Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nutrients ; 16(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38931192

ABSTRACT

BACKGROUND: Brown seaweed is promising for the treatment of type 2 diabetes mellitus (T2DM). Its bioactive constituents can positively affect plasma glucose homeostasis in healthy humans. We investigated the effect of the brown seaweeds Sargassum (S.) fusiforme and Fucus (F.) vesiculosus in their natural form on glucose regulation in patients with T2DM. METHODS: We conducted a randomized, double-blind, placebo-controlled pilot trial. Thirty-six participants with T2DM received, on a daily basis, either 5 g of dried S. fusiforme, 5 g of dried F. vesiculosus, or 0.5 g of dried Porphyra (control) for 5 weeks, alongside regular treatment. The primary outcome was the between-group difference in the change in weekly average blood glucose levels (continuous glucose monitoring). The secondary outcomes were the changes in anthropometrics, plasma lipid levels, and dietary intake. The data were analyzed using a linear mixed-effects model. RESULTS: The change in weekly average glucose levels was 8.2 ± 2.1 to 9.0 ± 0.7 mmol/L (p = 0.2) in the S. fusiforme group (n = 12) and 10.1 ± 3.3 to 9.2 ± 0.7 mmol/L (p = 0.9) in the F. vesiculosus group (n = 10). The between-group difference was non-significant. Similarly, no between-group differences were observed for the changes in the secondary outcomes. DISCUSSION: A daily intake of 5 g of fresh, dried S. fusiforme or F. vesiculosus alongside regular treatment had no differential effect on weekly average blood glucose levels in T2DM.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Fucus , Sargassum , Humans , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Double-Blind Method , Blood Glucose/metabolism , Blood Glucose/drug effects , Male , Female , Middle Aged , Fucus/chemistry , Pilot Projects , Overweight/blood , Feasibility Studies , Aged , Adult , Seaweed , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Edible Seaweeds
2.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892206

ABSTRACT

Sulfated marine polysaccharides, so-called fucoidans, have been shown to exhibit anti-inflammatory and immunomodulatory activities in retinal pigment epithelium (RPE). In this study, we tested the effects of different fucoidans (and of fucoidan-treated RPE cells) on retinal microglia to investigate whether its anti-inflammatory effect can be extrapolated to the innate immune cells of the retina. In addition, we tested whether fucoidan treatment influenced the anti-inflammatory effect of RPE cells on retinal microglia. Three fucoidans were tested (FVs from Fucus vesiculosus, Fuc1 and FucBB04 from Laminaria hyperborea) as well as the supernatant of primary porcine RPE treated with fucoidans for their effects on inflammatory activated (using lipopolysaccharide, LPS) microglia cell line SIM-A9 and primary porcine retinal microglia. Cell viability was detected with a tetrazolium assay (MTT), and morphology by Coomassie staining. Secretion of tumor necrosis factor alpha (TNFα), interleukin 1 beta (IL1ß) and interleukin 8 (IL8) was detected with ELISA, gene expression (NOS2 (Nitric oxide synthase 2), and CXCL8 (IL8)) with qPCR. Phagocytosis was detected with a fluorescence assay. FucBB04 and FVs slightly reduced the viability of SIM-A9 and primary microglia, respectively. Treatment with RPE supernatants increased the viability of LPS-treated primary microglia. FVs and FucBB04 reduced the size of LPS-activated primary microglia, indicating an anti-inflammatory phenotype. RPE supernatant reduced the size of LPS-activated SIM-A9 cells. Proinflammatory cytokine secretion and gene expression in SIM-A9, as well as primary microglia, were not significantly affected by fucoidans, but RPE supernatants reduced the secretion of LPS-induced proinflammatory cytokine secretion in SIM-A9 and primary microglia. The phagocytosis ability of primary microglia was reduced by FucBB04. In conclusion, fucoidans exhibited only modest effects on inflammatorily activated microglia by maintaining their cell size under stimulation, while the anti-inflammatory effect of RPE cells on microglia irrespective of fucoidan treatment could be confirmed, stressing the role of RPE in regulating innate immunity in the retina.


Subject(s)
Cell Survival , Microglia , Polysaccharides , Retinal Pigment Epithelium , Microglia/drug effects , Microglia/metabolism , Animals , Polysaccharides/pharmacology , Swine , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/cytology , Cell Survival/drug effects , Phagocytosis/drug effects , Retina/drug effects , Retina/metabolism , Retina/cytology , Cell Line , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism
3.
Int J Biol Macromol ; 275(Pt 1): 133369, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914394

ABSTRACT

In this study, an acidic polysaccharide (FVP-7 A) was isolated from Fucus vesiculosus by DEAE-Sepharose™ fast flow. The chemical composition, glycosidic bonds and in vitro fecal fermentation characteristics of FVP-7 A were studied. Results shown that FVP-7 A was a homogenous polysaccharide with average molecular weight of 30.94 kDa. Combined with FT-IR, monosaccharide composition, methylation and NMR analysis, the glycosidic bonds of FVP-7 A mainly composed of →4)-ß-D-Manp-(1→, →3)-α-L-Fucp-(1→, α-D-Manp-(1→, →3)-ß-D-Manp-(1 â†’ and →4,6)-α-D-Manp-(1→. The zeta potential and atomic force microscopy images indicated that FVP-7 A could exist stably as a single chain-like structure in dilute solution. After gut fermentation, FVP-7 A was utilized and promoted multiple short-chain fatty acids production, especially acetic acid, butyric acid and valeric acid. For prebiotics, FVP-7 A significantly increased the relative abundance of short-chain fatty acids producing bacteria such as Bacteroides, Lachnospira, Faecalibacterium, Ruminococcus, Oscillospira and Dialister, and inhiited the growth of the harmful bacteria Shigella. These results indicated that FVP-7 A could be used as a potential dietary supplement to improve intestinal health.


Subject(s)
Fermentation , Fucus , Gastrointestinal Microbiome , Polysaccharides , Polysaccharides/chemistry , Polysaccharides/pharmacology , Humans , Fucus/chemistry , Fatty Acids, Volatile/metabolism , Molecular Weight , Prebiotics , Feces/microbiology , Monosaccharides/analysis , Methylation
4.
Sci Rep ; 14(1): 10237, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702505

ABSTRACT

Enzymatic degradation of algae cell wall carbohydrates by microorganisms is under increasing investigation as marine organic matter gains more value as a sustainable resource. The fate of carbon in the marine ecosystem is in part driven by these degradation processes. In this study, we observe the microbiome dynamics of the macroalga Fucus vesiculosus in 25-day-enrichment cultures resulting in partial degradation of the brown algae. Microbial community analyses revealed the phylum Pseudomonadota as the main bacterial fraction dominated by the genera Marinomonas and Vibrio. More importantly, a metagenome-based Hidden Markov model for specific glycosyl hydrolyses and sulphatases identified Bacteroidota as the phylum with the highest potential for cell wall degradation, contrary to their low abundance. For experimental verification, we cloned, expressed, and biochemically characterised two α-L-fucosidases, FUJM18 and FUJM20. While protein structure predictions suggest the highest similarity to a Bacillota origin, protein-protein blasts solely showed weak similarities to defined Bacteroidota proteins. Both enzymes were remarkably active at elevated temperatures and are the basis for a potential synthetic enzyme cocktail for large-scale algal destruction.


Subject(s)
Cell Wall , Fucus , Metagenomics , Cell Wall/metabolism , Fucus/metabolism , Fucus/genetics , Fucus/microbiology , Metagenomics/methods , Bacteroidetes/genetics , Bacteroidetes/enzymology , Metagenome , Microbiota , Phylogeny
5.
Mar Drugs ; 22(4)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38667804

ABSTRACT

High blood cholesterol levels are a major risk factor for cardiovascular diseases. A purified aqueous extract of Fucus vesiculosus, rich in phlorotannins and peptides, has been described for its potential to inhibit cholesterol biosynthesis and intestinal absorption. In this work, the effect of this extract on intestinal cells' metabolites and proteins was analysed to gain a deeper understanding of its mode of action on lipids' metabolism, particularly concerning the absorption and transport of exogenous cholesterol. Caco-2 cells, differentiated into enterocytes, were exposed to the extract, and analysed by untargeted metabolomics and proteomics. The results of the metabolomic analysis showed statistically significant differences in glutathione content of cells exposed to the extract compared to control cells, along with an increased expression of fatty acid amides in exposed cells. A proteomic analysis showed an increased expression in cells exposed to the extract compared to control cells of FAB1 and NPC1, proteins known to be involved in lipid metabolism and transport. To the extent of our knowledge, this study is the first use of untargeted metabolomics and a proteomic analysis to investigate the effects of F. vesiculosus on differentiated Caco-2 cells, offering insights into the molecular mechanism of the extract's compounds on intestinal cells.


Subject(s)
Fucus , Proteomics , Humans , Caco-2 Cells , Fucus/chemistry , Proteomics/methods , Anticholesteremic Agents/pharmacology , Lipid Metabolism/drug effects , Metabolomics , Cholesterol/metabolism , Intestinal Absorption/drug effects , Plant Extracts/pharmacology , Intestines/drug effects
6.
Toxins (Basel) ; 16(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38668613

ABSTRACT

BACKGROUND: Snakebite envenomation (SBE) causes diverse toxic effects in humans, including disability and death. Current antivenom therapies effectively prevent death but fail to block local tissue damage, leading to an increase in the severity of envenomation; thus, seeking alternative treatments is crucial. METHODS: This study analyzed the potential of two fucoidan sulfated polysaccharides extracted from brown seaweeds Fucus vesiculosus (FVF) and Undaria pinnatifida (UPF) against the fibrinogen or plasma coagulation, proteolytic, and phospholipase A2 (PLA2) activities of Bothrops jararaca, B. jararacussu, and B. neuwiedi venom. The toxicity of FVF and UPF was assessed by the hemocompatibility test. RESULTS: FVF and UPF did not lyse human red blood cells. FVF and UPF inhibited the proteolytic activity of Bothrops jararaca, B. jararacussu, and B. neuwiedi venom by approximately 25%, 50%, and 75%, respectively, while all venoms led to a 20% inhibition of PLA2 activity. UPF and FVF delayed plasma coagulation caused by the venoms of B. jararaca and B. neuwiedi but did not affect the activity of B. jararacussu venom. FVF and UPF blocked the coagulation of fibrinogen induced by all these Bothropic venoms. CONCLUSION: FVF and UPF may be of importance as adjuvants for SBE caused by species of Bothrops, which are the most medically relevant snakebite incidents in South America, especially Brazil.


Subject(s)
Blood Coagulation , Crotalid Venoms , Fucus , Phospholipases A2 , Polysaccharides , Undaria , Animals , Antivenins/pharmacology , Blood Coagulation/drug effects , Bothrops , Bothrops jararaca , Crotalid Venoms/toxicity , Crotalid Venoms/enzymology , Edible Seaweeds/chemistry , Fucus/chemistry , Phospholipases A2/metabolism , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Proteolysis/drug effects , Seaweed/chemistry , Undaria/chemistry , Venomous Snakes
7.
Mar Drugs ; 22(3)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38535464

ABSTRACT

The worldwide prevalence of obesity impacts more than 600 million adults. Successfully managing weight is effective in reducing the risk of chronic diseases, but sustaining long-term weight loss remains a challenge. Although there are supplements based on algae that claim to aid in weight loss, there is a notable scarcity of scientific evidence supporting their effectiveness, and their regular consumption safety remains inadequately addressed. In this work, commercially available Arthrospira (Spirulina) platensis Gomont and/or Fucus vesiculosus L. supplements showed moderate capacity to inhibit the activity of carbohydrate-metabolizing enzymes, and to scavenge biologically relevant reactive species. IC25 values varying between 4.54 ± 0.81 and 66.73 ± 5.91 µg of dry extract/mL and between 53.74 ± 8.42 and 1737.96 ± 98.26 µg of dry extract/mL were obtained for α-glucosidase and aldose reductase, respectively. A weaker effect towards α-amylase activity was observed, with a maximum activity of the extracts not going beyond 33%, at the highest concentrations tested. Spirulina extracts showed generally better effects than those from F. vesiculosus. Similar results were observed concerning the antiradical capacity. In a general way, the extracts were able to intercept the in vitro-generated reactive species nitric oxide (•NO) and superoxide anion (O2•-) radicals, with better results for O2•-scavenging with the spirulina samples (IC25 values of 67.16 and 122.84 µg of dry extract/mL). Chemically, similar pigment profiles were observed between spirulina supplements and the authenticated counterpart. However, fucoxanthin, the chemotaxonomic marker of brown seaweeds, was not found in F. vesiculosus samples, pointing to the occurrence of a degradation phenomenon before, during, or after raw material processing. Our findings can contribute to providing data to allow regulatory entities (e.g., EFSA and FDA) to better rule these products in a way that can benefit society.


Subject(s)
Decapodiformes , Dietary Supplements , Spirulina , Animals , Nitric Oxide , Plant Extracts
8.
Foods ; 13(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38397517

ABSTRACT

Brown macroalgae are rich sources of nutrients and health-promoting compounds. Nevertheless, their consumption is still limited by their strong organoleptic characteristics, thus requiring the development of extraction strategies to profit from their nutritional value. To fulfil this, two sequential extraction approaches were developed, differing in the solvent used in the first extraction step, water in approach 1 or food-grade ethanol in approach 2, to obtain economic and affordable extracts rich in specific compounds from Fucus vesiculosus. The use of water in the first step of extraction allowed us to recover water-soluble phlorotannins, laminarans and mannuronic-rich alginates, making the subsequent 70% ethanol extract richest in fucoxanthin (0.07% algae DW), and the hot water fractions purest in fucoidans and alginates with a lower mannuronic-to-guluronic (M/G) ratio (2.91). Conversely, when beginning extraction procedures with 96% ethanol, the recovered yields of phlorotannins increased (0.43 g PGE/100 g algae DW), but there was a concomitant seven-fold decrease in the recovery of fucoxanthin in the subsequent 70% ethanol extract. This approach also led to less pure hot water fractions containing fucoidans, laminarans and alginates with a higher M/G ratio (5.50). Overall, this work unveiled the potential of the first extraction steps in sustainable and holistic cascade strategies to modulate the composition of food-grade extracts, creating prospects of their application as tailored functional ingredients in food products.

9.
Brain Res ; 1828: 148769, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38237671

ABSTRACT

Fucoidan, a polysaccharide derived from brown seaweeds, especially Fucus Vesiculosus has been documented as an effective neuroprotectant. This study investigates the efficacy of fucoidan in mitigating the cognitive deficits in the rat model of vascular dementia induced through the 4-vessel occlusions (4VO) method. Male Wistar rats weighing about 250-300 g were randomly assigned into four groups, sham, lesion (4VO), 4VO + F5mg/kg, and 4VO + F50mg/kg. The rats were assessed for cognitive behaviour performance through novel object task, T-maze and Morris water maze, and finally, the hippocampus from the brain was harvested to quantify the profile of CA1 pyramidal neurons through CFV staining and the expression of inflammatory markers and angiogenic markers were quantified through western blot assessment on day7 and 30 of the study period. The rats were treated with fucoidan at a dose of 50 mg/kg. body weight showed improved spatial learning and memory compared to the lesion group and the cytoarchitecture of CA1 pyramidal cells was observed to be well preserved. The expression of IL1ß, IL6, TNFα, NFk-B, CD68 and HIFα were found to be down-regulated, while on the contrary the VEGFR2 and angiopoietin-1 were up regulated in the 4VO + F50mg/kg group when compared with the lesion group. In conclusion, this study ascertains the role of fucoidan in support of the cognitive profile of rats subjected to vascular dementia and in preserving the CA1 pyramidal neurons of the hippocampus by regulating the inflammatory and angiogenic factors.


Subject(s)
Dementia, Vascular , Rats , Male , Animals , Rats, Wistar , Dementia, Vascular/pathology , Hippocampus , Pyramidal Cells , Polysaccharides/pharmacology , Maze Learning , Ischemia/pathology , Cognition
10.
Article in English | WPRIM (Western Pacific) | ID: wpr-721027

ABSTRACT

BACKGROUND: Fucoidan is a highly sulfated glycosaminoglycan, which has a molecular structure similar to that of heparin. The antithrombotic effects of fucoidan in vitro have been widely reported, but its antithrombotic effects in vivo as well as its other biological properties in vitro have not been well investigated. METHODS: This study investigated the effects and mechanism of fucoidan from Fucus vesiculosus on thrombosis both in vitro and in vivo. A ferric chloride-induced mouse carotid artery thrombosis model was used to determine the antithrombotic effects of fucoidan in vivo. Additionally, changes in the levels of proinflammatory cytokines and chemokines were examined in vascular cells treated with fucoidan. RESULTS: In vivo studies employing a ferric chloride-induced mouse carotid artery thrombosis model indicated that fucoidan had a stronger antithrombotic activity than heparin. Further, vascular cells treated with fucoidan demonstrated a decrease in proinflammatory cytokine and chemokine production as well as inhibition of proliferation. CONCLUSION: The major findings of this study showed that fucoidan has a stronger antithrombotic effect than heparin in vivo and that fucoidan has an inhibitory effect on proinflammatory cytokine production and proliferation of vascular cells.


Subject(s)
Animals , Mice , Carotid Artery Thrombosis , Chemokines , Cytokines , Fucus , Glycosaminoglycans , Heparin , Molecular Structure , Polysaccharides , Thrombosis
11.
Rev. bras. farmacogn ; 7/8(1): 49-58, 1998. ilus, tab
Article in Portuguese | LILACS | ID: lil-534800

ABSTRACT

O propósito deste trabalho é estabelecer parâmetros para o controle de qualidade de Fucus vesiculosus L. Os resultados das análises de onze amostras da droga para cinzas totais, cinzas insolúveis em ácido e doseamento de iodo, como tambérn seu perfil cromatográfico, são sugeridos como novos parâmetros para a droga.


The aim of this work was to establish parameters for the quality control of Fucus vesiculosus L. The results from the analyses of eleven samples of the drug for total ash, ash insoluble in acid and evaluation of iodine content, as well as its profile in thin layer chromatography, are suggested as new parameters for the drug.

SELECTION OF CITATIONS
SEARCH DETAIL