Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.426
Filter
1.
Thorac Cancer ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39315600

ABSTRACT

BACKGROUND: The emergence of chemoresistance markedly compromised the treatment efficiency of human cancer, including non-small cell lung cancer (NSCLC). In the present study, we aimed to explore the effects of ubiquitin-specific peptidase 22 (USP22) and murine double minute 2 (MDM2) in gefitinib resistance in NSCLC. METHODS: Immunohistochemistry (IHC) assay, quantitative real-time polymerase chain reaction (qRT-PCR) assay and western blot assay were carried out to determine the expression of USP22 and MDM2. Transwell assay and flow cytometry analysis were performed to evaluate cell migration and apoptosis. Cell Counting Kit-8 (CCK-8) assay was employed to assess gefitinib resistance. The phenomenon of ferroptosis was estimated by related commercial kits. The oxidized C11-BODIPY fluorescence intensity by C11-BODIPY staining. The relation between USP22 and MDM2 was analyzed by ubiquitination assay and co-immunoprecipitation (Co-IP) assay. RESULTS: USP22 was abnormally upregulated in NSCLC tissues and cells, and USP22 silencing markedly repressed NSCLC cell migration and facilitated apoptosis and ferroptosis. Moreover, our results indicated that ferroptosis could enhance the suppressive effect of gefitinib on NSCLC cells. Besides, USP22 overexpression enhanced gefitinib resistance and ferroptosis protection in NSCLC cells. Mechanically, USP22 stabilized MDM2 and regulated MDM2 expression through deubiquitination of MDM2. MDM2 deficiency partially restored the effects of USP22 on gefitinib resistance and ferroptosis in NSCLC cells. Of note, we validated the promotional effect of USP22 on gefitinib resistance in NSCLC in vivo through establishing the murine xenograft model. CONCLUSION: USP22/MDM2 promoted gefitinib resistance and inhibited ferroptosis in NSCLC, which might offer a novel strategy for overcoming gefitinib resistance in NSCLC.

2.
Iran J Basic Med Sci ; 27(10): 1309-1316, 2024.
Article in English | MEDLINE | ID: mdl-39229574

ABSTRACT

Objectives: Gefitinib (GEF) is a targeted medicine used to treat locally advanced or metastatic non-small cell lung cancer (NSCLC). However, GEF's hepatotoxicity limits its clinical use. This study aims to investigate the protective effect of naringin (NG) against GEF-induced hepatotoxicity. Materials and Methods: Fifty female ICR mice were randomly divided into 5 groups: Control, GEF (200 mg/kg), NG (50 mg/kg) + GEF (200 mg/kg), NG (100 mg/kg) +GEF (200 mg/kg), NG (200 mg/kg) +GEF (200 mg/kg). After 4 weeks of continuous administration, the mice were euthanized. The blood and liver tissue samples were collected. Results: The results indicated that the GEF group showed increased liver index, liver enzyme activities, and decreased glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities. Some hepatocytes showed hydropic degeneration and focal necrosis. Cell apoptosis, Cleaved-caspase3, and Poly (ADP-ribose) polymerase 1 (PARP1) increased. Transmission electron microscopy revealed the presence of numerous autophagic lysosomes or autophagosomes around the cell nucleus. Compared to the GEF group, NG can reverse these changes. Conclusion: In summary, NG alleviates GEF-induced hepatotoxicity by anti-oxidation, inhibiting cell apoptosis, and autophagy. Therefore, this study suggests the use of NG to mitigate GEF's toxicity to the liver.

3.
Carbohydr Polym ; 344: 122521, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39218565

ABSTRACT

The combination of the standard platinum-based chemotherapy with EGFR-tyrosine kinase inhibitor Gefitinib (Gef) principally boosts the anticancer efficacy of advanced non-small cell lung cancer (NSCLC) through non-overlapping mechanisms of action, however the clinical trials of cisplatin (Cis) and Gef combination failed to show a therapeutic improvement likely due to compromised cellular influx of Cis with the Gef interference. To overcome the antagonism between Cis and Gef in anti-NSCLC therapy, here we demonstrated a self-targeted hyaluronan (HA) nanogel to facilitate the anticancer co-delivery by utilizing the HA's intrinsic targeting towards CD44, a receptor frequently overexpressed on lung cancer cells. The co-assembly between HA, Cis and Gef generated a HA/Cis/Gef nanogel of 177.8 nm, featuring a prolonged drug release. Unlike the Gef inhibited the Cis uptake, the HA/Cis/Gef nanogel efficiently facilitated the drug internalization through CD44-targeted delivery as verified by HA competition and CD44 knocking down in H1975 NSCLC model both in vitro and in vivo. Moreover, the HA/Cis/Gef nanogel significantly improved the anticancer efficacy and meanwhile diminished the side effects in reference to the combination of free Cis and Gef. This CD44-targeted HA/Cis/Gef nanogel provided a potent strategy to advance the platinum-based combination therapy towards optimized NSCLC therapy.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Cisplatin , Gefitinib , Hyaluronan Receptors , Hyaluronic Acid , Lung Neoplasms , Nanogels , Hyaluronic Acid/chemistry , Hyaluronan Receptors/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Humans , Cisplatin/pharmacology , Cisplatin/administration & dosage , Cisplatin/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Gefitinib/pharmacology , Gefitinib/chemistry , Gefitinib/administration & dosage , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Mice , Nanogels/chemistry , Cell Line, Tumor , Mice, Nude , Drug Liberation , Mice, Inbred BALB C , Drug Delivery Systems , Drug Carriers/chemistry
4.
Future Oncol ; : 1-10, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39301870

ABSTRACT

Aim: To evaluate the cost-effectiveness of aumolertinib as the epidermal growth factor receptor-mutated advanced nonsmall-cell lung cancer first-line treatment from the Chinese healthcare system perspective.Methods: A Markov model was developed based on the AENEAS trial. Only direct medical costs were considered in the model. Utilities were obtained from published literature. Sensitivity and scenario analyses were performed to explore the robustness of the model.Results: Compared with gefitinib, aumolertinib yielded an additional 0.941 expected life-years and 0.692 quality-adjusted life-years (QALYs), with an incremental cost of $18,855.55 over a 20-year time horizon. The incremental cost-effectiveness ratios were $20,051.67/life-year and $27,272.29/QALY, that below the willing-to-pay threshold of $38,223.34/QALY.Conclusion: Aumolertinib was a cost-effective alternative first-line treatment for patients with epidermal growth factor receptor-positive advanced nonsmall-cell lung cancer in China.


What is this article about? This study assesses the costs and health outcomes associated with aumolertinib therapy for Chinese patients diagnosed with advanced or metastatic nonsmall cell lung cancer (NSCLC). Aumolertinib therapy is a specific type of medication used to treat a certain type of lung cancer called nonsmall cell lung cancer. It is a newer treatment that targets certain genetic changes in the cancer cells.How was this done? The costs and treatment benefits were estimated using data from the AENEAS trial, provincial medical cost lists and previously published studies. A Markov model was developed to simulate disease progression. Provincial Medical Cost Lists are official lists maintained by different provincial governments in China that specify the drugs and their prices that are covered by the public healthcare system. A Markov Model is a mathematical tool used to predict how a disease might progress over time. It is like a simulation where the possible outcomes of the disease are analyzed, helping to understand the likely course of the disease and how different treatments might affect it.What were the results? The cost of treatment with aumolertinib for Chinese patients with advanced or metastatic NSCLC was considered to be acceptable based on the benefits it provides.What do the study results mean? The results suggest that aumolertinib is a cost-effective treatment for patients with advanced or metastatic NSCLC in China.

5.
Aging (Albany NY) ; 16(17): 12277-12292, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39264588

ABSTRACT

EGFR-TKIs have been used as frontline treatment in patients with advanced non-small cell lung cancer (NSCLC) suffering from the EGFR mutation. Gefitinib, the first-generation EGFR-TKI, has greatly improved survival rates in lung cancer patients, whereas acquired gefitinib resistance is still a critical issue that needs to be overcome. In our research, high expression levels of CIB2 were found in gefitinib-resistant lung cancer cells. CIB2 knockout rendered gefitinib-resistant cells more sensitive to gefitinib, and overexpression of CIB2 in parental cells was sufficient to induce more resistance to gefitinib. Inhibition of CIB2 in gefitinib-resistant lung cancer cells significantly induced cell apoptosis. To clarify the major molecular mechanism by which CIB2 increases gefitinib resistance, we demonstrated that raised CIB2 in lung cancer cells promoted epithelial-to-mesenchymal transition (EMT) through upregulation of ZEB1. Moreover, FOSL1 transcriptionally regulated CIB2 expression. Finally, CIB2 rendered tumors resistant to gefitinib treatment in vivo. Our results explored a new mechanism: upregulated CIB2 promoted EMT through ZEB1 to regulate gefitinib resistance, which could be a candidate therapeutic target for overcoming acquired resistance to EGFR-TKIs in NSCLC patients.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Gefitinib , Lung Neoplasms , Zinc Finger E-box-Binding Homeobox 1 , Gefitinib/pharmacology , Gefitinib/therapeutic use , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Humans , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic/drug effects , Animals , Mice , Apoptosis/drug effects , ErbB Receptors/metabolism , ErbB Receptors/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics
6.
Int J Mol Sci ; 25(18)2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39337496

ABSTRACT

Tyrosine kinase inhibitors (TKIs) have emerged as a leading targeted cancer therapy, reducing the side effects often seen with non-targeted treatments, especially the damage to healthy cells. To tackle resistance, typically caused by epidermal growth factor receptor (EGFR) mutations, four generations of TKIs have been developed. Each generation has shown improved effectiveness and fewer side effects, resulting in better patient outcomes. For example, patients on gefitinib, a first-generation TKI, experienced a progression-free survival (PFS) of 10 months compared to 5 months with conventional chemotherapy. Second-generation TKI afatinib outperformed erlotinib and extended PFS to 11.1 months compared to 6.9 months with cisplatin. Third-generation TKIs further increased survival to 38.6 months, compared to 31.8 months with first-generation TKIs. This progress demonstrates the ability of newer TKIs to overcome resistance, particularly the T790M mutation, while reducing adverse effects. Ongoing research focuses on overcoming resistance from newer mutations like C797S to further improve patient survival. These developments highlight the significant progress in TKI therapy and the continued effort to refine cancer treatment. Recent research in South Korea shows that third-generation TKIs are ineffective against non-small cell lung cancer (NSCLC) with the C797S mutation. Several trials have started showing promising in vitro and in vivo results, but more trials are needed before clinical approval. This review underscores notable advancements in the field of EGFR TKIs, offering a comprehensive analysis of their mechanisms of action and the progression of various TKI generations in response to resistance.


Subject(s)
ErbB Receptors , Neoplasms , Protein Kinase Inhibitors , Humans , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Mutation , Animals
7.
Pharmaceutics ; 16(9)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39339166

ABSTRACT

Human epidermal growth factor receptor-2 (HER2)-positive breast cancer metastasis remains the primary cause of mortality among women globally. Targeted therapies have revolutionized treatment efficacy, with Trastuzumab (Trast), a monoclonal antibody, targeting HER2-positive advanced breast cancer. The tumor-homing peptide iRGD enhances the intratumoral accumulation and penetration of therapeutic agents. Liposomes serve as versatile nanocarriers for both hydrophilic and hydrophobic drugs. Gefitinib (GFB) is a potential anticancer drug against HER2-positive breast cancer, while Lycorine hydrochloride (LCH) is a natural compound with anticancer and anti-inflammatory properties. This study developed TPGS-COOH-coated liposomes co-loaded with GFB and LCH, prepared by the solvent injection method, and surface-functionalized with Trast and iRGD. The dual surface-decorated liposomes (DSDLs) were characterized for their particle size (PS), polydispersity index (PDI), zeta potential (ZP), surface chemistry, surface morphology, and their crystallinity during in-vitro drug release, drug encapsulation, and in-vitro cell line studies on SK-BR-3 and MDA-MB-231 breast cancer cells. The half-maximum inhibitory concentration (IC-50) values of single decorated liposomes (SDLs), iRGD-LP, and Trast-LP, as well as DSDLs (iRGD-Trast-LP) on SK-BR-3 cells, were 6.10 ± 0.42, 4.98 ± 0.36, and 4.34 ± 0.32 µg/mL, respectively. Moreover, the IC-50 values of SDLs and DSDLs on MDA-MB-231 cells were 15.12 ± 0.68, 13.09 ± 0.59, and 11.08 ± 0.48 µg/mL, respectively. Cellular uptake studies using confocal laser scanning microscopy (CLSM) showed that iRGD and Trast functionalization significantly enhanced cellular uptake in both cell lines. The wound-healing assay demonstrated a significant reduction in SDL and DSDL-treated MDA-MB-231 cell migration compared to the control. Additionally, the blood compatibility study showed minimal hemolysis (less than 5% RBC lysis), indicating good biocompatibility and biosafety. Overall, these findings suggest that TPGS-COOH-coated, GFB and LCH co-loaded, dual-ligand (iRGD and Trast) functionalized, multifunctional liposomes could be a promising therapeutic strategy for treating HER2-positive metastatic breast cancer.

8.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167447, 2024 10.
Article in English | MEDLINE | ID: mdl-39089636

ABSTRACT

Gefitinib is an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), which serves the critical pillar for the treatment of non-small cell lung cancer (NSCLC). However, the acquired resistance remains a challenge for its clinical application, for which, practical strategies to reverse gefitinib resistance in NSCLC are necessary. Ferroptosis, a programmed cell death driven by ferritin-dependent lipid peroxidation, involves in NSCLC progression and related chemoresistance. In our previous work, the self-synthesised EGFR inhibitor Yfq07 (N4, N6-disubstituted pyrimidine-4,6-diamine derivatives) displayed a considerable inhibitory effect on NSCLC both in vitro and in vivo. Herein, we observed that Yfq07 suppressed the proliferation of PC-9GR and HCC827GR cells, two gefitinib resistance NSCLC cell lines. Mechanically, Yfq07 inhibited the phosphorylation of the Discoidin Domain Receptor 1 (DDR1), a receptor tyrosine kinase (RTK) highly expressed in multiple cancers, accompanied by downregulated miR-3648 and upregulated SOCS2. Inhibition or knockdown of DDR1 suppressed the proliferation, migration, and invasion of gefitinib-resistant NSCLC cells, and on the other hand, also downregulated miR-3648 and promoted SOCS2 expression. More specifically, miR-3648 targeted the 3'UTR segment of SOCS2 mRNA and thus affecting the P-ERK signalling pathway to regulate the malignant behaviors of gefitinib-resistant NSCLC cells. Furthermore, Yfq07 also indirectly induced the ferroptosis of gefitinib-resistant NSCLC cells via SOCS2 triggered inhibition of xCT-GPX4 pathway. In conclusion, our study indicates that DDR1 inhibitor Yfq07 promotes ferroptosis and reverses gefitinib-resistance of NSCLC through DDR1-miR-3648-SOCS2 signalling pathway, which provides insights for targeted therapy of gefitinib-resistant NSCLC and drug developments targeting ferroptosis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Discoidin Domain Receptor 1 , Drug Resistance, Neoplasm , Ferroptosis , Gefitinib , Lung Neoplasms , Ferroptosis/drug effects , Humans , Gefitinib/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Cell Line, Tumor , Discoidin Domain Receptor 1/metabolism , Discoidin Domain Receptor 1/genetics , Cell Proliferation/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Gene Expression Regulation, Neoplastic/drug effects , Animals , Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Mice , Suppressor of Cytokine Signaling Proteins
9.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39204145

ABSTRACT

Gefitinib is a selective inhibitor of the epidermal growth factor receptor that is used to treat advanced and metastatic non-small cell lung cancer (NSCLC). Dermatological adverse reactions are most commonly associated with gefitinib treatment. The cause of adverse reactions in individuals is multifactorial. Pharmacogenetics is an effective tool to detect such adverse reactions. This case report describes a female patient with NSCLC who was administered gefitinib at a dose of 250 mg/day. However, due to severe adverse dermatological reactions, the treatment was interrupted for 15 d and antibiotic therapy was administered to manage the skin rashes, maculopapular rashes, and hyperpigmentation. Treatment adherence was adequate, and no drug interactions were detected. A pharmacogenetic analysis revealed homozygosity in the ATP-binding cassette (ABC)-B1 rs1128503 (c.1236A>G), heterozygosity in ABCG2 rs2231142 (c.421G>T) and rs2622604 (c.-20+614T>C), and a non-functional variant of the cytochrome P450 family 3, subfamily A, member 5 (CYP3A5). The relationship between altered genetic variants and the presence of adverse reactions induced by gefitinib is still controversial. Overall, this case report highlights the importance of continuing to study pharmacogenetics as predictors of adverse drug reactions.

10.
J Med Case Rep ; 18(1): 374, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39113087

ABSTRACT

BACKGROUND: First- and second-generation anti-epithelial growth factor receptor tyrosine kinase inhibitors have shown great efficacy in the treatment of advanced adenocarcinoma with epithelial growth factor receptor mutations, but this efficacy is limited by certain resistance mechanisms, in particular the T790M mutation, which must be screened before second-line treatment with osimertinib is indicated. The search for this mutation is sometimes difficult, especially in cases of intracranial relapse, through this case report we attempt to discuss the possibility of initiating treatment with osimertinib despite an unknown T790M mutation in such situation. CASE REPORT: We present the case of a 70-year-old Moroccan male patient diagnosed with non-small cell lung carcinoma initially metastatic to the pleura with an epithelial growth factor receptor mutation who received gefitinib in first line with a complete response, he subsequently presented with cerebral oligo-progression with extra cranial stability. The patient was started on osimertinib with unknown T790M status, as it was impossible to perform a cerebral biopsy, the evolution was characterized by a partial response followed by stereotactic radiotherapy then a complete response for 2 years. CONCLUSION: We can discuss osimertinib as an option for patients with stage IV non-small cell lung cancer with brain oligo-progression on prior tyrosine kinase inhibitors and unknown T790M status, further studies are needed in this area.


Subject(s)
Acrylamides , Aniline Compounds , Antineoplastic Agents , Brain Neoplasms , ErbB Receptors , Gefitinib , Lung Neoplasms , Mutation , Pleural Neoplasms , Humans , Male , Aniline Compounds/therapeutic use , Acrylamides/therapeutic use , Aged , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Gefitinib/therapeutic use , ErbB Receptors/genetics , Brain Neoplasms/secondary , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Antineoplastic Agents/therapeutic use , Pleural Neoplasms/secondary , Pleural Neoplasms/drug therapy , Pleural Neoplasms/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Protein Kinase Inhibitors/therapeutic use , Disease Progression , Treatment Outcome , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/secondary , Indoles , Pyrimidines
SELECTION OF CITATIONS
SEARCH DETAIL