Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Biomed Pharmacother ; 176: 116827, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850646

ABSTRACT

Colorectal cancer (CRC) is a major cause of cancer-related deaths worldwide, underscoring the importance of understanding the diverse molecular and genetic underpinnings of CRC to improve its diagnosis, prognosis, and treatment. This review delves into the adenoma-carcinoma-metastasis model, emphasizing the "APC-KRAS-TP53" signature events in CRC development. CRC is categorized into four consensus molecular subtypes, each characterized by unique genetic alterations and responses to therapy, illustrating its complexity and heterogeneity. Furthermore, we explore the role of chronic inflammation and the gut microbiome in CRC progression, emphasizing the potential of targeting these factors for prevention and treatment. This review discusses the impact of dietary carcinogens and lifestyle factors and the critical role of early detection in improving outcomes, and also examines conventional chemotherapy options for CRC and associated challenges. There is significant focus on the therapeutic potential of flavonoids for CRC management, discussing various types of flavonoids, their sources, and mechanisms of action, including their antioxidant properties, modulation of cell signaling pathways, and effects on cell cycle and apoptosis. This article presents evidence of the synergistic effects of flavonoids with conventional cancer therapies and their role in modulating the gut microbiome and immune response, thereby offering new avenues for CRC treatment. We conclude by emphasizing the importance of a multidisciplinary approach to CRC research and treatment, incorporating insights from genetic, molecular, and lifestyle factors. Further research is needed on the preventive and therapeutic potential of natural compounds, such as flavonoids, in CRC, underscoring the need for personalized and targeted treatment strategies.


Subject(s)
Colonic Neoplasms , Flavonoids , Humans , Flavonoids/pharmacology , Flavonoids/therapeutic use , Animals , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/prevention & control , Gastrointestinal Microbiome/drug effects
2.
Curr Pharm Des ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38910416

ABSTRACT

Breast cancer is an intricate disease that is increasing at a fast pace, and numerous heterogeneities within it further make it difficult to investigate. We have always used animal models to understand cancer pathology and create an in vivo microenvironment that closely resembles human cancer. They are considered an indispensable part of any clinical investigation regarding cancer. Animal models have a high potency in identifying the relevant biomarkers and genetic pathways involved in the course of disease prognosis. Researchers have previously explored a variety of organisms, including Drosophila melanogaster, zebrafish, and guinea pigs, to analyse breast cancer, but murine models have proven the most comprehensive due to their homologous nature with human chromosomes, easy availability, simple gene editing, and high adaptability. The available models have their pros and cons, and it depends on the researcher to select the one most relevant to their research question. Chemically induced models are cost-effective and simple to create. Transplantation models such as allografts and xenografts can mimic the human breast cancer environment reliably. Genetically engineered mouse models (GEMMs) help to underpin the genetic alterations involved and test novel immunotherapies. Virus-mediated models and gene knockout models have also provided new findings regarding breast cancer progression and metastasis. These mouse models have also enabled the visualization of breast cancer metastases. It is also imperative to consider the cost-effectiveness of these models. Despite loopholes, mouse models have evolved and are required for disease analysis.

3.
Cancer Lett ; 593: 216954, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38735382

ABSTRACT

Prostate cancer (PCa) is a significant health concern for men worldwide and is particularly prevalent in the United States. It is a complex disease presenting different molecular subtypes and varying degrees of aggressiveness. Transgenic/genetically engineered mouse models (GEMMs) greatly enhanced our understanding of the intricate molecular processes that underlie PCa progression and have offered valuable insights into potential therapeutic targets for this disease. The integration of whole-exome and whole-genome sequencing, along with expression profiling, has played a pivotal role in advancing GEMMs by facilitating the identification of genetic alterations driving PCa development. This review focuses on genetically modified mice classified into the first and second generations of PCa models. We summarize whether models created by manipulating the function of specific genes replicate the consequences of genomic alterations observed in human PCa, including early and later disease stages. We discuss cases where GEMMs did not fully exhibit the expected human PCa phenotypes and possible causes of the failure. Here, we summarize the comprehensive understanding, recent advances, strengths and limitations of the GEMMs in advancing our insights into PCa, offering genetic and molecular perspectives for developing novel GEMM models.


Subject(s)
Disease Models, Animal , Mice, Transgenic , Prostatic Neoplasms , Animals , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Male , Mice , Humans , Genomics/methods , Genetic Engineering
4.
Crit Rev Oncol Hematol ; 189: 104068, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37468084

ABSTRACT

Preclinical models are extensively employed in cancer research because they can be manipulated in terms of their environment, genome, molecular biology, organ systems, and physical activity to mimic human behavior and conditions. The progress made in in vivo cancer research has resulted in significant advancements, enabling the creation of spontaneous, metastatic, and humanized mouse models. Most recently, the remarkable and extensive developments in genetic engineering, particularly the utilization of CRISPR/Cas9, transposable elements, epigenome modifications, and liquid biopsies, have further facilitated the design and development of numerous mouse models for studying cancer. In this review, we have elucidated the production and usage of current mouse models, such as xenografts, chemical-induced models, and genetically engineered mouse models (GEMMs), for studying esophageal cancer. Additionally, we have briefly discussed various gene-editing tools that could potentially be employed in the future to create mouse models specifically for esophageal cancer research.


Subject(s)
Esophageal Neoplasms , Gene Editing , Animals , Mice , Humans , Gene Editing/methods , Genetic Engineering , Disease Models, Animal , Esophageal Neoplasms/genetics
5.
Tomography ; 9(3): 931-941, 2023 04 30.
Article in English | MEDLINE | ID: mdl-37218936

ABSTRACT

Genetically engineered mouse models (GEMMs) and patient-derived xenograft mouse models (PDXs) can recapitulate important biological features of cancer. They are often part of precision medicine studies in a co-clinical setting, in which therapeutic investigations are conducted in patients and in parallel (or sequentially) in cohorts of GEMMs or PDXs. Employing radiology-based quantitative imaging in these studies allows in vivo assessment of disease response in real time, providing an important opportunity to bridge precision medicine from the bench to the bedside. The Co-Clinical Imaging Research Resource Program (CIRP) of the National Cancer Institute focuses on the optimization of quantitative imaging methods to improve co-clinical trials. The CIRP supports 10 different co-clinical trial projects, spanning diverse tumor types, therapeutic interventions, and imaging modalities. Each CIRP project is tasked to deliver a unique web resource to support the cancer community with the necessary methods and tools to conduct co-clinical quantitative imaging studies. This review provides an update of the CIRP web resources, network consensus, technology advances, and a perspective on the future of the CIRP. The presentations in this special issue of Tomography were contributed by the CIRP working groups, teams, and associate members.


Subject(s)
Neoplasms , Precision Medicine , United States , Humans , Animals , Mice , Precision Medicine/methods , National Cancer Institute (U.S.) , Neoplasms/diagnostic imaging , Neoplasms/therapy , Disease Models, Animal
6.
Cells ; 12(9)2023 04 27.
Article in English | MEDLINE | ID: mdl-37174676

ABSTRACT

VAV1 is a hematopoietic signal transducer that possesses a GDP/GTP nucleotide exchange factor (GEF) that is tightly regulated by tyrosine phosphorylation, along with adapter protein domains, such as SH2 and SH3. Research on VAV1 has advanced over the years since its discovery as an in vitro activated oncogene in an NIH3T3 screen for oncogenes. Although the oncogenic form of VAV1 first identified in the screen has not been detected in human clinical tumors, its wild-type and mutant forms have been implicated in mammalian malignancies of various tissue origins, as well as those of the hematopoietic system. This review article addresses the activity of human VAV1 as an overexpressed or mutated gene and also describes the differences in the distribution of VAV1 mutations in the hematopoietic system and in other tissues. The knowledge accumulated thus far from GEMMs expressing VAV1 is described, with the conclusion that GEMMs of both wild-type VAV1 and mutant VAV1 do not form tumors, yet these will be generated when additional molecular insults, such as loss of p53 or KRAS mutation, occur.


Subject(s)
Neoplasms , Proto-Oncogene Proteins c-vav , Animals , Humans , Mice , Mutation/genetics , Neoplasms/genetics , Neoplasms/metabolism , NIH 3T3 Cells , Phosphorylation , Proto-Oncogene Proteins c-vav/genetics , Proto-Oncogene Proteins c-vav/metabolism
7.
Bio Protoc ; 12(10): e4423, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35813027

ABSTRACT

Although CRISPR-Cas9 genome editing can be performed directly in single-cell mouse zygotes, the targeting efficiency for more complex modifications such as the insertion of two loxP sites, multiple mutations in cis, or the precise insertion or deletion of longer DNA sequences often remains low (Cohen, 2016). Thus, targeting and validation of correct genomic modification in murine embryonic stem cells (ESCs) with subsequent injection into early-stage mouse embryos may still be preferable, allowing for large-scale screening in vitro before transfer of thoroughly characterized and genetically defined ESC clones into the germline. This procedure can result in a reduction of animal numbers with cost effectiveness and compliance with the 3R principle of animal welfare regulations. Here, we demonstrate that after transfection of homology templates and PX458 CRISPR-Cas9 plasmids, EGFP-positive ESCs can be sorted with a flow cytometer for the enrichment of CRISPR-Cas9-expressing cells. Cell sorting obviates antibiotic selection and therefore allows for more gentle culture conditions and faster outgrowth of ESC clones, which are then screened by qPCR for correct genomic modifications. qPCR screening is more convenient and less time-consuming compared to analyzing PCR samples on agarose gels. Positive ESC clones are validated by PCR analysis and sequencing and can serve for injection into early-stage mouse embryos for the generation of chimeric mice with germline transmission. Therefore, we describe here a simple and straightforward protocol for CRISPR-Cas9-directed gene targeting in ESCs. Graphical abstract.

8.
Cell Mol Life Sci ; 79(7): 364, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35705879

ABSTRACT

Despite many improvements in ovarian cancer diagnosis and treatment, until now, conventional chemotherapy and new biological drugs have not been shown to cure the disease, and the overall prognosis remains poor. Over 90% of ovarian malignancies are categorized as epithelial ovarian cancers (EOC), a collection of different types of neoplasms with distinctive disease biology, response to chemotherapy, and outcome. Advances in our understanding of the histopathology and molecular features of EOC subtypes, as well as the cellular origins of these cancers, have given a boost to the development of clinically relevant experimental models. The overall goal of this review is to provide a comprehensive description of the available preclinical investigational approaches aimed at better characterizing disease development and progression and at identifying new therapeutic strategies. Systems discussed comprise monolayer (2D) and three-dimensional (3D) cultures of established and primary cancer cell lines, organoids and patient-derived explants, animal models, including carcinogen-induced, syngeneic, genetically engineered mouse, xenografts, patient-derived xenografts (PDX), humanized PDX, and the zebrafish and the laying hen models. Recent advances in tumour-on-a-chip platforms are also detailed. The critical analysis of strengths and weaknesses of each experimental model will aid in identifying opportunities to optimize their translational value.


Subject(s)
Ovarian Neoplasms , Zebrafish , Animals , Carcinoma, Ovarian Epithelial/pathology , Chickens , Disease Models, Animal , Female , Humans , Mice , Organoids/metabolism , Ovarian Neoplasms/drug therapy
9.
Acta Pharm Sin B ; 12(2): 821-837, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35251919

ABSTRACT

Acidosis, regardless of hypoxia involvement, is recognized as a chronic and harsh tumor microenvironment (TME) that educates malignant cells to thrive and metastasize. Although overwhelming evidence supports an acidic environment as a driver or ubiquitous hallmark of cancer progression, the unrevealed core mechanisms underlying the direct effect of acidification on tumorigenesis have hindered the discovery of novel therapeutic targets and clinical therapy. Here, chemical-induced and transgenic mouse models for colon, liver and lung cancer were established, respectively. miR-7 and TGF-ß2 expressions were examined in clinical tissues (n = 184). RNA-seq, miRNA-seq, proteomics, biosynthesis analyses and functional studies were performed to validate the mechanisms involved in the acidic TME-induced lung cancer metastasis. Our data show that lung cancer is sensitive to the increased acidification of TME, and acidic TME-induced lung cancer metastasis via inhibition of miR-7-5p. TGF-ß2 is a direct target of miR-7-5p. The reduced expression of miR-7-5p subsequently increases the expression of TGF-ß2 which enhances the metastatic potential of the lung cancer. Indeed, overexpression of miR-7-5p reduces the acidic pH-enhanced lung cancer metastasis. Furthermore, the human lung tumor samples also show a reduced miR-7-5p expression but an elevated level of activated TGF-ß2; the expressions of both miR-7-5p and TGF-ß2 are correlated with patients' survival. We are the first to identify the role of the miR-7/TGF-ß2 axis in acidic pH-enhanced lung cancer metastasis. Our study not only delineates how acidification directly affects tumorigenesis, but also suggests miR-7 is a novel reliable biomarker for acidic TME and a novel therapeutic target for non-small cell lung cancer (NSCLC) treatment. Our study opens an avenue to explore the pH-sensitive subcellular components as novel therapeutic targets for cancer treatment.

10.
Front Cell Dev Biol ; 9: 748631, 2021.
Article in English | MEDLINE | ID: mdl-34778259

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a hostile solid malignancy coupled with an extremely high mortality rate. Metastatic disease is already found in most patients at the time of diagnosis, resulting in a 5-year survival rate below 5%. Improved comprehension of the mechanisms leading to metastasis is pivotal for the development of new targeted therapies. A key field to be improved are modeling strategies applied in assessing cancer progression, since traditional platforms fail in recapitulating the complexity of PDAC. Consequently, there is a compelling demand for new preclinical models that mirror tumor progression incorporating the pressure of the immune system, tumor microenvironment, as well as molecular aspects of PDAC. We suggest the incorporation of 3D organoids derived from genetically engineered mouse models or patients as promising new tools capable to transform PDAC pre-clinical modeling and access new frontiers in personalized medicine.

11.
Trends Cancer ; 7(10): 916-929, 2021 10.
Article in English | MEDLINE | ID: mdl-34303648

ABSTRACT

Unraveling the multifaceted cellular and physiological processes associated with metastasis is best achieved by using in vivo models that recapitulate the requisite tumor cell-intrinsic and -extrinsic mechanisms at the organismal level. We discuss the current status of mouse models of metastasis. We consider how mouse models can refine our understanding of the underlying biological and molecular processes that promote metastasis, and we envisage how the application of new technologies will further enhance investigations of metastasis at single-cell resolution in the context of the whole organism. Our view is that investigations based on state-of-the-art mouse models can propel a holistic understanding of the biology of metastasis, which will ultimately lead to the discovery of new therapeutic opportunities.


Subject(s)
Neoplasms , Animals , Disease Models, Animal , Mice
12.
Autophagy ; 17(7): 1802-1803, 2021 07.
Article in English | MEDLINE | ID: mdl-34156327

ABSTRACT

AMBRA1 (autophagy/beclin 1 regulator 1) is a multifunctional scaffold protein involved in several cellular processes spanning from cell proliferation to apoptosis and to regulation of macroautophagy/autophagy. Our recent publication revealed that Ambra1 has an antitumorigenic role in melanoma, the most aggressive and deadly skin cancer. We have indeed collected data indicating that the increased proliferative and invasive/metastatic features that we observed in ambra1-ablated melanomas are related to a remarkable regulation by Ambra1 on cellular processes which are beyond autophagy. Our study therefore sheds light on intriguing processes affected by Ambra1 which can be exploited as therapeutic targets in AMBRA1 low-expressing melanoma.


Subject(s)
Autophagy , Melanoma , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Beclin-1/metabolism , Humans , Melanoma/genetics
13.
Exp Dermatol ; 30(11): 1662-1674, 2021 11.
Article in English | MEDLINE | ID: mdl-33998705

ABSTRACT

Psoriasis is a chronic inflammatory skin disease without cure. Systemic and biological therapies are the most effective treatments for patients with severe psoriasis. However, these drugs can cause serious side effects from extended use. Safe and effective topical drugs are needed to decrease psoriatic plaques and reduce the risk of adverse effects. Amygdalin analogues are stable small molecules that showed benefits in psoriasis xenografts to immune-deficient mice by systemic application. However, whether topical application of these amygdalin analogues could reduce the progression of the psoriatic phenotype in an immune-competent organism is unknown. Here, we analyse the efficiency of topical application of an amygdalin analogue cream on a well-established genetic and immune-competent mouse model of psoriasis. Topical application of an amygdalin analogue cream ameliorates psoriasis-like disease in mice, reduces epidermal hyperplasia and skin inflammation. Amygdalin analogue treatment leads to reduced expression of local pro-inflammatory cytokines, but systemic pro-inflammatory cytokines that are highly expressed in psoriasis patients such as IL-17A, IL6 or G-CSF are also decreased. Furthermore, expression of important mediators of psoriasis initiation and epidermal hyperplasia, such as TNFa, S100A9 and TSLP, is decreased in lesional epidermis after amygdalin analogue treatment. In conclusion, we show that amygdalin analogue reduces the proliferative capacity of psoriasis-like stimulated keratinocytes and their inflammatory response in vivo and in vitro. These results suggest that topical application of amygdalin analogues may represent a safe and effective treatment for psoriasis.


Subject(s)
Amygdalin/analogs & derivatives , Cell Proliferation/drug effects , Keratinocytes/cytology , Keratinocytes/drug effects , Psoriasis/drug therapy , Psoriasis/pathology , Administration, Topical , Animals , Disease Models, Animal , Dosage Forms , Mice
14.
J Clin Med ; 10(8)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33918045

ABSTRACT

Pediatric sarcomas are an extremely heterogeneous group of genetically distinct diseases. Despite the increasing knowledge on their molecular makeup in recent years, true therapeutic advancements are largely lacking and prognosis often remains dim, particularly for relapsed and metastasized patients. Since this is largely due to the lack of suitable model systems as a prerequisite to develop and assess novel therapeutics, we here review the available approaches to model sarcoma in vivo. We focused on genetically engineered and patient-derived mouse models, compared strengths and weaknesses, and finally explored possibilities and limitations to utilize these models to advance both biological understanding as well as clinical diagnosis and therapy.

15.
Cancer Metastasis Rev ; 40(1): 7-30, 2021 03.
Article in English | MEDLINE | ID: mdl-32929562

ABSTRACT

Recent developments in pre-clinical screening tools, that more reliably predict the clinical effects and adverse events of candidate therapeutic agents, has ushered in a new era of drug development and screening. However, given the rapid pace with which these models have emerged, the individual merits of these translational research tools warrant careful evaluation in order to furnish clinical researchers with appropriate information to conduct pre-clinical screening in an accelerated and rational manner. This review assesses the predictive utility of both well-established and emerging pre-clinical methods in terms of their suitability as a screening platform for treatment response, ability to represent pharmacodynamic and pharmacokinetic drug properties, and lastly debates the translational limitations and benefits of these models. To this end, we will describe the current literature on cell culture, organoids, in vivo mouse models, and in silico computational approaches. Particular focus will be devoted to discussing gaps and unmet needs in the literature as well as current advancements and innovations achieved in the field, such as co-clinical trials and future avenues for refinement.


Subject(s)
Neoplasms , Translational Research, Biomedical , Animals , Cell Culture Techniques , Humans , Mice , Neoplasms/drug therapy , Organoids , Proteomics
16.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1015936

ABSTRACT

The development of cancer is a complex process. Although many genetic and epigenetic alterations are detected in cancer cells, only small proportion of these alterations may function as cancer drivers. Because it is difficult to directly characterize driver factors in human body, alternative research models have continuously been developed. In the early stage from 1915 to 1980s, genetic activation of proto-oncogenes and inactivation of tumor suppressor genes were often characterized using various carcinogenicity tests, including animal tumor induction models, malignant transformation of normal human cells/tissues/organs cultured in vitro or transplanted into immuno-defected mice. Since 1990 to now, gene transfection and knockout technologies were frequently used to characterize cancer driver genes. Currently, 2-dimensional (2D) or 3-dimensional (3D) cell culture and organoid are also employed to test carcinogenicity of environmental factors and driver genes. In this review, we summarized the main models of malignant transformation and their advantages and disadvantages.

17.
FASEB J ; 34(12): 15630-15646, 2020 12.
Article in English | MEDLINE | ID: mdl-33058262

ABSTRACT

Long noncoding RNAs (lncRNAs) have emerged as key regulators in a variety of cellular processes that influence disease states. In particular, many lncRNAs are genetically or epigenetically deregulated in cancer. However, whether lncRNA alterations are passengers acquired during cancer progression or can act as tumorigenic drivers is a topic of ongoing investigation. In this review, we examine the current methodologies underlying the identification of cancer-associated lncRNAs and highlight important considerations for evaluating their biological significance as cancer drivers.


Subject(s)
Neoplasms/genetics , RNA, Long Noncoding/genetics , Animals , Carcinogenesis/genetics , Epigenesis, Genetic/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans
18.
Adv Cancer Res ; 147: 189-228, 2020.
Article in English | MEDLINE | ID: mdl-32593401

ABSTRACT

Modeling breast cancer through the generation of genetically engineered mouse models (GEMMs) has become the gold standard in the study of human breast cancer. Notably, the in vivo modeling of the epidermal growth factor receptor (EGFR) family has been key to the development of therapeutics and has helped better understand the signaling pathways involved in cancer initiation, progression and metastasis. The HER2/ErbB2 receptor is a member of the EGFR family and 20% of breast cancers are found to belong in the HER2-positive histological subtype. Historical and more recent advances in the field have shaped our understanding of HER2-positive breast cancer signaling and therapeutic approaches.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/enzymology , ErbB Receptors/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Disease Models, Animal , Disease Progression , Drug Resistance, Neoplasm , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Humans , Molecular Targeted Therapy , Mutation , Protein Kinase Inhibitors/pharmacology , Signal Transduction
19.
J Thorac Oncol ; 15(9): 1507-1521, 2020 09.
Article in English | MEDLINE | ID: mdl-32470639

ABSTRACT

INTRODUCTION: SCLC is the most aggressive subtype of lung cancer, and though most patients initially respond to platinum-based chemotherapy, resistance develops rapidly. Immunotherapy holds promise in the treatment of lung cancer; however, patients with SCLC exhibit poor overall responses highlighting the necessity for alternative approaches. Natural killer (NK) cells are an alternative to T cell-based immunotherapies that do not require sensitization to antigens presented on the surface of tumor cells. METHODS: We investigated the immunophenotype of human SCLC tumors by both flow cytometry on fresh samples and bioinformatic analysis. Cell lines generated from murine SCLC were transplanted into mice lacking key cytotoxic immune cells. Subcutaneous tumor growth, metastatic dissemination, and activation of CD8+ T and NK cells were evaluated by histology and flow cytometry. RESULTS: Transcriptomic analysis of human SCLC tumors revealed heterogeneous immune checkpoint and cytotoxic signature profiles. Using sophisticated, genetically engineered mouse models, we reported that the absence of NK cells, but not CD8+ T cells, substantially enhanced metastatic dissemination of SCLC tumor cells in vivo. Moreover, hyperactivation of NK cell activity through augmentation of interleukin-15 or transforming growth factor-ß signaling pathways ameliorated SCLC metastases, an effect that was enhanced when combined with antiprogrammed cell death-1 therapy. CONCLUSIONS: These proof-of-principle findings provide a rationale for exploiting the antitumor functions of NK cells in the treatment of patients with SCLC. Moreover, the distinct immune profiles of SCLC subtypes reveal an unappreciated level of heterogeneity that warrants further investigation in the stratification of patients for immunotherapy.


Subject(s)
Lung Neoplasms , Animals , Humans , Immunotherapy , Killer Cells, Natural , Mice , T-Lymphocytes
20.
J Clin Med ; 8(9)2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31480737

ABSTRACT

Pancreatic cancer is often treatment-resistant, with the emerging standard of care, gemcitabine, affording only a few months of incrementally-deteriorating survival. Reflecting on the history of failed clinical trials, genetically engineered mouse models (GEMMs) in oncology research provides the inspiration to discover new treatments for pancreatic cancer that come from better knowledge of pathogenesis mechanisms, not only of the derangements in and consequently acquired capabilities of the cancer cells, but also in the aberrant microenvironment that becomes established to support, sustain, and enhance neoplastic progression. On the other hand, the existing mutational profile of pancreatic cancer guides our understanding of the disease, but leaves many important questions of pancreatic cancer biology unanswered. Over the past decade, a series of transgenic and gene knockout mouse modes have been produced that develop pancreatic cancers with features reflective of metastatic pancreatic ductal adenocarcinoma (PDAC) in humans. Animal models of PDAC are likely to be essential to understanding the genetics and biology of the disease and may provide the foundation for advances in early diagnosis and treatment.

SELECTION OF CITATIONS
SEARCH DETAIL