Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 25(14)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32660028

ABSTRACT

According to Organisation Internationale de la vigne et du vin (OIV) standards, when analysing the stable isotope ratio of deuterium to hydrogen D/H at the methyl (I) and methylene (II) site of ethanol from concentrated must, a dilution with tap water is needed in order to carry out the alcoholic fermentation. This dilution causes a partial transfer of water hydrogens to the sugar, and this affects the (D/H)I and (D/H)II isotopic values of ethanol, which need to be normalised through specific equations based on the analysis of water δ18O or δ2H. The aim of this study was to evaluate the effectiveness and correctness of these equations experimentally. Grape, cane, and beet sugar, as well as grape must were diluted with water with increasing H and O stable isotope ratios, fermented, and analysed. SNIF-NMR and IRMS techniques were applied following the respective OIV methods. The equations based on the δ2H analysis of the diluted sugar/must solutions proved to be reliable in all the cases, although it is not an OIV standard. When using the equations based on the values of δ18O of the diluted solution, data normalisation was reliable only in cases where the water used for dilution had not undergone isotopic fractionation due, for example, to evaporation. In these cases, δ2H should be analysed.


Subject(s)
Deuterium/metabolism , Fermentation , Fruit , Oxygen Isotopes/metabolism , Vitis , Water , Ethanol/metabolism
2.
J Hazard Mater ; 262: 941-50, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23415500

ABSTRACT

Here we report temporal changes of As concentrations in shallow groundwater of the Bengal Delta Plain (BDP). Observed fluctuations are primarily induced by seasonally occurring groundwater movement, but can also be connected to anthropogenic groundwater extraction. Between December 2009 and July 2010, pronounced variations in the groundwater hydrochemistry were recorded in groundwater samples of a shallow monitoring well tapping the aquifer in 22-25 m depth, where Astot concentrations increased within weeks from 100 to 315 µg L(-1). These trends are attributed to a vertically shift of the hydrochemically stratified water column at the beginning of the monsoon season. This naturally occurring effect can be additionally superimposed by groundwater extraction, as demonstrated on a local scale by an in situ experiment simulating extensive groundwater withdrawal during the dry post-monsoon season. Results of this experiment suggest that groundwater extraction promoted an enduring change within the distribution of dissolved As in the local aquifer. Presented outcomes contribute to the discussion of anthropogenic pumping influences that endanger the limited and yet arsenic-free groundwater resources of the BDP.


Subject(s)
Arsenic/analysis , Environmental Monitoring/methods , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Arsenic/chemistry , Carbon/chemistry , Climate , Geologic Sediments , Geology , India , Oxidation-Reduction , Potassium/chemistry , Rain , Seasons , Water/chemistry , Water Purification , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...