mechanical stability than 5% and 15% FA hydrogel. All three concentrations of FA remarkably promoted the recovery of radiation-induced skin injury by reducing inflammation, oxidative conidiation, skin blood flow, and accelerating skin tissue reconstruction, collagen deposition. FA hydrogel greatly inhibiting the levels of NLRP3, caspase-1, IL-18, pro-IL-1ß and IL-1ß in vivo and vitro levels through restraining the activation of NLRP3 inflammasome. Transcriptome analysis indicated that FA might regulate wound healing via targeting immune response, inflammatory response, cell migration, angiogenesis, hypoxia response, and cell matrix adhesion. CONCLUSIONS: These findings suggest that the novel FA hydrogel is a promising therapeutic method for the prevention and treatment of radiation-induced skin injury patients.


Subject(s)
Coumaric Acids , Hydrogels , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Skin , Wound Healing , Coumaric Acids/pharmacology , Coumaric Acids/chemistry , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Wound Healing/drug effects , Inflammasomes/metabolism , Mice , Hydrogels/chemistry , Hydrogels/pharmacology , Skin/drug effects , Male , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Radiation Injuries/drug therapy , Mice, Inbred C57BL
7.
J Agric Food Chem ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39298915

ABSTRACT

Ferulic acid (FA) exhibits antioxidant and anti-inflammatory properties, making it valuable for numerous industrial applications. Traditionally, FA is produced by the alkaline hydrolysis of γ-oryzanol, which is typically associated with wastewater generation. Recently, an increasing demand of natural FA necessitates its green production via enzymatic hydrolysis of γ-oryzanol, a mixture comprising triterpene alcohol ferulates and phytosteryl ferulates. Thus far, γ-oryzanol can be hydrolyzed by only four commercial cholesterol esterases with low yields. Herein, we report a recombinant cholesterol esterase from Mustela putorius furo (MPFCE) for the enzymatic hydrolysis of γ-oryzanol. The enzyme yielded 25.5% FA, which is the highest reported through enzymatic means thus far. The hydrolysis profile revealed that the enhanced yield primarily resulted from the near-complete hydrolysis of phytosteryl ferulates, together with slight hydrolysis of triterpene alcohol ferulates. MPFCE serves as a potential candidate for the enzymatic production of FA through targeted hydrolysis of γ-oryzanol.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125118, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39299069

ABSTRACT

This study introduces a novel fluorescence 'turn-on' chemosensor, FHDA, based on a trans-Ferulic acid Schiff-base derivative. FHDA stands out as a highly selective and sensitive tool for the fluorescent detection of Al3+ with the fluorescence 'turn-on' effect. FHDA exhibits a strong CHEF effect and ICT upon complexation with Al3+ in a 1:2 binding stoichiometry. The significant Stokes shift (Δλ = 108 nm, λex = 422 nm, λem = 530 nm), large binding constant (Ka = 4.2 × 104 M-1), ∼9.5-fold increase in the quantum yield (FHDA, Φ = 0.020; FHDA-Al3+ complex, Φ = 0.189), and a LOD of 134 nM, makes FHDA an excellent chemosensor for detecting Al3+ in solution; tests in live cells and environmental samples also showed excellent responses. FHDA offers substantial improvements over existing methods with its ease of use, limited expense, high specificity, and the ability to provide real-time, in-situ monitoring of Al3+ ions. The utility of FHDA is highlighted through applications in monitoring Al3+ ions in e.g. lung cancer cells (A549) and environmental water samples. We believe that applications of FHDA can potentially lead to a novel diagnostic and therapeutic strategy against diseases linked to aluminum dysregulation.

9.
Neurochem Res ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39302597

ABSTRACT

Population aging is a global reality driven by increased life expectancy. This demographic phenomenon is intrinsically linked to the epidemic of cognitive disorders such as dementia and Alzheimer's disease, posing challenges for elderly and their families. In this context, the search for new therapeutic strategies to prevent or minimize cognitive impairments becomes urgent, as these deficits are primarily associated with oxidative damage and increased neuroinflammation. Ferulic acid (FA), a natural and potent antioxidant compound, is proposed to be nanoencapsulated to target the central nervous system effectively with lower doses and an extended duration of action. Here, we evaluated the effects of the nanoencapsulated FA on d-galactose (d-Gal)- induced memory impairments. Male Wistar adult rats were treated with ferulic acid-loaded nanocapsules (FA-Nc) or non-encapsulated ferulic acid (D-FA) for 8 weeks concurrently with d-Gal (150 mg/kg s.c.) injection. As expected, our findings showed that d-Gal injection impaired memory processes and increased anxiety behavior, whereas FA-Nc treatment ameliorated these behavioral impairments associated with the aging process induced by d-Gal. At the molecular level, nanoencapsulated ferulic acid (FA-Nc) ameliorated the decrease in ACh and glutamate induced by d-galactose (d-Gal), and also increased GABA levels in the dorsal hippocampus, indicating its therapeutic superiority. Additional studies are needed to elucidate the mechanisms underlying our current promising outcomes. Nanoscience applied to pharmacology can reduce drug dosage, thereby minimizing adverse effects while enhancing therapeutic response, particularly in neurodegenerative diseases associated with aging. Therefore, the strategy of brain-targeted drug delivery through nanoencapsulation can be effective in mitigating aging-related factors that may lead to cognitive deficits.

10.
Article in English | MEDLINE | ID: mdl-39289934

ABSTRACT

BACKGROUND: To improve the prognosis outcome of lung cancer patients, more investigations are still needed. Previous reports have demonstrated the function of Ferulic Acid (FA) in lung cancer; thus, we have attempted to probe more molecular mechanisms underlying FA application in lung cancer. METHODS: CCK8 and colony formation experiments have been employed to explore cell viability and proliferation. Cell apoptosis was evaluated through flow cytometry. Cell morphology was observed with a microscope. MMP was assessed by JC-1 and LDH activity was evaluated by relative kit. Western blot assays were performed to examine the expression levels of GSDMD, GSDMD-N, caspase family proteins, and ROS/JNK/Bax mitochondrial apoptosis pathway downstream proteins. Flow cytometry analysis also measured the level of ROS. Tissues from animal models were taken for IHC analysis of C-caspase-1. RESULTS: FA was found to inhibit proliferation, change cell morphology, decrease MMP, and enhance LDH activity, suggesting its ability to induce pyroptosis of lung cancer cells. Both caspase-1 and GSDMD were found to be involved in the pyroptosis of lung cancer cells treated with FA, and caspase-1 mediated GSDMD. Moreover, FA was validated to regulate pyroptosis by ROS/JNK/Bax mitochondrial apoptosis pathway in vitro and in vivo. CONCLUSION: In summary, FA regulates GSDMD through ROS/JNK/Bax mitochondrial apoptosis pathway to induce pyroptosis in lung cancer cells, which may offer a theoretical basis for pyroptosis in the occurrence of lung cancer.

11.
Food Chem ; 463(Pt 2): 141312, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39305668

ABSTRACT

In this work, new sorbents for the purification of anthocyanin-rich extracts were evaluated. Copolymers of 4-vinylpyridine crosslinked with trimethylolpropane trimethacrylate (poly(4VP-co-TRIM)) or 1,4-dimethacryloyloxybenzene (poly(4VP-co-14DMB)) were tested for their potential to capture polyphenols. Copolymers were obtained by seed swelling polymerization in the form of microspheres with permanent porous structure - attractive features of sorbents used for sample purification by dispersive solid phase extraction. The microspheres were characterized by AFM, elemental analysis, SEM, and nitrogen adsorption-desorption method. Their capacity to remove polyphenols was evaluated using spectrophotometry, HPLC-DAD, and LC-MS/MS. For proof-of-concept, the aqueous extracts of berries classified into three different groups regarding their anthocyanin composition (strawberries, raspberries, blackcurrants) were selected. It was found that studied microspheres adsorbed flavonoids more effectively compared to primary secondary amine and graphitized carbon black. Copolymers of 4-vinylpyridine also capture anthocyanins and might be used for the purification of extracts of fruits before LC-MS/MS analysis to reduce the matrix effect.

12.
Front Pharmacol ; 15: 1420602, 2024.
Article in English | MEDLINE | ID: mdl-39268468

ABSTRACT

Background: Kawasaki disease (KD) is a self-limiting and acute systemic vasculitis of unknown etiology, mainly affecting children. Ferulic acid (FA), a natural phenolic substance, has multiple pharmacological properties, including anti-inflammatory, anti-apoptosis, and anti-fibrosis, and so on. So far, the protective effects of FA on KD have not been explored. Methods: In this study, we established Candida albicans water soluble fraction (CAWS)-induced mouse coronary artery vasculitis of KD model and the tumor necrosis factor α (TNF-α)-induced human umbilical vein endothelial cells (HUVECs) injury model to investigate the anti-inflammatory and anti-apoptosis effects of FA on KD, and try to elucidate the underlying mechanism. Results: Our in vivo results demonstrated that FA exerted anti-inflammatory effects on KD by inhibiting the infiltration of CD45-positive leukocytes and fibrosis around the coronary artery. Additionally, FA downregulated the levels of inflammatory and chemotactic cytokines, alleviated splenomegaly, and exhibited anti-apoptotic effects on KD by reducing TUNEL-positive cells, downregulating BAX expression, and upregulating BCL-2 expression. In addition, Our in vitro findings showed that FA could effectively inhibit TNF-α-induced HUVEC inflammation like NF-κB inhibitor QNZ by downregulating the expression of pro-inflammatory cytokines as well as attenuated TNF-α-induced HUVEC apoptosis by reducing apoptotic cell numbers and the BAX/BCL-2 ratio, which could be reversed by the AMPK inhibitor compound c (CC). The further mechanistic study demonstrated that FA could restrain vascular endothelial cell inflammation and apoptosis in KD through activating the AMPK/mTOR/NF-κB pathway. However, FA alone is hard to completely restore KD into normal condition. Conclusion: In conclusion, FA has potential protective effects on KD, suggesting its promising role as an adjuvant for KD therapy in the future.

13.
J Exp Bot ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271137

ABSTRACT

Angelica sinensis is a traditional Chinese herbal medicine with significant economic and medicinal value. However, early bolting and flowering can occur during the second year of the vegetative growth period, rendering the roots unviable for medicinal use and resulting in substantial economic losses. Consequently, the growing interest in studying the molecular mechanisms underlying early bolting or increased root lignification in A. sinensis. Here, we conducted whole-genome bisulfite sequencing and observed an increase in whole-genome DNA methylation levels on chromosomes after bolting in A. sinensis. Comparative analysis revealed methylation patterns in the upstream, gene body, and downstream regions in the context of CG, CHG, and CHH, suggesting a possible association between CHH-type methylation of promoters and phenylpropanoid biosynthesis. Furthermore, joint analysis of transcriptomic and methylomics data revealed a positive correlation between DNA methylation and gene expression. We identified the hyperDMR gene in the CHH background within the promoter region; this gene is also a key gene (AsCOMT1), exhibiting dual catalytic activity and facilitating the synthesis of both ferulic acid and lignin. Enzyme kinetic analysis demonstrated that AsCOMT1 preferentially catalyzes the synthesis of lignin monomer precursors. These findings highlight the important regulatory role of DNA methylation in bolting and the synthesis of secondary metabolites in A. sinensis, providing valuable insights into the underlying molecular mechanisms. Therefore, as DNA methylation plays an important regulatory role in A. sinensis bolting and secondary metabolite synthesis, it has potential significance in the analysis of the underlying molecular mechanism.

14.
Mini Rev Med Chem ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39219429

ABSTRACT

Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that leads to cognitive decline and memory impairment. It is characterized by the accumulation of Amyloid-beta (Aß) plaques, the abnormal phosphorylation of tau protein forming neurofibrillary tangles, and is often accompanied by neuroinflammation and oxidative stress, which contribute to neuronal loss and brain atrophy. At present, clinical anti-AD drugs are mostly single-target, improving the cognitive ability of AD patients, but failing to effectively slow down the progression of AD. Therefore, research on effective multi-target drugs for AD has become an urgent problem to address. The main derivatives of hydroxycinnamic acid, caffeic acid, and ferulic acid, are widely present in nature and have many pharmacological activities, such as antimicrobial, antioxidant, anti-inflammatory, neuroprotective, anti-Aß deposition, and so on. The occurrence and development of AD are often accompanied by pathologies, such as oxidative stress, neuroinflammation, and Aß deposition, suggesting that caffeic acid and ferulic acid can be used in the research on anti-AD drugs. Therefore, in this article, we have summarized the multi-target anti-AD derivatives based on caffeic acid and ferulic acid in recent years, and discussed the new design direction of cinnamic acid derivatives as backbone compounds. It is hoped that this review will provide some useful strategies for anti-AD drugs based on cinnamic acid derivatives.

15.
Int J Biol Macromol ; 279(Pt 2): 135143, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39208889

ABSTRACT

The burdens of microbial food safety and environmental contamination make it necessary to search sustainable, safe, antibacterial and antioxidant active food packaging materials. This contribution proposed the use of copper-ferulic acid networks (CuFA NWs) as antibacterial substances. By immobilizing CuFA NWs into carrageenan matrix, a CuFA network-reinforced carrageenan-based packaging film (Carr/CuFA) was obtained via spontaneously hydrogen bond and electrostatic interaction indicated by ATR-IR and XPS. Interestingly, the addition of CuFA NWs increased the mechanical strength, surface hydrophobicity, and water vapor barrier properties of the carrageenan-based film, and imparted the film with UV-shielding capacity. Importantly, the Carr/CuFAx film exhibited effective antioxidant activity, and antibacterial performance against four foodborne bacteria. As a result, after confirming the safety of Carr/CuFA3 films by releasing, hemolysis and cell viability experiments, the Carr/CuFA3 film exhibited great potential in the safety control and preservation of fresh fruit by using blueberry and cherry as model fruit. In summary, this work provides a feasible candidate for the preservation and contamination control of fresh fruit.

16.
Waste Manag ; 188: 39-47, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39098271

ABSTRACT

Brewers' spent grain (BSG) is the main byproduct from the brewing industry, which accounts for 85 % of the total waste generated during beer production. This lignocellulosic material is traditionally used as livestock feed and sold at a low price. However, BSG can be used as a low-cost feedstock for the production of bioactive molecules and chemicals precursors, upgrading the value of this byproduct. In this context, BSG is a promising feedstock for the extraction of antioxidants like ferulic acid (FA) and p-coumaric acid (p-Cu). The effectiveness of three hydrolysis treatments were evaluated for the extraction of FA and p-Cu from BSG, namely enzymatic (based on the synergistic cooperation between a feruloyl esterase and an endo-1,4-ß-xylanase), alkaline and hydrothermal. The hydrothermal treatment produced the highest extraction yields (7.2 g/kgBSG and 1.4 g/kgBSG for FA and p-Cu, respectively) in a short extraction time (an hour). On the other hand, enzymatic hydrolysis extracted 4.3 g/kgBSG for FA and negligible yields for p-Cu in 4 h of incubation at 25 °C. Yields of 5.5 g/kgBSG for FA and 0.6 g/kgBSG for p-Cu were obtained in more than 5 h of alkaline treatment at 120 °C. The mass and energy balances revealed the high dependence of the operating costs on the concentration of BSG used during the extraction process, with costs of 34.5 €, 6607 € and 205.5 € per kg of FA for the chemical, enzymatic and hydrothermal extraction methods at 100 kg BSG/m3.


Subject(s)
Coumaric Acids , Edible Grain , Edible Grain/chemistry , Hydrolysis , Beer , Propionates , Industrial Waste/analysis , Carboxylic Ester Hydrolases/metabolism , Endo-1,4-beta Xylanases/metabolism , Waste Management/methods
17.
Arch Dermatol Res ; 316(8): 548, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162738

ABSTRACT

The skin, being the body's largest organ, primarily functions as a formidable defense mechanism against potential microbial infections. The skin's microbiota, consisting of a complex assembly of microorganisms, exerts a pivotal influence on skin homeostasis by modulating keratinocytes and their cytokine secretion, thereby playing an integral role in promoting optimal cutaneous health. Leuconostoc mesenteroides finds extensive application in the production of fermented foods and bacteriocins. Empirical studies validate the effectiveness of L. mesenteroides treatments in enhancing immune function and demonstrating notable antioxidant characteristics. This study investigates the potential of L. mesenteroides in improving skin health and wound healing. It also aims to comprehend their impact on wound healing markers, cytokine production, and cell cycle regulation compared to ferulic acid, known for its wound healing effects. Our findings indicate that L. mesenteroides lysate possesses antibacterial properties against Staphylococcus aureus and Pseudomonas aeruginosa, along with the ability to mitigate their toxic effects in a pathogen-simulating model employing HaCaT keratinocyte cells. Additionally, the lysate demonstrated noteworthy wound closure after a 24-hour treatment, along with a significant reduction in interleukin-6 levels and oxidative stress index. Modulation of the cell cycle is evident by decreasing G0/G1 phases and increasing S and G2/M phases and enhanced expression of wound healing marker genes and proteins CDH1. In conclusion, L. mesenteroides lysate exhibits immune-modulating and antibacterial properties, offering potential alternatives to conventional treatments for various skin conditions. These findings contribute to the exploration of innovative approaches to enhancing human life through skin health and wound healing.


Subject(s)
HaCaT Cells , Keratinocytes , Leuconostoc mesenteroides , Pseudomonas aeruginosa , Staphylococcus aureus , Wound Healing , Keratinocytes/immunology , Humans , Wound Healing/drug effects , Wound Healing/immunology , Staphylococcus aureus/immunology , Staphylococcus aureus/physiology , Leuconostoc mesenteroides/immunology , Leuconostoc mesenteroides/metabolism , Pseudomonas aeruginosa/immunology , Anti-Bacterial Agents/pharmacology , Skin/immunology , Skin/microbiology , Skin/pathology , Oxidative Stress/drug effects , Oxidative Stress/immunology , Cell Cycle/drug effects , Antioxidants/pharmacology , Cell Line , Cytokines/metabolism , Interleukin-6/metabolism
18.
J Adv Res ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111625

ABSTRACT

INTRODUCTION: Podocyte senescence causes podocyte loss and glomerulopathy. Excessive fructose intake is a risk factor for podocyte injury. However, whether high fructose promotes podocyte senescence remains unknown. OBJECTIVES: To explore the pathological mechanism by which high fructose drives podocyte senescence and find natural compounds to alleviate podocyte senescence. METHODS: Podocyte senescence was characterized with senescence-associated beta-galactosidase (SA-ß-gal) staining, Western blot, real-time quantitative polymerase chain reaction (qRT-PCR), comet assay and immunofluorescence. Proteomics analysis was performed to identify differentially expressed proteins in high fructose-exposed podocytes. Podocyte nuclear pore complexes (NPCs) and foot processes were observed by transmission electron microscopy. The mRNA and protein levels of nucleoporin 155 (Nup155) and inositol requiring mutant 80 (INO80) were detected by qRT-PCR, Western blot and immunofluorescence. Virtual screening was conducted to find natural compounds that target Nup155. RESULTS: High fructose increased SA-ß-gal activity, protein level of p53, p21, p16 and phosphorylated histone H2AX (γ-H2AX), as well as mRNA expression of interleukin-1ß (IL-1ß), IL-6 and tumor necrosis factor α (TNF-α) in rat glomeruli and podocytes. Proteomic analysis unraveled a crucial molecule Nup155, which was decreased in high fructose-induced podocyte senescence. Meanwhile, the number of podocyte NPCs was also decreased in vivo and in vitro. Consistently, high fructose suppressed nuclear export of INO80 mRNA, thereby down-regulated INO80 protein expression in podocyte senescence. Deletion of Nup155 inhibited INO80 mRNA nuclear export to induce podocyte senescence, whereas overexpression of Nup155 or INO80 alleviated high fructose-induced podocyte senescence. Ferulic acid was found to up-regulate Nup155 by both direct binding to stabilize Nup155 protein and enhancing its transcription, to promote INO80 mRNA nuclear export in the mitigation of high fructose-caused podocyte senescence. CONCLUSION: High fructose induces podocyte senescence by decreasing Nup155 to inhibit INO80 mRNA nuclear export. Ferulic acid targeting Nup155 may be a potential strategy to prevent high fructose-induced podocyte senescence.

19.
Foods ; 13(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39123502

ABSTRACT

Feruloylated arabinoxylan (AX) is a potential health-promoting fiber ingredient that can enhance nutritional properties of bread but is also known to affect dough rheology. To determine the role of feruloylation and hydrolysis of wheat bran AX on dough quality and microstructure, hydrolyzed and unhydrolyzed AX fractions with low and high ferulic acid content were produced, and their chemical composition and properties were evaluated. These fractions were then incorporated into wheat dough, and farinograph measurements, large and small deformation measurements and dough microstructure were assessed. AX was found to greatly affect both fraction properties and dough quality, and this effect was modulated by hydrolysis of AX. These results demonstrated how especially unhydrolyzed fiber fractions produced stiff doughs with poor extensibility due to weak gluten network, while hydrolyzed fractions maintained a dough quality closer to control. This suggests that hydrolysis can further improve the baking properties of feruloylated wheat bran AX. However, no clear effects from AX feruloylation on dough properties or microstructure could be detected. Based on this study, feruloylation does not appear to affect dough rheology or microstructure, and feruloylated wheat bran arabinoxylan can be used as a bakery ingredient to potentially enhance the nutritional quality of bread.

20.
Vet Parasitol ; 331: 110282, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39116545

ABSTRACT

This study assessed the in vitro anthelmintic activity of ethyl acetate extract (Cn-EtOAc) and its bioactive fractions (CnR3 and CnR5) obtained from Chamaecrista nictitans aerial parts against two Haemonchus contortus (Hc) isolates, one resistant (strain HcIVM-R) and another susceptible (strain HcIVM-S) to ivermectin. Ferulic acid and p-coumaric acid were identified in the bioactive fractions; therefore, their commercial standards were also assessed. A colocalization analysis between the ferulic acid commercial standard and eggs of the HcIVM-R strain was performed using confocal laser scanning microscopy and the ImageJ program. The ovicidal effects of the Cn-EtOAc extract, bioactive fractions and commercial compounds were tested through the egg hatching inhibition (EHI) assay on H. contortus isolates HcIVM-R and HcIVM-S. The Cn-EtOAc caused 88 % and 92 % EHI at 5000 µg/mL on HcIVM-R and HcIVM-S, respectively. Fractions CnR3 and CnR5 displayed the highest ovicidal activity against HcIVM-S, with effective concentrations (EC90) of 2134 and 601 µg/mL, respectively. Meanwhile, the commercial standards ferulic acid and p-coumaric acid also resulted in higher effectiveness on the same strain, with EC90 of 57.5 and 51.1 µg/mL. A colocalization analysis of ferulic acid and eggs of HcIVM-R revealed that this compound is localized to the cuticle surface of the embryo inside the egg parasite. The results demonstrated that both ferulic and p-coumaric acids interrupt the egg-hatching processes of the two Hc isolates. Both phenolic acids isolated from C. nictitans and commercial standards exhibited the best anthelmintic effect on HcIVM-S. These findings indicate that the phenolic acids were less effective in egg hatch inhibiting on the HcIVM-R strain compared to the HcIVM-S strain.


Subject(s)
Anthelmintics , Coumaric Acids , Haemonchus , Plant Extracts , Animals , Haemonchus/drug effects , Coumaric Acids/pharmacology , Coumaric Acids/chemistry , Anthelmintics/pharmacology , Anthelmintics/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Ovum/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL