Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
Arq. bras. oftalmol ; Arq. bras. oftalmol;87(1): e2021, 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1527826

ABSTRACT

ABSTRACT Purpose: This study aimed to determine the effect of serum G receptor-mediated protein-1 levels on the development of retinopathy in patients with diabetes in comparison with healthy individuals. Methods: The study enrolled patients with diabetic retinopathy (Group 1), patients without diabetic retinopathy (Group 2), and healthy individuals (Group 3). Levels of serum progesterone, serum G receptor-mediated protein-1, estradiol, oxidant/antioxidants, and thyroid-releasing hormones were analyzed and compared among the groups. Post-hoc analysis was performed to compare the subgroups in which significant differences were found. Results: Groups 1, 2, and 3 each included 40 patients. A significant difference was found among all groups in terms of serum G receptor-mediated protein-1, oxidant/antioxidant, and estradiol levels (p<0.01), but no significant difference was found in terms of thyroid-releasing hormone or progesterone (p=0.496, p=0.220, respectively). In the post-hoc analysis of the groups with significant differences, another significant difference was found among all groups for serum G receptor-mediated protein-1 and oxidant/antioxidant levels (p<0.05). Serum G receptor-mediated protein-1 and oxidant levels were positively correlated, whereas serum G receptor-mediated protein-1 and antioxidant levels were negatively correlated (r=0.622/p<0.01, r=0.453/p<0.01, r=0.460/p<0.01, respectively). The multiple regression analysis showed that increased levels of serum G receptor-mediated protein-1 may help prevent diabetic retinopathy. Conclusions: Serum G receptor-mediated protein-1 levels, which were the highest in the diabetic retinopathy Group, increased as the oxidant/antioxidant balance changed in favor of oxidative stress. This appears to be a defense mechanism for preventing neuronal damage.


RESUMO Objetivo: Esta pesquisa buscou determinar o im­pacto dos níveis de proteína G sérica no desenvolvimento da retinopatia em pacientes diabéticos, comparando-os a indivíduos saudáveis. Métodos: Foram incluídos, no estudo, 40 pacientes com retinopatia diabética (Grupo 1), 40 pacientes sem retinopatia diabética (Grupo 2) e 40 indivíduos saudáveis (Grupo 3). Os níveis hormonais de progesterona sérica, de proteína G sérica, estradiol, oxidante/antioxidante e hormônio liberado pela tireoide foram analisados e comparados. A análise post hoc foi realizada para comparar os subgrupos nos quais diferenças estatisticamente significativas foram encontradas. Resultados: Uma diferença significativa foi encontrada entre todos os grupos em termos de proteína G sérica, oxidante/antioxidante e níveis de estradiol (p<0.01), mas nenhuma diferença significativa foi encontrada em termos de hormônio liberado pela tireoide ou progesterona (p=0,496, p=0,220, respectivamente). Na análise post hoc dos grupos com diferenças estatisticamente significativas, outra diferença significativa foi encontrada entre todos os grupos para proteína G sérica e níveis oxidantes/antioxidantes (p<0,05). Os níveis de proteína G sérica e os níveis de oxidante foram positivamente correlacionados, enquanto os níveis de proteína G sérica e os níveis de antioxidantes foram negativamente correlacio­nados (r=0,622/p<0,01, r=0,453/p<0,01, r=0,460/p<0,01, respectivamente). A análise de regressão múltipla mos­trou que o aumento da proteína G sérica pode ajudar a prevenir a retinopatia diabética. Conclusões: Os níveis de proteína G sérica que eram mais altos no grupo de retinopatia diabética, aumentaram à medida que o equilíbrio oxidante/antioxidante mudou em favor do estresse oxidativo. Este parece ser um mecanismo de defesa para prevenir danos neuronais.

2.
J Neuropathol Exp Neurol ; 82(9): 787-797, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37558387

ABSTRACT

Stroke is one of the principal cerebrovascular diseases in human populations and contributes to a majority of the functional impairments in the elderly. Recent discoveries have led to the inclusion of electroencephalography (EEG) in the complementary prognostic evaluation of patients. The present study describes the EEG, behavioral, and histological changes that occur following cerebral ischemia associated with treatment by G1, a potent and selective G protein-coupled estrogen receptor 1 (GPER1) agonist in a rat model. Treatment with G1 attenuated the neurological deficits induced by ischemic stroke from the second day onward, and reduced areas of infarction. Treatment with G1 also improved the total brainwave power, as well as the theta and alpha wave activity, specifically, and restored the delta band power to levels similar to those observed in the controls. Treatment with G1 also attenuated the peaks of harmful activity observed in the EEG indices. These improvements in brainwave activity indicate that GPER1 plays a fundamental role in the mediation of cerebral injury and in the behavioral outcome of ischemic brain injuries, which points to treatment with G1 as a potential pharmacological strategy for the therapy of stroke.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Stroke , Stroke , Rats , Humans , Animals , Aged , Ischemic Stroke/drug therapy , Stroke/complications , Stroke/drug therapy , Brain Ischemia/complications , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Cerebral Infarction
3.
Mol Neurobiol ; 60(7): 3650-3663, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36917419

ABSTRACT

Schizophrenia is a mental disorder with sex bias in disease onset and symptom severity. Recently, it was observed that females present more severe symptoms in the perimenstrual phase of the menstrual cycle. The administration of estrogen also alleviates schizophrenia symptoms. Despite this, little is known about symptom fluctuation over the menstrual cycle and the underlying mechanisms. To address this issue, we worked with the two-hit schizophrenia animal model induced by neonatal exposure to a virus-like particle, Poly I:C, associated with peripubertal unpredictable stress exposure. Prepulse inhibition of the startle reflex (PPI) in male and female mice was considered analogous to human schizophrenia-like behavior. Female mice were studied in the proestrus (high-estrogen estrous cycle phase) and diestrus (low-estrogen phase). Additionally, we evaluated the hippocampal mRNA expression of estrogen synthesis proteins; TSPO and aromatase; and estrogen receptors ERα, ERß, and GPER. We also collected peripheral blood mononuclear cells (PBMCs) from male and female patients with schizophrenia and converted them to induced microglia-like cells (iMGs) to evaluate the expression of GPER. We observed raised hippocampal expression of GPER in two-hit female mice at the proestrus phase without PPI deficits and higher levels of proteins related to estrogen synthesis, TSPO, and aromatase. In contrast, two-hit adult males with PPI deficits presented lower hippocampal mRNA expression of TSPO, aromatase, and GPER. iMGs from male and female patients with schizophrenia showed lower mRNA expression of GPER than controls. Therefore, our results suggest that GPER alterations constitute an underlying mechanism for sex influence in schizophrenia.


Subject(s)
Receptors, Estrogen , Schizophrenia , Adult , Humans , Male , Female , Animals , Mice , Receptors, Estrogen/metabolism , Estrogen Receptor alpha/metabolism , Aromatase/metabolism , Leukocytes, Mononuclear/metabolism , Receptors, G-Protein-Coupled/metabolism , Estrogens/pharmacology , RNA, Messenger , GTP-Binding Proteins/metabolism , Receptors, GABA/metabolism
4.
Article in English | MEDLINE | ID: mdl-36231664

ABSTRACT

The G-protein-coupled receptor for estrogen (GPER1) is a transmembrane receptor involved in the progression and development of various neoplasms whose ligand is estradiol (E2). 17ß-aminoestrogens (17ß-AEs) compounds, analogs to E2, are possible candidates for use in hormone replacement therapy (HRT), but our knowledge of their pharmacological profile is limited. Thus, we explored the molecular recognition of GPER1 with different synthetic 17ß-AEs: prolame, butolame, and pentolame. We compared the structure and ligand recognition sites previously reported for a specific agonist (G1), antagonists (G15 and G36), and the natural ligand (E2). Then, the biological effects of 17ß-AEs were analyzed through cell viability and cell-cycle assays in two types of female cancer. In addition, the effect of 17ß-AEs on the phosphorylation of the oncoprotein c-fos was evaluated, because this molecule is modulated by GPER1. Molecular docking analysis showed that 17ß-AEs interacted with GPER1, suggesting that prolame joins GPER1 in a hydrophobic cavity, similarly to G1, G15, and E2. Prolame induced cell proliferation in breast (MCF-7) and cervical cancer (SIHA) cells; meanwhile, butolame and pentolame did not affect cell proliferation. Neither 17ß-AEs nor E2 changed the activation of c-fos in MCF-7 cells. Meanwhile, in SIHA cells, E2 and 17ß-AEs reduced c-fos phosphorylation. Thus, our data suggest that butolame and pentolame, but not prolame, could be used for HRT without presenting a potential risk of inducing breast- or cervical-cancer-cell proliferation. The novelty of this work lies in its study of compound analogs to E2 that may represent important therapeutic strategies for women in menopause, with non-significant effects on the cell viability of cancer cells. The research focused on the interactions of GPER1, a molecule recently associated with promoting and maintaining various neoplasms.


Subject(s)
Breast Neoplasms , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Amino Alcohols , Breast Neoplasms/drug therapy , Cell Proliferation , Estradiol/pharmacology , Estrenes , Estrogens/pharmacology , Female , Humans , Ligands , Molecular Docking Simulation , Oncogene Proteins/pharmacology
5.
Mol Cell Endocrinol ; 558: 111775, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36096380

ABSTRACT

Gender-bias in COVID-19 severity has been suggested by clinical data. Experimental data in cell and animal models have demonstrated the role of sex hormones, particularly estrogens, in viral infections such as in COVID-19. SARS-CoV-2 uses ACE2 as a receptor to recognize host cells, and the protease TMPRSS2 for priming the Spike protein, facilitating virus entry into cells. However, the involvement of estrogenic receptors in SARS-CoV-2 infection are still being explored. Thus, in order to investigate the role of estrogen and its receptors in COVID-19, the estrogen receptors ERα, ERß and GPER1 were overexpressed in bronchial BEAS-2B cell, and then infected with SARS-CoV-2. Interestingly, the levels of ACE2 and TMPRSS2 mRNA were higher in SARS-CoV-2-infected cells, but no difference was observed in cells with estrogen receptors overexpression. GPER1 can be involved in virus infection or replication, since its higher levels reduces SARS-CoV-2 load. On the other hand, pharmacological antagonism of GPER1 enhanced viral load. Those data suggest that GPER1 has an important role in SARS-CoV-2 infection.


Subject(s)
COVID-19 , Animals , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Receptors, Estrogen , Estrogen Receptor beta , Estrogen Receptor alpha , Peptidyl-Dipeptidase A/metabolism , RNA, Messenger/genetics , Estrogens
6.
Mol Cell Endocrinol ; 535: 111397, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34273443

ABSTRACT

Papillary thyroid cancer (PTC), whose incidence has been increasing in the last years, occurs more frequently in women. Experimental studies suggested that estrogen could be an important risk factor for the higher female incidence. In fact, it has been demonstrated that 17ß-estradiol (E2) could increase proliferation and dedifferentiation in thyroid follicular cells. Genomic estrogen responses are typically mediated through classical estrogen receptors, the α and ß isoforms, which have been described in normal and abnormal human thyroid tissue. Nevertheless, effects mediated through G protein estrogen receptor 1 (GPR30/GPER/GPER1), described in some thyroid cancer cell lines, could be partially responsible for the regulation of growth in normal cells. In this study, GPER1 gene and protein expression are described in non-malignant and in papillary thyroid cancer (PTC), as well as its association with clinical features of patients with PTC. The GPER1 expression was lower in PTC as compared to paired non-malignant thyroid tissues in fresh samples of PTC and in silico analysis of GEO and TCGA databases. In PTC cases of TCGA database, low GPER1 mRNA expression was independently associated with metastatic lymph nodes, female gender, and BRAF mutation. Besides, GPER1 mRNA levels were positively correlated with mRNA levels of thyroid differentiation genes. These results support the hypothesis that GPER1 have a role in PTC tumorigenesis and might be a potential target for its therapy. Further studies are needed to determine the functionality of these receptors in normal and diseased thyroid.


Subject(s)
Computational Biology/methods , Down-Regulation , Receptors, Estrogen/genetics , Receptors, G-Protein-Coupled/genetics , Thyroid Cancer, Papillary/genetics , Thyroid Neoplasms/genetics , Case-Control Studies , Databases, Genetic , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Lymphatic Metastasis , Male , Mutation , Proto-Oncogene Proteins B-raf/genetics , Sex Characteristics
7.
Front Cell Neurosci ; 15: 636176, 2021.
Article in English | MEDLINE | ID: mdl-33762910

ABSTRACT

Estrogens and estrogen-like molecules can modify the biology of several cell types. Estrogen receptors alpha (ERα) and beta (ERß) belong to the so-called classical family of estrogen receptors, while the G protein-coupled estrogen receptor 1 (GPER-1) represents a non-classical estrogen receptor mainly located in the plasma membrane. As estrogen receptors are ubiquitously distributed, they can modulate cell proliferation, differentiation, and survival in several tissues and organs, including the central nervous system (CNS). Estrogens can exert neuroprotective roles by acting as anti-oxidants, promoting DNA repair, inducing the expression of growth factors, and modulating cerebral blood flow. Additionally, estrogen-dependent signaling pathways are involved in regulating the balance between proliferation and differentiation of neural stem/progenitor cells (NSPCs), thus influencing neurogenic processes. Since several estrogen-based therapies are used nowadays and estrogen-like molecules, including phytoestrogens and xenoestrogens, are omnipresent in our environment, estrogen-dependent changes in cell biology and tissue homeostasis have gained attention in human health and disease. This article provides a comprehensive literature review on the current knowledge of estrogen and estrogen-like molecules and their impact on cell survival and neurodegeneration, as well as their role in NSPCs proliferation/differentiation balance and neurogenesis.

8.
Front Endocrinol (Lausanne) ; 11: 563165, 2020.
Article in English | MEDLINE | ID: mdl-33117280

ABSTRACT

GPER-1 is a novel membrane sited G protein-coupled estrogen receptor. Clinical studies have shown that patients suffering an estrogen receptor α (ERα)/GPER-1 positive, breast cancer have a lower survival rate than those who have developed ERα-positive/GPER-1 negative tumors. Moreover, absence of GPER-1 improves the prognosis of patients treated with tamoxifen, the most used selective estrogen receptor modulator to treat ERα-positive breast cancer. MCF-7 breast cancer cells were continuously treated with 1,000 nM tamoxifen for 7 days to investigate its effect on GPER-1 protein expression, cell proliferation and intracellular [Ca2+]i mobilization, a key signaling pathway. Breast cancer cells continuously treated with tamoxifen, exhibited a robust [Ca2+]i mobilization after stimulation with 1,000 nM tamoxifen, a response that was blunted by preincubation of cells with G15, a commercial GPER-1 antagonist. Continuously treated cells also displayed a high [Ca2+]i mobilization in response to a commercial GPER-1 agonist (G1) and to estrogen, in a magnitude that doubled the response observed in untreated cells and was almost completely abolished by G15. Proliferation of cells continuously treated with tamoxifen and stimulated with 2,000 nM tamoxifen, was also higher than that observed in untreated cells in a degree that was approximately 90% attributable to GPER-1. Finally, prolonged tamoxifen treatment did not increase ERα expression, but did overexpress the kinin B1 receptor, another GPCR, which we have previously shown is highly expressed in breast tumors and increases proliferation of breast cancer cells. Although we cannot fully extrapolate the results obtained in vitro to the patients, our results shed some light on the occurrence of drug resistance in breast cancer patients who are ERα/GPER-1 positive, have been treated with tamoxifen and display low survival rate. Overexpression of kinin B1 receptor may explain the increased proliferative response observed in breast tumors under continuous treatment with tamoxifen.


Subject(s)
Antineoplastic Agents, Hormonal/administration & dosage , Breast Neoplasms/metabolism , Cell Proliferation/drug effects , Receptors, Estrogen/biosynthesis , Receptors, G-Protein-Coupled/biosynthesis , Tamoxifen/administration & dosage , Breast Neoplasms/pathology , Cell Proliferation/physiology , Female , Humans , MCF-7 Cells , Receptors, G-Protein-Coupled/agonists , Up-Regulation/drug effects , Up-Regulation/physiology
9.
Reprod Toxicol ; 96: 209-215, 2020 09.
Article in English | MEDLINE | ID: mdl-32682779

ABSTRACT

This study was performed to evaluate the effect of monobutyl phthalate (MBP) on GPR30-activated pathways in Sertoli cells. Additionally, we tested if GIM-1 (Panax ginseng metabolite) modulates MBP action. Human Sertoli cells (HSeC lineage) were exposed to MBP and/or GIM-1 for 30 min, 1, 12, and 48 h. Four experimental treatments were performed: control (DEMEM/F12 medium), MBP, GIM-1, and MBP + GIM-1. The results indicate that MBP activates GPR30, PKA, Src, EGFR, and the ERK1/2 proteins, while GIM-1 inhibits PKA, Src, ERK1/2, and the AKT pathway. MBP also enhances Cofilin expression, decreasing F-actin intensity on the cell surface in a short time. The combined exposure demonstrated a functional antagonism between compounds. Collectively, these data show that MBP activates GPR30 in Sertoli cells, and GIM-1 modulates this response, playing a protective role in Sertoli cells exposed to MBP.


Subject(s)
Cytoprotection/drug effects , Endocrine Disruptors/toxicity , Panax , Phthalic Acids/toxicity , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Sertoli Cells/drug effects , Cell Line , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Male , Matrix Metalloproteinase 2/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Sertoli Cells/metabolism , src-Family Kinases/metabolism
10.
Toxicology ; 437: 152440, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32197950

ABSTRACT

Arsenic is an endocrine disruptor that promotes breast cancer (BCa) development. Estrogen synthesis, through aromatase activation, is essential for BCa promotion and progression through activating the G-coupled estrogen receptor 1 (GPER1), regulating rapid nongenomic effects involved in cell proliferation and migration of BCa cells. Herein, was studied the role of aromatase activation and the GPER1 pathway on sodium arsenite-induced promotion and progression of MDA-MB-231 and MDA-MB-453 BCa cell lines. Our results demonstrated that 0.1 µM of sodium arsenite induces cell proliferation, migration, invasion, and stimulates aromatase activity of BCa cell lines MDA-MB-231, MDA-MB-453, MCF-7, but not in a nontumorigenic breast epithelial cell line (MCF-12A). Using letrozole (an aromatase inhibitor) and G-15 (a GPER1-selective antagonist), we demonstrated that sodium arsenite-induced proliferation and migration is mediated by induction of aromatase enzyme and, at least in part, by GPER1 activation in MDA-MB-231 and MDA-MB-453 cells. Sodium arsenite induced phosphorylation of Src that participated in sodium arsenite-induced aromatase activity, and -cell proliferation of MDA-MB-231 cell line. Overall, data suggests that sodium arsenite induces a positive-feedback loop, resulting in the promotion and progression of BCa cells, through induction of aromatase activity, E2 production, GPER1 stimulation, and Src activation.


Subject(s)
Aromatase/metabolism , Arsenites/toxicity , Breast Neoplasms/enzymology , Cell Movement/drug effects , Cell Proliferation/drug effects , Enzyme Activators/toxicity , Sodium Compounds/toxicity , Breast Neoplasms/pathology , Enzyme Activation , Estradiol/metabolism , Female , Humans , MCF-7 Cells , Neoplasm Invasiveness , Phosphorylation , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , src-Family Kinases/metabolism
11.
Life Sci ; 241: 117112, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31790688

ABSTRACT

BACKGROUND: Thyroid cancer incidence has been increasing, acquiring a greater importance in health, especially of women, who are more frequently affected. As 17-ß-estradiol (E2) has been shown to have a proliferative effect on benign and malignant thyroid cells, G protein-coupled estrogen receptor (GPER1) could have a role on the pathogenesis of thyroid cancer. OBJECTIVE: To evaluate data on GPER1 in the thyroid. DATA SOURCES: PubMed, Scielo and Cochrane Library databases were searched, using the keywords GPER1 or GPR30 or GPER and thyroid, since the inception until Jun, 2019. Other sources were used, as cross-referencing. STUDY SELECTION: All studies which evaluated GPER1 GPER1 or GPR30 or GPER in the thyroid. DATA EXTRACTION: From 23 articles identified, eight studies were included: one in commercial samples of human thyroid, four in human thyroid cancer cell lines, and three in human samples of benign and/or malignant thyroid diseases. DATA SYNTHESIS: GPER1 gene and protein expression were described, respectively, in six and five studies, and the results varied according to the study. In three studies, increased proliferation of four thyroid cancer cell lines were induced by E2, with evidences suggesting that GPER1 at least partially mediated growth in these cells. GPER1 was identified in the cell membrane, in three studies, and in the cytoplasm in two studies. CONCLUSIONS: The paucity of studies about GPER1 in the thyroid, as well as methodological differences between them, precludes firm conclusions about GPER1 role in the thyroid, although there are some evidences of GPER1-induced proliferation of thyroid cancer cells.


Subject(s)
Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Thyroid Gland/physiology , Thyroid Neoplasms/metabolism , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Receptors, Estrogen/genetics , Receptors, G-Protein-Coupled/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology
12.
J Pharm Pharmacol ; 71(7): 1065-1071, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30919959

ABSTRACT

OBJECTIVES: This study evaluated raloxifene (ral) effects on LNCaP prostate tumour cells modulating the activity of GPER1/GPR30 receptors. METHODS: LNCaP cells were submitted for 40/120 min and 12 h to the following treatments: C: RPMI + DMSO; R: RPMI + Ral; G: RPMI + Ral + G15 (GPER1 antagonist). Trypan blue staining measured cell viability. Migratory potential (12 h) was measured by transwell migration test in translucent inserts, which were then stained with DAPI and analysed under a fluorescence microscope for quantification. Cells from 40- and 120-min treatments were subjected to protein extraction to the study of AKT, pAKT, ERK, pERK, ERß and SIRT1. KEY FINDINGS: There is a reduction in cellular viability in R compared to C at all evaluated times, and an increased cell viability in G when compared to R; cell viability was similar in C and G in all times studied. The migration assay demonstrated a significant decrease in migration potential of tumour cells in R compared to C and G. Ral treatment reduced pERK expression and increased pAKT in the treated groups after 40 min, pointing out to an antiproliferative and apoptotic effect in the GPER1-controlled rapid-effect pathways. CONCLUSIONS: Raloxifene was able to modulate GPER1 in LNCaP prostate tumour cells, decreasing cell viability and their migratory potential.


Subject(s)
Cell Movement/drug effects , Cell Survival/drug effects , MAP Kinase Signaling System/drug effects , Prostatic Neoplasms/drug therapy , Raloxifene Hydrochloride/pharmacology , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Cell Line, Tumor , Humans , Male , Middle Aged , Prostate/drug effects , Prostate/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt , Signal Transduction
13.
Clin Sci (Lond) ; 132(24): 2583-2598, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30545896

ABSTRACT

Estrogens generated within endocrine organs and the reproductive system act as ligands for at least three types of estrogen receptors. Estrogen receptors α (ERα) and ß (ERß) belong to the so-called classical family of estrogen receptors, whereas the G protein-coupled receptor GPR30, also known as GPER-1, has been described as a novel estrogen receptor sited in the cell membrane of target cells. Furthermore, these receptors are under stimulation of a family of exogenous estrogens, known as phytoestrogens, which are a diverse group of non-steroidal plant compounds derived from plant food consumed by humans and animals. Because phytoestrogens are omnipresent in our daily diet, they are becoming increasingly important in both human health and disease. Recent evidence indicates that in addition to classical estrogen receptors, phytoestrogens also activate GPER-1 a relevant observation since GPER-1 is involved in several physiopathological disorders and especially in estrogen-dependent diseases such as breast cancer.The first estrogen receptors discovered were the classical ERα and ERß, but from an evolutionary point of view G protein-coupled receptors trace their origins in history to over a billion years ago suggesting that estrogen receptors like GPER-1 may have been the targets of choice for ancient phytoestrogens and/or estrogens.This review provides a comprehensive and systematic literature search on phytoestrogens and its relationship with classical estrogen receptors and GPER-1 including its role in breast cancer, an issue still under discussion.


Subject(s)
Anticarcinogenic Agents/administration & dosage , Breast Neoplasms/metabolism , Estrogen Antagonists/administration & dosage , Mammary Glands, Human/drug effects , Phytoestrogens/administration & dosage , Receptors, G-Protein-Coupled/agonists , Animals , Anticarcinogenic Agents/adverse effects , Breast Neoplasms/chemically induced , Breast Neoplasms/epidemiology , Breast Neoplasms/prevention & control , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/metabolism , Dietary Exposure/adverse effects , Estrogen Antagonists/adverse effects , Female , Humans , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Phytoestrogens/adverse effects , Protective Factors , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Risk Assessment , Risk Factors , Signal Transduction/drug effects
14.
Expert Opin Ther Targets ; 21(8): 755-766, 2017 08.
Article in English | MEDLINE | ID: mdl-28671018

ABSTRACT

INTRODUCTION: Breast cancer is clinically classified as 'estrogen-positive' when at least 1% of cancer cells stain for the estrogen receptor alpha (ERα). However, recent research on both basic and clinical aspects of breast cancer suggests that GPER-1 (G protein-coupled estrogen receptor-1) may have an important role in breast cancer. Areas covered: This review provides a comprehensive and systematic literature search on GPER-1. We have focused on the role of GPER-1 in breast cancer and on resistance to endocrine therapy, an unsolved clinical issue still under discussion. Expert opinion: The discovery of GPER-1 as a novel estrogen receptor is unique and the signaling pathways activated by its stimulation, when compared to the classical nuclear ERα, indicate a potential role of GPER-1 in the genesis and mechanisms of drug resistance in breast cancer. Tumors expressing ERα represent the largest group of breast cancer patients indicating that more women eventually die from ERα-positive breast tumors than from other more malignant breast cancer subtypes such as HER2-positive and the triple negative groups. It is important to develop new strategies on endocrine therapy with regard to ERα and GPER-1 receptors to achieve innovative successful therapeutic tools.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Breast Neoplasms/pathology , Cell Membrane/metabolism , Drug Resistance, Neoplasm , Estrogen Receptor alpha/metabolism , Female , Humans , Signal Transduction
15.
Heart Fail Rev ; 22(1): 65-89, 2017 01.
Article in English | MEDLINE | ID: mdl-27942913

ABSTRACT

Aldosterone is the most known mineralocorticoid hormone synthesized by the adrenal cortex. The genomic pathway displayed by aldosterone is attributed to the mineralocorticoid receptor (MR) signaling. Even though the rapid effects displayed by aldosterone are long known, our knowledge regarding the receptor responsible for such event is still poor. It is intense that the debate whether the MR or another receptor-the "unknown receptor"-is the receptor responsible for the rapid effects of aldosterone. Recently, G protein-coupled estrogen receptor-1 (GPER-1) was elegantly shown to mediate some aldosterone-induced rapid effects in several tissues, a fact that strongly places GPER-1 as the unknown receptor. It has also been suggested that angiotensin receptor type 1 (AT1) also participates in the aldosterone-induced rapid effects. Despite this open question, the relevance of the beneficial effects of aldosterone is clear in the kidneys, colon, and CNS as aldosterone controls the important water reabsorption process; on the other hand, detrimental effects displayed by aldosterone have been reported in the cardiovascular system and in the kidneys. In this line, the MR antagonists are well-known drugs that display beneficial effects in patients with heart failure and hypertension; it has been proposed that MR antagonists could also play an important role in vascular disease, obesity, obesity-related hypertension, and metabolic syndrome. Taken altogether, our goal here was to (1) bring a historical perspective of both genomic and rapid effects of aldosterone in several tissues, and the receptors and signaling pathways involved in such processes; and (2) critically address the controversial points within the literature as regarding which receptor participates in the rapid pathway display by aldosterone.


Subject(s)
Aldosterone/physiology , Cardiovascular System/drug effects , Gene Expression Regulation , Genomics/methods , Heart Failure , Mineralocorticoid Receptor Antagonists/therapeutic use , Receptors, Mineralocorticoid/genetics , Animals , Cardiovascular System/metabolism , Heart Failure/drug therapy , Heart Failure/genetics , Heart Failure/metabolism , Humans , RNA/genetics , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Mineralocorticoid/biosynthesis , Signal Transduction
16.
J Steroid Biochem Mol Biol ; 158: 104-116, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26772481

ABSTRACT

The G-protein coupled receptors (GPCRs) represent the largest superfamily of membrane proteins in charge to pass the cell signaling after binding with their cognate ligands to the cell interior. In breast cancer, a GPCR named GPER1 plays a key role in the process of growth and the proliferation of cancer cells. In a previous study, theoretical methods were applied to construct a model of GPER1, which later was submitted to molecular dynamics (MD) simulations to perform a docking calculation. Based on this preceding work, it is known that GPER1 is sensitive to structural differences in its binding site. However, due to the nature of that past study, conformational changes linked to the ligand binding were not observed. Therefore, in this study, in order to explore the conformational changes coupled to the agonist/antagonist binding, MD simulations of about 0.25µs were performed for the free and bound states, summarizing 0.75µs of MD simulation in total. For the bound states, one agonist (G-1) and antagonist (G-15) were chosen since is widely known that these two molecules cause an impact on GPER1 mobility. Based on the conformational ensemble generated through MD simulations, we found that despite G-1 and G-15 being stabilized by similar map of residues, the structural differences between both ligands impact the hydrogen bond pattern not only at the GPER1 binding site but also along the seven-helix bundle, causing significant differences in the conformational mobility along the extracellular and cytoplasmic domain, and to a lesser degree in the curvatures of helix 2, helix 3 and helix 7 between the free and bound states, which is in agreement with reported literature, and might be linked to microscopic characteristics of the activated-inactivated transition. Furthermore, binding free energy calculations using the MM/GBSA method for the bound states, followed by an alanine scanning analysis allowed us to identify some important residues for the complex stabilization.


Subject(s)
Receptors, Estrogen , Receptors, G-Protein-Coupled , Benzodioxoles/metabolism , Binding Sites , Cyclopentanes/metabolism , Humans , Lipid Bilayers/metabolism , Molecular Dynamics Simulation , Protein Conformation , Quinolines/metabolism , Receptors, Estrogen/antagonists & inhibitors , Receptors, Estrogen/chemistry , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism
17.
Biol. Res ; 48: 1-11, 2015. graf
Article in English | LILACS | ID: biblio-950820

ABSTRACT

BACKGROUND: Endometriosis, pro-inflammatory and invasive benign disease estrogen dependent, abnormally express in endometria the enzyme P450Arom, positively regulated by steroid factor-1 (SF-1). Our objective was to study the nuclear protein contents of upstream stimulating factor 2 (USF2a and USF2b), a positive regulator of SF-1, throughout the menstrual cycle in eutopic endometria from women with and without (control) endometriosis and the involvement of nuclear estrogen receptors (ER) and G-coupled protein estrogen receptor (GPER)-1. RESULTS: Upstream stimulating factor 2 protein contents were higher in mid (USF2b) and late (USF2a and USF2b) secretory phase in eutopic endometria from endometriosis than control (p < 0.05). In isolated control epithelial cells incubated with E2 and PGE2, to resemble the endometriosis condition, the data showed: (a) significant increase of USF2a and USF2b nuclear protein contents when treated with E2, PPT (specific agonist for ERa) or G1 (specific agonist for GPER1); (b) no increase in USF2 binding to SF-1 E-Box/DNA consensus sequence in E2-treated cells; (c) USF2 variants protein contents were not modified by PGE2; (d) SF-1 nuclear protein content was significantly higher than basal when treated with PGE2, E2 or G1, stimulation unaffected by ICI (nuclear ER antagonist); and (e) increased (p < 0.05) cytosolic protein contents of P450Arom when treated with PGE2, E2, PPT or G1 compared to basal, effect that was additive with E2 + PGE2 together. Nevertheless, in endometriosis cells, the high USF2, SF-1 and P450Arom protein contents in basal condition were unmodified. CONCLUSION: These data strongly suggest that USF2 variants and P450Arom are regulated by E2 through ERa and GPER1, whereas SF-1 through GPER1, visualized by the response of the cells obtained from control endometria, being unaffected the endogenously stimulated cells from endometriosis origin. The lack of E2 stimulation on USF2/SF-1 E-Box/DNA-sequence binding and the absence of PGE2 effect on USF2 variants opposite to the strong induction that they exert on SF1 and P450 proteins suggest different mechanisms and indirect regulations. The sustained USF2 variants protein expression during the secretory phase in eutopic endometria from women with endometriosis may participate in the pathophysiology of this disease strongly associated with infertility and its characteristic endometrial invasion to ectopic sites in the pelvic cavity.


Subject(s)
Humans , Female , Adult , Aromatase/metabolism , Gene Expression/genetics , Endometriosis/metabolism , Endometrium/metabolism , Estradiol/metabolism , Biopsy , Immunoblotting , Statistics, Nonparametric , Endometriosis/physiopathology , Endometriosis/pathology , Endometrium/cytology , Epithelial Cells/metabolism , Primary Cell Culture , Menstrual Cycle/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL