Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
J Pain ; 24(4): 689-705, 2023 04.
Article in English | MEDLINE | ID: mdl-36521670

ABSTRACT

Previous studies have reported that L5/L6 spinal nerve ligation (SNL), but not L5 spinal nerve transection (SNT), enhances anoctamin-1 in injured and uninjured dorsal root ganglia (DRG) of rats suggesting some differences in function of the type of nerve injury. The role of bestrophin-1 in these conditions is unknown. The aim of this study was to investigate the role of bestrophin-1 in rats subjected to L5 SNT and L5/L6 SNL. SNT up-regulated bestrophin-1 protein expression in injured L5 and uninjured L4 DRG at day 7, whereas it enhanced GAP43 mainly in injured, but also in uninjured DRG. In contrast, SNL enhanced GAP43 at day 1 and 7, while bestrophin-1 expression increased only at day 1 after nerve injury. Accordingly, intrathecal injection of the bestrophin-1 blocker CaCCinh-A01 (1-10 µg) reverted SNT- or SNL-induced tactile allodynia in a concentration-dependent manner. Intrathecal injection of CaCCinh-A01 (10 µg) prevented SNT-induced upregulation of bestrophin-1 and GAP43 at day 7. In contrast, CaCCinh-A01 did not affect SNL-induced up-regulation of GAP43 nor bestrophin-1. Bestrophin-1 was mainly expressed in small- and medium-size neurons in naïve rats, while SNT increased bestrophin-1 immunoreactivity in CGRP+, but not in IB4+ neuronal cells in DRG. Intrathecal injection of bestrophin-1 plasmid (pCMVBest) induced tactile allodynia and increased bestrophin-1 expression in DRG and spinal cord in naïve rats. CaCCinh-A01 reversed bestrophin-1 overexpression-induced tactile allodynia and restored bestrophin-1 expression. Our data suggest that bestrophin-1 plays a relevant role in neuropathic pain induced by SNT, but not by SNL. PERSPECTIVE: SNT, but not SNL, up-regulates bestrophin-1 and GAP43 protein expression in injured L5 and uninjured L4 DRG. SNT increases bestrophin-1 immunoreactivity in CGRP+ neurons in DRG. Bestrophin-1 overexpression induces allodynia. CaCCinh-A01 reduces allodynia and restores bestrophin-1 expression. Our data suggest bestrophin-1 is differentially regulated depending on the neuropathic pain model.


Subject(s)
Hyperalgesia , Neuralgia , Rats , Animals , Bestrophins/metabolism , Hyperalgesia/metabolism , Rats, Sprague-Dawley , Calcitonin Gene-Related Peptide/metabolism , Neuralgia/metabolism , Spinal Nerves/injuries , Ligation , Chloride Channels/metabolism , Ganglia, Spinal/metabolism
2.
Behav Brain Res ; 436: 114102, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36089101

ABSTRACT

Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that presents sex differences in the severity and presentation of symptoms, whose neurobiological basis is still unknown. Both Growth-associated Protein 43 (GAP-43) and Sonic hedgehog (Shh) are considered essential proteins for the appropriate brain development, but their participation in ADHD neurobiology have not been investigated yet. In this study, we hypothesized that alterations in these proteins could be related to behavioral traits to ADHD phenotype. Thus, both sexes of infant Spontaneously hypertensive rats (SHR, used as ADHD animal model) were evaluated for developmental milestones, locomotor activity, olfactory and recognition memory. Both GAP-43 and Shh were assessed in the olfactory bulb, frontal cortex and hippocampus in early and late infancy. During early infancy, SHR reached three developmental milestones later, and females showed olfactory memory impairment accompanied by increased levels of Shh in the olfactory bulb. In later infancy, hyperlocomotion, impaired recognition memory, and decreased Shh in the hippocampus were observed in SHR from both sexes. While in early infancy GAP-43 was not altered, it was decreased in the frontal cortex and hippocampus of female SHR in late infancy. Therefore, both Shh and GAP-43 are involved in the sex-dependent behavioral alterations showed by infant SHR. Despite the disorder's complexity and heterogeneity, our findings reveal important developmental parameters during SHR development and also emphasizes the relevance of studying sex differences in the ADHD context.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Hedgehog Proteins , Animals , Brain/metabolism , Disease Models, Animal , Female , GAP-43 Protein/metabolism , Hedgehog Proteins/metabolism , Male , Memory Disorders/metabolism , Odorants , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Sex Characteristics
3.
J Comp Neurol ; 530(13): 2385-2401, 2022 09.
Article in English | MEDLINE | ID: mdl-35650108

ABSTRACT

We studied changes in the expression of growth-associated protein 43 (GAP43), glial fibrillary acidic protein (GFAP), and calcium-binding proteins (calbindin [Cb] and parvalbumin [Pv]) in the dorsal lateral geniculate nucleus (dLGN) of four capuchin monkeys with laser-induced retinal lesions. The lesions were generated with the aid of a neodymium-YAG dual-frequency laser with shots of different intensity and at different survival time in each animal. The expression of these proteins in the layers of the dLGN was evaluated by performing histodensitometry of coronal sections throughout the nucleus. High-power laser shots administered at the border of the optic disc (OD)-injured fibers resulted in large scotomas. These lesions produced a devastating effect on fibers in this passage, resulting in large deafferentation of the dLGN. The time course of plasticity expressed in this nucleus varied with the degree of the retinal lesion. Topographically, corresponding portions of the dLGN were inferred by the extent of the ocular dominance column revealed by cytochrome oxidase histochemistry in flattened preparations of V1. In the region representing the retinal lesion, the expression of GFAP, GAP43, Pv, and Cb increased and decreased in the corresponding dLGN layers shortly after lesion induction and returned to their original values with different time courses. Synaptogenesis (indicated by GAP43 expression) appeared to be increased in all layers, while "cleansing" of the glial-damaged region (indicated by GFAP expression) was markedly greater in the parvocellular layers, followed by the magnocellular layers. Schematic drawings of optic discs laser lesions and of series of coronal sections of the dLGN, in three monkeys, depicting the areas of the nucleus deafferented by the lesions.


Subject(s)
Geniculate Bodies , Parvalbumins , Animals , Calbindins/metabolism , Haplorhini/metabolism , Lasers , Parvalbumins/metabolism , Visual Pathways/metabolism
4.
J Neurochem ; 157(6): 1911-1929, 2021 06.
Article in English | MEDLINE | ID: mdl-33098090

ABSTRACT

Prenatal and early postnatal periods are important for brain development and neural function. Neonatal insults such as hypoxia-ischemia (HI) causes prolonged neural and metabolic dysregulation, affecting central nervous system maturation. There is evidence that brain hypometabolism could increase the risk of adult-onset neurodegenerative diseases. However, the impact of non-pharmacologic strategies to attenuate HI-induced brain glucose dysfunction is still underexplored. This study investigated the long-term effects of early environmental enrichment in metabolic, cell, and functional responses after neonatal HI. Thereby, male Wistar rats were divided according to surgical procedure, sham, and HI (performed at postnatal day 3), and the allocation to standard (SC) or enriched condition (EC) during gestation and lactation periods. In-vivo cerebral metabolism was assessed by means of [18 F]-FDG micro-positron emission tomography, and cognitive, biochemical, and histological analyses were performed in adulthood. Our findings reveal that HI causes a reduction in glucose metabolism and glucose transporter levels as well as hyposynchronicity in metabolic brain networks. However, EC during prenatal or early postnatal period attenuated these metabolic disturbances. A positive correlation was observed between [18 F]-FDG values and volume ratios in adulthood, indicating that preserved tissue by EC is metabolically active. EC promotes better cognitive scores, as well as down-regulation of amyloid precursor protein in the parietal cortex and hippocampus of HI animals. Furthermore, growth-associated protein 43 was up-regulated in the cortex of EC animals. Altogether, results presented support that EC during gestation and lactation period can reduce HI-induced impairments that may contribute to functional decline and progressive late neurodegeneration.


Subject(s)
Brain/metabolism , Environment , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/prevention & control , Neuronal Plasticity/physiology , Prenatal Exposure Delayed Effects/metabolism , Animals , Animals, Newborn , Female , Hypoxia-Ischemia, Brain/psychology , Lactation/metabolism , Lactation/psychology , Male , Maze Learning/physiology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/prevention & control , Neurodegenerative Diseases/psychology , Positron-Emission Tomography/methods , Pregnancy , Prenatal Exposure Delayed Effects/psychology , Rats , Rats, Wistar
5.
CNS Neurol Disord Drug Targets ; 18(1): 52-62, 2019.
Article in English | MEDLINE | ID: mdl-30394222

ABSTRACT

BACKGROUND: The chronic phase of Spinal Cord (SC) injury is characterized by the presence of a hostile microenvironment that causes low activity and a progressive decline in neurological function; this phase is non-compatible with regeneration. Several treatment strategies have been investigated in chronic SC injury with no satisfactory results. OBJECTIVE- In this proof-of-concept study, we designed a combination therapy (Comb Tx) consisting of surgical glial scar removal plus scar inhibition, accompanied with implantation of mesenchymal stem cells (MSC), and immunization with neural-derived peptides (INDP). METHODS: This study was divided into three subsets, all in which Sprague Dawley rats were subjected to a complete SC transection. Sixty days after injury, animals were randomly allocated into two groups for therapeutic intervention: control group and animals receiving the Comb-Tx. Sixty-three days after treatment we carried out experiments analyzing motor recovery, presence of somatosensory evoked potentials, neural regeneration-related genes, and histological evaluation of serotoninergic fibers. RESULTS: Comb-Tx induced a significant locomotor and electrophysiological recovery. An increase in the expression of regeneration-associated genes and the percentage of 5-HT+ fibers was noted at the caudal stump of the SC of animals receiving the Comb-Tx. There was a significant correlation of locomotor recovery with positive electrophysiological activity, expression of GAP43, and percentage of 5-HT+ fibers. CONCLUSION: Comb-Tx promotes motor and electrophysiological recovery in the chronic phase of SC injury subsequent to a complete transection. Likewise, it is capable of inducing the permissive microenvironment to promote axonal regeneration.


Subject(s)
Cicatrix/surgery , Combined Modality Therapy/methods , Mesenchymal Stem Cell Transplantation , Recovery of Function/drug effects , Recovery of Function/immunology , Spinal Cord Injuries , 2,2'-Dipyridyl/therapeutic use , Animals , Evoked Potentials/physiology , Female , Freund's Adjuvant/therapeutic use , Gene Expression/drug effects , Motor Activity/drug effects , Nerve Regeneration/drug effects , Rats , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/surgery , Spinal Cord Injuries/therapy , Tryptophan/analogs & derivatives , Tryptophan/therapeutic use
6.
Chem Biol Interact ; 261: 86-95, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27871898

ABSTRACT

Beta-caryophyllene (BCP) is a phytocannabinoid whose neuroprotective activity has been mainly associated with selective activation of cannabinoid-type-2 (CB2) receptors, inhibition of microglial activation and decrease of inflammation. Here, we addressed the potential of BCP to induce neuritogenesis in PC12 cells, a model system for primary neuronal cells that express trkA receptors, respond to NGF and do not express CB2 receptors. We demonstrated that BCP increases the survival and activates the NGF-specific receptor trkA in NGF-deprived PC12 cells, without increasing the expression of NGF itself. The neuritogenic effect of BCP in PC12 cells was abolished by k252a, an inhibitor of the NGF-specific receptor trkA. Accordingly, BCP did not induce neuritogenesis in SH-SY5Y neuroblastoma cells, a neuronal model that does not express trkA receptors and do not respond to NGF. Additionally, we demonstrated that BCP increases the expression of axonal-plasticity-associated proteins (GAP-43, synapsin and synaptophysin) in PC12 cells. It is known that these proteins are up-regulated by NGF in neurons and neuron-like cells, such as PC12 cells. Altogether, these findings suggest that BCP activates trka receptors and induces neuritogenesis by a mechanism independent of NGF or cannabinoid receptors. This is the first study to show such effects of BCP and their beneficial role in neurodegenerative processes should be further investigated.


Subject(s)
Cannabinoids/pharmacology , Neurites/metabolism , Neurogenesis/drug effects , Receptors, Cannabinoid/metabolism , Sesquiterpenes/pharmacology , Animals , Carbazoles/pharmacology , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Humans , Indole Alkaloids/pharmacology , Nerve Growth Factor/pharmacology , Nerve Tissue Proteins/metabolism , Neurites/drug effects , PC12 Cells , Polycyclic Sesquiterpenes , Rats , Receptor, trkA/antagonists & inhibitors , Receptor, trkA/metabolism
7.
Neurochem Res ; 41(11): 2993-3003, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27473385

ABSTRACT

Cisplatin is the most effective and neurotoxic platinum chemotherapeutic agent. It induces a peripheral neuropathy characterized by distal axonal degeneration that might progress to degeneration of cell bodies and apoptosis. Most symptoms occur nearby distal axonal branches and axonal degeneration might induce peripheral neuropathy regardless neuronal apoptosis. The toxic mechanism of cisplatin has been mainly associated with DNA damage, but cisplatin might also affect neurite outgrowth. Nevertheless, the neurotoxic mechanism of cisplatin remains unclear. We investigated the early effects of cisplatin on axonal plasticity by using non-cytotoxic concentrations of cisplatin and PC12 cells as a model of neurite outgrowth and differentiation. PC12 cells express NGF-receptors (trkA) and respond to NGF by forming neurites, branches and synaptic vesicles. For comparison, we used a neuronal model (SH-SY5Y cells) that does not express trkA nor responds to NGF. Cisplatin did not change NGF expression in PC12 cells and decreased neurite outgrowth in both models, suggesting a NGF/trkA independent mechanism. It also reduced axonal growth (GAP-43) and synaptic (synapsin I and synaptophysin) proteins in PC12 cells, without inducing mitochondrial damage or apoptosis. Therefore, cisplatin might affect axonal plasticity before DNA damage, NGF/trkA down-regulation, mitochondrial damage or neuronal apoptosis. This is the first study to show that neuroplasticity-related proteins might be early targets of the neurotoxic action of cisplatin and their role on cisplatin-induced peripheral neuropathy should be investigated in vivo.


Subject(s)
Cisplatin/pharmacology , Nerve Growth Factor/metabolism , Neuronal Outgrowth/drug effects , Neuronal Plasticity/drug effects , Animals , Axons/drug effects , Axons/metabolism , Cell Differentiation/drug effects , Down-Regulation/drug effects , GAP-43 Protein/metabolism , Neurites/drug effects , Neurites/physiology , PC12 Cells , Rats , Receptors, Nerve Growth Factor/metabolism
8.
Arch Biochem Biophys ; 571: 66-75, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25721498

ABSTRACT

Growth-associated protein 43 (GAP-43) is a neuronal phosphoprotein associated with initial axonal outgrowth and synaptic remodeling and recent work also suggests its involvement in cell cycle control. The complex expression of GAP-43 features transcriptional and posttranscriptional components. However, in some conditions, GAP-43 gene expression is controlled primarily by the interaction of stabilizing or destabilizing RNA-binding proteins (RBPs) with adenine and uridine (AU)-rich instability elements (AREs) in its 3'UTR. Like GAP-43, many proteins involved in cell proliferation are encoded by ARE-containing mRNAs, some of which codify cell-cycle-regulating proteins including cyclin D1. Considering that GAP-43 and cyclin D1 mRNA stabilization may depend on similar RBPs, this study evaluated the participation of GAP-43 in cell cycle control and its underlying mechanisms, particularly the possible role of its 3'UTR, using GAP-43-transfected NIH-3T3 fibroblasts. Our results show an arrest in cell cycle progression in the G0/G1 phase. This arrest may be mediated by the competition of GAP-43 3'UTR with cyclin D1 3'UTR for the binding of Hu proteins such as HuR, which may lead to a decrease in cyclin D1 expression. These results might lead to therapeutic applications involving the use of sequences in the B region of GAP-43 3'UTR to slow down cell cycle progression.


Subject(s)
GAP-43 Protein/metabolism , 3' Untranslated Regions , Animals , Cell Adhesion , Cell Cycle , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , Enzyme Activation , GAP-43 Protein/genetics , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , NIH 3T3 Cells , RNA-Binding Proteins/metabolism
9.
Iatreia ; Iatreia;24(2): 126-135, jun.-ago. 2011. ilus
Article in Spanish | LILACS | ID: lil-599258

ABSTRACT

Introducción: cerca del 5% de los pacientes con dengue hemorrágico pueden presentar manifestaciones neurológicas; sin embargo, existe poca información sobre la infección directa por el virus dengue (DENV) en neuronas. Objetivo: determinar el papel del fenotipo neuronal en la infección por DENV en células de neuroblastoma SH-SY5Y inducidas o no a la diferenciación con ácido retinoico (AR). Materiales y métodos: células SH-SY5Y fueron inducidas con AR a diferenciarse e infectadas con DENV. Posteriormente se cuantificó la expresión de antígeno viral y de dos marcadores de diferenciación (GAP43 y sinaptofisina). También se evaluó la viabilidad postinfección por la técnica de MTT. Resultados: se encontró que las células diferenciadas son más susceptibles a la infección por DENV, pues se detectó en ellas mayor cantidad de antígeno viral que en las indiferenciadas. A pesar de que el virus indujo muerte celular en ambos tipos de células, la proporción fue mayor en las indiferenciadas (40,3% frente a 21,5%). La infección por DENV en células SH-SY5Y diferenciadas indujo una disminución significativa en la expresión de GAP-43 y sinaptofisina. Conclusiones: los resultados que se presentan permiten sugerir una relación entre la infección viral y la función neuronal, que podría ser importante para esclarecer la patogénesis de las manifestaciones neurológicas durante las formas graves de dengue.


Introduction: Approximately 5% of patients suffering from dengue hemorrhagic fever may have neurological manifestations. However, little information is available about direct infection of neurones by dengue virus. Objective: To determine the role of neuronal phenotype during DENV infection in human neuroblastoma cell line SH-SY5Y, either induced or not to differentiate by treatment with retinoic acid (RA). Materials and methods: Neuroblastoma cell line SH-SY5Y was induced to differentiate with RA and infected with DENV. The expression of viral antigen and of two differentiation markers of neurones, GAP-43 and synaptophysin, was evaluated quantitatively. Postinfection viability was also evaluated by the MTT technique. Results: It was found that differentiated cells are more susceptible to infection by dengue virus since more viral antigen was found in them than in the undifferentiated ones. DENV infection caused death in both cell types, but the rate was higher in the undifferentiated ones (40.3% vs 21.5%). In addition, DENV infection in differentiated SH-SY5Y cells induced a significant decrease in GAP-43 and synaptophysin expression. Conclusions: These results allow us to suggest a relationship between DENV infection and neuronal function, which could be important to elucidate the pathogenesis of neurological manifestations occurring in severe dengue disease.


Subject(s)
Humans , Neuroblastoma , Synaptophysin , Tretinoin , Dengue Virus , Infections , Neurons/virology
10.
Int. j. morphol ; 28(3): 815-821, Sept. 2010. ilus
Article in Spanish | LILACS | ID: lil-577190

ABSTRACT

El láser infrarrojo se ha utilizado con fines terapéuticos en artritis reumatoide, dolor músculo-esquelético, enfermedades dentales y óseas. A nivel de lesiones nerviosas, se ha utilizado como coadyuvante en tratamientos conservadores y quirúrgicos; sin embargo, no está claro aún cual es su participación en los mecanismos moleculares asociados al proceso regenerativo. Varios genes y sus productos de expresión relacionados con regeneración axonal, están siendo investigados, entre éstos, la proteína GAP-43 (growth associated protein 43) ha sido detectada en diferentes tipos de lesiones de nervios periféricos, donde su expresión aumenta notablemente durante el proceso de recuperación. Con el propósito de evaluar la expresión del transcrito de GAP-43 en nervio isquiático de rata lesionado y, posteriormente, irradiados con láser infrarrojo de 2 J/cm2, se evaluó mediante RT- PCR en tiempo real la expresión del transcrito de GAP-43, en nervios lesionados tratados y no tratados. Los resultados indican que el nivel de expresión de GAP-43 en nervio tratado con láser de 2 J/cm2 , es mayor que en el nervio lesionado no tratado. También se observó un aumento de la expresión hasta dos semanas post-tratamiento. Estos resultados sugieren un efecto estimulante del láser infrarrojo de 2 J/cm2 sobre la expresión de GAP-43, en nervio isquiático de rata lesionado por compresión, lo cual podría estar relacionado con un menor tiempo de regeneración del nervio.


The Low-energy laser has been used in therapy for rheumatoid arthritis, musculoskeletal pain, dental disease and bone disease. At the level of nerve injury has been used as an adjunct to conservative and surgical treatments is not clear yet although the molecular mechanisms associated with the regenerative process. Several genes and their expression products associated with axonal regeneration are being investigated between these the protein GAP-43 (Growth associated protein 43) has been detected in different types of peripheral nerve injuries, where its expression increases markedly during the recovery process. In order to evaluate the expression of GAP-43 transcript in rat injured sciatic nerve and then irradiated with infrared laser of 2 J/cm2 was evaluated by RT-PCR in real time transcript expression of GAP-43 in nerve treated and untreated injuries. The results indicate that the expression level of GAP-43 in nerve treated with 2 J/cm2 laser is higher than in untreated injured nerve him. There was also an increased expression up to two weeks post-treatment. These results suggest a stimulatory effect of 2 J/cm2 infrared laser on the expression of GAP-43 in rat injured nerve compression, which could be related to a shorter time of regeneration of injured nerve.


Subject(s)
Animals , Rats , Sciatic Nerve/injuries , /physiology , Nerve Regeneration/radiation effects , Low-Level Light Therapy , /genetics , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL