Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.107
Filter
1.
Pediatr Nephrol ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088056

ABSTRACT

BACKGROUND: Genetic testing is increasingly recognized as crucial in inherited nephropathies. Here, we report on an atypical presentation of a complex tubulopathy that led to an unexpected diagnosis of primary hyperoxaluria type 1 (PH1). CASE DIAGNOSIS: At 2 weeks of age, a premature boy with stunted growth was diagnosed with complex tubulopathy associating hyponatremia, hypokalemia, hypomagnesemia, hypophosphatemia, metabolic acidosis, and acute kidney injury. Despite electrolyte replacement, severe hypomagnesemia persisted while massive parallel sequencing of genes involved in hypomagnesemia yielded negative results, including HNF1ß. At 3 years of age, despite satisfactory growth, hypomagnesemia persisted and nephrocalcinosis appeared and progressed rapidly thereafter. Whole-genome analysis then revealed compound heterozygous mutations in the AGXT gene, thus leading to the diagnosis of PH1. CONCLUSION: Given the emergence of new targeted therapies, thorough genetic analysis including whole-genome analysis should be pursued, especially in case of atypical clinical presentation.

2.
Poult Sci ; 103(10): 104087, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39094497

ABSTRACT

Duck hepatitis A virus type 3 (DHAV-3) is an infectious virus that is highly fatal to ducklings and causes significant economic losses in the duck industry worldwide. Biosecurity and vaccination are required to control the pathogen. In the present study, we attenuated a lowly pathogenic DHAV-3 clinical isolate, named as HB, by serial passaging in duck embryos, and followed by several adaptive proliferations in specific-pathogen-free (SPF) chicken embryos. The virulence of DHAV-3 at different passages was assessed by infecting 3-day-old ducklings. We found that the HB strain lost pathogenicity to ducklings from the 55th passage onwards. The 80th passage strain (HB80), which achieved good growth capacity in duck embryos with a viral titer of 108.17 50% egg lethal dose per milliliter (ELD50/mL), was selected as a live attenuated vaccine candidate. The HB80 strain did not induce clinical symptoms or pathological lesions in 3-day-old ducklings and showed no virulence reversion after 5 rounds of in vivo back-passage. The minimum effective dose of HB80 was determined to be 104.5 ELD50 by hypodermic inoculation of the neck. Importantly, a single dose of HB80 elicited good immune responses and provided complete protection against challenge with the lethal DHAV-3 strain. Compared with the genomic sequence of the parental HB strain, HB80 had 7 amino acid substitutions, two of them are in the hypervariable region of the VP1 and polymerase-encoding 3D regions, which may play a role in virulence attenuation. Our data suggest that the attenuated HB80 strain is a promising vaccine candidate for the prevention of DHAV-3 infections in China. HB80 has been registered as a New Veterinary Drug Registration Certificate by the Chinese Ministry of Agriculture and Rural Affairs (MARA), and is the first live attenuated DHAV-3 vaccine strain to be officially licensed in China.

3.
mSphere ; : e0011424, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109863

ABSTRACT

Sequencing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes throughout the COVID-19 pandemic has generated a wealth of data on viral evolution across populations, but only a few studies have so far explored SARS-CoV-2 evolution across large connected transmission networks. Here, we couple data from SARS-CoV-2 sequencing with contact tracing data from an outbreak with a single origin in a rural Norwegian community where samples from all exposed persons were collected prospectively. A total of 134 nasopharyngeal samples were positive by PCR. Among the 121 retrievable genomes, 81 were identical to the genome of the introductor, thus demonstrating that genomics beyond clustering genotypically similar viral genomes to confirm relatedness offers limited additional value to manual contact tracing. In the cases where mutations were discovered, five small genetic clusters were identified. We observed a household secondary attack rate of 77%, with 92% of household members infected among households with secondary transmission, suggesting that SARS-CoV-2 introduction into large families is likely to affect all household members. IMPORTANCE: In outbreak investigations, obtaining a full overview of infected individuals within a population is seldom achieved. We here present an example where a single introduction of B1.1.7 SARS-CoV-2 within a rural community allowed for tracing of the virus from an introductor via dissemination through larger gatherings into households. The outbreak occurred before widespread vaccination, allowing for a "natural" outbreak development with community lockdown. We show through sequencing that the virus can infect up to five consecutive persons without gaining mutations, thereby showing that contact tracing seems more important than sequencing for local outbreak investigations in settings with few alternative introductory transmission pathways. We also show how larger households where a child introduced transmission appeared more likely to promote further spread of the virus compared to households with an adult as the primary introductor.

4.
Microbiol Spectr ; : e0076324, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162261

ABSTRACT

Ammonia loss is the most severe during the high-temperature stage (>50°C) of aerobic composting. Regulating ammonia volatilization during this period via thermophilic microbes can significantly improve the nitrogen content of compost and reduce air pollution due to ammonia loss. In this study, an ammonia-assimilating bacterial strain named LL-8 was screened out as having the strongest ammonia nitrogen conversion rate (32.7%) at high temperatures (50°C); it is able to significantly reduce 42.9% ammonia volatile loss in chicken manure composting when applied at a high-temperature stage. Phylogenetic analysis revealed that LL-8 was highly similar (>98%) with Priestia aryabhattai B8W22T and identified as Priestia aryabhatta. Genomic analyses indicated that the complete genome of LL-8 comprised 5,060,316 base pairs with a GC content of 32.7% and encoded 5,346 genes. Genes, such as gudB, rocG, glnA, gltA, and gltB, that enable bacteria to assimilate ammonium nitrogen were annotated in the LL-8 genome based on the comparison to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The results implied that the application of thermophilic ammonia-assimilating strain P. aryabhatta LL-8 would be a promising solution to reduce ammonia loss and mitigate air pollution of aerobic composting.IMPORTANCEAerobic composting is one of the essential ways to recycle organic waste, but its ammonia volatilization is severe and results in significant nitrogen loss, especially during the high-temperature period, which is also harmful to the environment. The application of thermophilic bacteria that can use ammonia as a nitrogen source at high temperatures is helpful to reduce the ammonia volatilization loss of composting. In this study, we screened and identified a bacteria strain called LL-8 with high temperature (50°C) resistance and strong ammonia-assimilating ability. It also revealed significant effects on decreasing ammonia volatile loss in composting. The whole-genome analysis revealed that LL-8 could utilize ammonium nitrogen by assimilation to decrease ammonia volatilization. Our work provides a theoretical basis for the application of this functional bacteria in aerobic composting to control nitrogen loss from ammonia volatilization.

5.
Microbiol Resour Announc ; : e0015524, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162449

ABSTRACT

Escherichia coli KA0011 had stable minimum inhibitory concentration values around the breakpoint range of meropenem and imipenem, making it suitable for use as a quality control strain for antimicrobial susceptibility testing. Here, we report the complete genomic sequence of KA0011.

6.
Microbiol Spectr ; : e0111624, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162510

ABSTRACT

Respiratory disease, attributed to influenza, respiratory syncytial virus (RSV), and SARS-CoV-2, was reported nationally during the 2023/2024 respiratory viral season. The emergence of novel SARS-CoV-2 variants was considered a significant factor contributing to the rise in COVID-19 cases. Data from the Johns Hopkins Hospital System (JHHS) showed that enterovirus/rhinovirus had also been circulating at high rates. Analyzing clinical outcomes of the most prevalent respiratory viruses is crucial for understanding the role of circulating viral genotypes. A retrospective cohort of patients who tested positive for SARS-CoV-2, influenza, RSV, or enterovirus/rhinovirus between 1 June and 31 December 2023 was included in the study. Remnant clinical samples were utilized for targeted viral whole-genome sequencing and genotyping. Patients' metadata and outcomes following infection were studied, stratified by viral variants and genotypes. The increase of SARS-CoV-2 positivity in December was associated with the predominance of JN.1. Admissions for patients under 18 years old were primarily associated with enterovirus/rhinovirus and RSV, while older age groups were mainly linked to SARS-CoV-2 and influenza infections. SARS-CoV-2-related admissions increased with the predominance of the JN.1 variant in December. No significant difference in admissions for influenza subtypes, rhinovirus species, or SARS-CoV-2 variants was observed. RSV A was associated with slightly higher odds of admission compared with RSV B. Our data highlight the importance of systematically analyzing respiratory viral infections to inform public health strategies and clinical management, especially as SARS-CoV-2 becomes endemic. The findings highlight the value of expanded genomic surveillance in elucidating the clinical significance of viral evolution.IMPORTANCEThe analysis of the epidemiology and clinical outcomes of multiple co-circulating respiratory viruses in the early 2023/2024 respiratory virus season highlights the emergence of the SARS-CoV-2 JN.1 variant as well as underscores the importance of enterovirus/rhinovirus in respiratory infections. Understanding these dynamics is essential for refining public health strategies and clinical management, especially as SARS-CoV-2 transitions to an endemic status. This work emphasizes the need for ongoing surveillance, robust diagnostic algorithms, and detailed genomic analyses to anticipate and mitigate the burden of respiratory viral infections, ultimately contributing to more informed decision-making in healthcare settings and better patient outcomes.

7.
Microbiol Resour Announc ; : e0056024, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189723

ABSTRACT

This announcement reports the complete genome sequence of Achromobacter sp. strain E1, which was isolated from the root of maize cultivar (Zheng dan 958) grown in Beijing, China. Achromobacter sp. strain E1 consists of a single, closed genome consisting of 5,975,307 bp, with GC content of 65.86%.

8.
Cell Rep ; 43(8): 114602, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39137112

ABSTRACT

Klebsiella aerogenes is an understudied and clinically important pathogen. We therefore investigate its population structure by genome analysis aligned with metadata. We sequence 130 non-duplicated K. aerogenes clinical isolates and identify two inter-patient transmission events. We then retrieve all publicly available K. aerogenes genomes (n = 1,026, accessed by January 1, 2023) and analyze them with our 130 genomes. We develop a core-genome multi-locus sequence-typing scheme. We find that K. aerogenes is a species complex comprising four phylogroups undergoing evolutionary divergence, likely forming three species. We delineate remarkable clonal diversity and identify three worldwide-distributed carbapenemase-encoding clonal clusters, representing high-risk lineages. We uncover that K. aerogenes has an open genome equipped by a large arsenal of antimicrobial resistance genes. We identify two genetic regions specific for K. aerogenes, encoding a type VI secretion system and flagella/chemotaxis for motility, respectively, both contributing to the virulence. These results provide much-needed insights into the population structure and pan-genomes of K. aerogenes.

9.
BMC Genomics ; 25(1): 761, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107730

ABSTRACT

BACKGROUND: Currently, diverse minipigs have acquired a common dwarfism phenotype through independent artificial selections. Characterizing the population and genetic diversity in minipigs is important to unveil genetic mechanisms regulating their body sizes and effects of independent artificial selections on those genetic mechanisms. However, full understanding for the genetic mechanisms and phenotypic consequences in minipigs still lag behind. RESULTS: Here, using whole genome sequencing data of 41 pig breeds, including eight minipigs, we identified a large genomic diversity in a minipig population compared to other pig populations in terms of population structure, demographic signatures, and selective signatures. Selective signatures reveal diverse biological mechanisms related to body size in minipigs. We also found evidence for neural development mechanism as a minipig-specific body size regulator. Interestingly, selection signatures within those mechanisms containing neural development are also highly different among minipig breeds. Despite those large genetic variances, PLAG1, CHM, and ESR1 are candidate key genes regulating body size which experience different differentiation directions in different pig populations. CONCLUSIONS: These findings present large variances of genetic structures, demographic signatures, and selective signatures in the minipig population. They also highlight how different artificial selections with large genomic diversity have shaped the convergent dwarfism.


Subject(s)
Dwarfism , Swine, Miniature , Animals , Swine, Miniature/genetics , Swine , Dwarfism/genetics , Dwarfism/veterinary , Body Size/genetics , Phenotype , Selection, Genetic , Genetic Variation , Genomics , Whole Genome Sequencing
10.
Dis Aquat Organ ; 159: 79-89, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39145474

ABSTRACT

Piscine francisellosis is one of the most important bacterial diseases affecting various fish species worldwide. Francisella orientalis, F. noatunensis, and F. salimarina (F. marina) have been reported as etiological agents of disease in fish. A Francisella sp. was isolated from several diseased red drum Sciaenops ocellatus experiencing morbidity in Florida, USA, in 2008. In this study, molecular and phenotypic characterization of the recovered isolate was conducted. Phenotypically, the isolate showed a biochemical reaction profile distinct from that of F. orientalis and F. salimarina. Although the 16S rRNA sequence of this isolate shared 99.61% identity to the type strain of F. philomiragia O#319LT, whole genome analysis (average nucleotide identity <95%; digital DNA-DNA hybridization <70%) and a multilocus sequence analysis of 8 concatenated housekeeping genes in comparison with other Francisella spp. indicated that this isolate was a novel Francisella species, more closely related to F. orientalis. Immersion, intracoelomic injection, and co-habitation challenges using a Nile tilapia Oreochromis niloticus fingerling model of infection were done to investigate virulence in a piscine model. Variably pigmented granulomas and pigmented macrophage aggregates were observed in the kidneys and spleens of the challenged fish, but no mortality was recorded during the 15 d challenge period, suggesting that this novel Francisella sp. might be an opportunistic pathogen of fish. Based on the phenotypic and genotypic differences from other Francisella spp. observed in this study, we propose the name Francisella sciaenopsi sp. nov. for this novel isolate.


Subject(s)
Fish Diseases , Francisella , Gram-Negative Bacterial Infections , Phylogeny , Animals , Francisella/genetics , Francisella/classification , Francisella/isolation & purification , Fish Diseases/microbiology , Florida , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology , Cichlids , RNA, Ribosomal, 16S/genetics
11.
J Infect Chemother ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39095017

ABSTRACT

BACKGROUND: Since the introduction of the national routine vaccination program against Streptococcus pneumoniae in Japan from the early 2010s, the incidence of invasive pneumococcal disease (IPD) caused by non-vaccine serotypes has increased. This study focused on non-vaccine serogroup 24 strains derived from IPD and aimed to clarify their genetic characteristics. METHODS: Between 2013 and 2022, 121 strains identified as serogroup 24 in patients with IPD were collected and applied to multilocus sequence typing and next-generation sequencing. Whole-genome data were used to delineate phylogenetic relationships and to identify virulence and antimicrobial resistance-associated genes. RESULTS: Recent trends in sequence types (STs) were characterized by an increase in the proportion of ST162 and ST2754 for 24F and 24B, respectively, after 2018. Whole-genome phylogenetic analysis demonstrated that serogroup 24 strains were organized into three clades, closely related to STs but not with serotypes. All ST162 strains were classified as Global Pneumococcal Sequence Cluster (GPSC) 6 and harbored the virulence-associated rlrA islet, with co-trimoxazole-resistance mutations in folA and folP genes. Two ST162 strains with different serotypes 24F and 24B from the same patient were phylogenetically indistinguishable, showing that these strains were derived by serotype conversion during infection. CONCLUSION: The recent changes in predominant STs were similar to those previously reported throughout Japan, except Tokyo. Little correlation between whole-genome phylogeny and serotypes and the observed serotype conversion in one patient indicate potentially variable immunogenicity of this serogroup.

12.
Int J Food Microbiol ; 424: 110840, 2024 Nov 02.
Article in English | MEDLINE | ID: mdl-39126753

ABSTRACT

The biosynthetic machinery for cell wall polysaccharide (CWPS) formation in Lactococcus lactis and Lactococcus cremoris is encoded by the cwps locus. The CWPS of lactococci typically consists of a neutral rhamnan component, which is embedded in the peptidoglycan, and to which a surface-exposed side chain oligosaccharide or polysaccharide pellicle (PSP) component is attached. The rhamnan component has been shown for several lactococcal strains to consist of a repeating rhamnose trisaccharide subunit, while the side chain is diverse in glycan content, polymeric status and glycosidic linkage architecture. The observed structural diversity of the CWPS side chain among lactococcal strains is reflected in the genetic diversity within the variable 3' region of the corresponding cwps loci. To date, four distinct cwps genotypes (A, B, C, D) have been identified, while eight subtypes (C1 through to C8) have been recognized among C-genotype strains. In the present study, we report the identification of three novel subtypes of the lactococcal cwps C genotypes, named C9, C10 and C11. The CWPS of four isolates representing C7, C9, C10 and C11 genotypes were analysed using 2D NMR to reveal their unique CWPS structures. Through this analysis, the structure of one novel rhamnan, three distinct PSPs and three exopolysaccharides were elucidated. Results obtained in this study provide further insights into the complex nature and fascinating diversity of lactococcal CWPSs. This highlights the need for a holistic view of cell wall-associated glycan structures which may contribute to robustness of certain strains against infecting bacteriophages. This has clear implications for the fermented food industry that relies on the consistent application of lactococcal strains in mesophilic production systems.


Subject(s)
Cell Wall , Genotype , Lactococcus , Milk , Cell Wall/chemistry , Lactococcus/genetics , Lactococcus/isolation & purification , Lactococcus/classification , Animals , Milk/microbiology , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/metabolism , Fermented Foods/microbiology , Polysaccharides/metabolism , Food Microbiology
13.
Heliyon ; 10(15): e35456, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170392

ABSTRACT

Streptococcus suis (S. suis) is a Gram-positive bacterium and the main culprit behind zoonotic outbreaks, posing a serious threat to public health. The prevalent strains in China are mainly of sequence types (ST) 1 and 7, with few cases of human infections caused by other sequence type being reported. This study presents the first isolation of a ST25 strain from the blood of a septicemic patient. A 57-year-old febrile patient was admitted to a hospital in Hainan of China, diagnosed as septicemia and hepatic dysfunction. A strain of S. suis was isolated from blood culture and confirmed to be serotype 2 and ST25 through 16S rRNA sequencing and whole-genome sequencing, and its genome was further analyzed for gene functions and presence of drug resistance genes. The full-length genome of strain HN28 spans 2,280,124 bp and encodes a total of 2291 proteins. Genes annotated in COG, GO, KEGG, CAZy, and PHl databases accounted for 75.38 %, 69.14 %, 55.35 %, 4.58 %, and 11.87 % of the total predicted proteins, respectively. Virulence factor analysis revealed the presence of seven putative virulence genes in strain HN28. Analysis using the CARD database identified 51 resistance genes in HN28, alongside abundant exocytosis systems. These findings underscore the occurrence of S. suis infections in humans caused by less common ST, emphasizing the need for enhanced epidemiological investigations and monitoring of S. suis infections in the human population.

14.
Article in English | MEDLINE | ID: mdl-39142816

ABSTRACT

Precisely defining and mapping all cytosine (C) positions and their clusters, known as CpG islands (CGIs), as well as their methylation status, are pivotal for genome-wide epigenetic studies, especially when population-centric reference genomes are ready for timely application. Here, we first align the two high-quality reference genomes, T2T-YAO and T2T-CHM13, from different ethnic backgrounds in a base-by-base fashion and compute their genome-wide density-defined and position-defined CGIs. Second, by mapping some representative genome-wide methylation data from selected organs onto the two genomes, we find that there are about 4.7%-5.8% sequence divergency of variable categories depending on quality cutoffs. Genes among the divergent sequences are mostly associated with neurological functions. Moreover, CGIs associated with the divergent sequences are significantly different with respect to CpG density and observed CpG/expected CpG (O/E) ratio between the two genomes. Finally, we find that the T2T-YAO genome not only has a greater CpG coverage than that of the T2T-CHM13 genome when whole-genome bisulfite sequencing (WGBS) data from the European and American populations are mapped to each reference, but also shows more hyper-methylated CpG sites as compared to the T2T-CHM13 genome. Our study suggests that future genome-wide epigenetic studies of the Chinese populations rely on both acquisition of high-quality methylation data and subsequent precision CGI mapping based on the Chinese T2T reference.


Subject(s)
CpG Islands , DNA Methylation , Genome, Human , CpG Islands/genetics , DNA Methylation/genetics , Humans , Genome, Human/genetics , Chromosome Mapping/methods
15.
Front Microbiol ; 15: 1384691, 2024.
Article in English | MEDLINE | ID: mdl-38989016

ABSTRACT

Bacillus atrophaeus HAB-5 is a plant growth-promoting rhizobacterium (PGPR) that exhibits several biotechnological traits, such as enhancing plant growth, colonizing the rhizosphere, and engaging in biocontrol activities. In this study, we conducted whole-genome sequencing of B. atrophaeus HAB-5 using the single-molecule real-time (SMRT) sequencing platform by Pacific Biosciences (PacBio; United States), which has a circular chromosome with a total length of 4,083,597 bp and a G + C content of 44.21%. The comparative genomic analysis of B. atrophaeus HAB-5 with other strains, Bacillus amyloliquefaciens DSM7, B. atrophaeus SRCM101359, Bacillus velezensis FZB42, B. velezensis HAB-2, and Bacillus subtilis 168, revealed that these strains share 2,465 CDSs, while 599 CDSs are exclusive to the B. atrophaeus HAB-5 strain. Many gene clusters in the B. atrophaeus HAB-5 genome are associated with the production of antimicrobial lipopeptides and polypeptides. These gene clusters comprise distinct enzymes that encode three NRPs, two Transat-Pks, one terpene, one lanthipeptide, one T3PKS, one Ripp, and one thiopeptide. In addition to the likely IAA-producing genes (trpA, trpB, trpC, trpD, trpE, trpS, ywkB, miaA, and nadE), there are probable genes that produce volatile chemicals (acoA, acoB, acoR, acuB, and acuC). Moreover, HAB-5 contained genes linked to iron transportation (fbpA, fetB, feuC, feuB, feuA, and fecD), sulfur metabolism (cysC, sat, cysK, cysS, and sulP), phosphorus solubilization (ispH, pstA, pstC, pstS, pstB, gltP, and phoH), and nitrogen fixation (nif3-like, gltP, gltX, glnR, glnA, nadR, nirB, nirD, nasD, narl, narH, narJ, and nark). In conclusion, this study provides a comprehensive genomic analysis of B. atrophaeus HAB-5, pinpointing the genes and genomic regions linked to the antimicrobial properties of the strain. These findings advance our knowledge of the genetic basis of the antimicrobial properties of B. atrophaeus and imply that HAB-5 may employ a variety of commercial biopesticides and biofertilizers as a substitute strategy to increase agricultural output and manage a variety of plant diseases.

16.
Article in English | MEDLINE | ID: mdl-38995188

ABSTRACT

A Gram-negative, ellipsoidal to short-rod-shaped, motile bacterium was isolated from Beijing's urban air. The isolate exhibited the closest kinship with Noviherbaspirillum aerium 122213-3T, exhibiting 98.4 % 16S rRNA gene sequence similarity. Phylogenetic analyses based on 16S rRNA gene sequences and genomes showed that it clustered closely with N. aerium 122213-3T, thus forming a distinct phylogenetic lineage within the genus Noviherbaspirillum. The average nucleotide identity and digital DNA-DNA hybridization values between strain I16B-00201T and N. aerium 122213-3T were 84.6 and 29.4 %, respectively. The respiratory ubiquinone was ubiquinone 8. The major fatty acids (>10 %) were summed feature 3 (C16:1ω6c/C16:1ω7c, 43.3 %), summed feature 8 (C18:1ω7c/C18:1ω6c, 15.9 %) and C12:0 (11.0 %). The polyamine profile showed putrescine as the predominant compound. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, unknown lipids and unknown phosphatidylaminolipids. The phenotypic, phylogenetic and chemotaxonomic results consistently supported that strain I16B-00201T represented a novel species of the genus Noviherbaspirillum, for which the name Noviherbaspirillum album sp. nov. is proposed, with I16B-00201T (=CPCC 100848T=KCTC 52095T) designated as the type strain. Its DNA G+C content is 59.4 mol%. Pan-genome analysis indicated that some Noviherbaspirillum species possess diverse nitrogen and aromatic compound metabolism pathways, suggesting their potential value in pollutant treatment.


Subject(s)
Air Microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Nucleic Acid Hybridization , Phospholipids , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Ubiquinone , RNA, Ribosomal, 16S/genetics , Beijing , DNA, Bacterial/genetics , Fatty Acids/analysis , Phospholipids/analysis
17.
Infect Drug Resist ; 17: 3011-3023, 2024.
Article in English | MEDLINE | ID: mdl-39050833

ABSTRACT

Purpose: Colistin is classified by the World Health Organization (WHO) as a critically important and last-resort antibiotic for the treatment of infections caused by carbapenem-resistant bacteria. However, colistin resistance mediated by chromosomal mutations or plasmid-linked mobilized colistin resistance (mcr) genes has emerged. Methods: Thirteen mcr-positive Aeromonas species isolated from water samples collected in Eastern Ghana were analyzed using whole-genome sequencing (WGS). Antimicrobial susceptibility was tested using the broth microdilution method. Resistome analysis was performed in silico using a web-based platform. Results: The minimum inhibitory concentration (MIC) of colistin for all except three isolates was >4 µg/mL. Nine new sequence types were identified and whole-genome analysis revealed that the isolates harbored genes (mcr-3-related genes) that code for Lipid A phosphoethanolamine transferases on their chromosomes. BLAST analysis indicated that the amino acid sequences of the mcr-3-related genes detected varied from those previously reported and shared 79.04-99.86% nucleotide sequence identity with publicly available mcr-3 variants and mcr-3-related phosphoethanolamine transferases. Analysis of the genetic context of mcr-3-related genes revealed that the genetic environment surrounding mcr-3-related genes was diverse among the different species of Aeromonas but conserved among isolates of the same species. Mcr-3-related-gene-IS-mcr-3-related-gene segment was identified in three Aeromonas caviae strains. Conclusion: The presence of mcr-3-related genes close to insertion elements is important for continuous monitoring to better understand how to control the mobilization and dissemination of antibiotic resistance genes.

18.
Virus Res ; 347: 199435, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38986742

ABSTRACT

The bacterial diseases black leg and soft rot in potatoes cause heavy losses of potatoes worldwide. Bacteria within the genus Pectobacteriaceae are the causative agents of black leg and soft rot. The use of antibiotics in agriculture is heavily regulated and no other effective treatment currently exists, but bacteriophages (phages) have shown promise as potential biocontrol agents. In this study we isolated soft rot bacteria from potato tubers and plant tissue displaying soft rot or black leg symptoms collected in Danish fields. We then used the isolated bacterial strains as hosts for phage isolation. Using organic waste, we isolated phages targeting different species within Pectobacterium. Here we focus on seven of these phages representing a new genus primarily targeting P. brasiliense; phage Ymer, Amona, Sabo, Abuela, Koroua, Taid and Pappous. TEM image of phage Ymer showed siphovirus morphotype, and the proposed Ymer genus belongs to the class Caudoviricetes, with double-stranded DNA genomes varying from 39 kb to 43 kb. In silico host range prediction using a CRISPR-Cas spacer database suggested both P. brasiliense, P. polaris and P. versatile as natural hosts for phages within the proposed Ymer genus. A following host range experiment, using 47 bacterial isolates from Danish tubers and plants symptomatic with soft rot or black leg disease verified the in silico host range prediction, as the genus as a group were able to infect all three Pectobacterium species. Phages did, however, primarily target P. brasiliense isolates and displayed differences in host range even within the species level. Two of the phages were able to infect two or more Pectobacterium species. Despite no nucleotide similarity with any phages in the NCBI database, the proposed Ymer genus did share some similarity at the protein level, as well as gene synteny, with currently known phages. None of the phages encoded integrases or other genes typically associated with lysogeny. Similarly, no virulence factors nor antimicrobial resistance genes were found, and combined with their ability to infect several soft rot-causing Pectobacterium species from Danish fields, demonstrates their potential as biocontrol agents against soft rot and black leg diseases in potatoes.


Subject(s)
Bacteriophages , Host Specificity , Pectobacterium , Plant Diseases , Solanum tuberosum , Pectobacterium/virology , Pectobacterium/genetics , Pectobacterium/pathogenicity , Solanum tuberosum/microbiology , Solanum tuberosum/virology , Plant Diseases/microbiology , Plant Diseases/virology , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/physiology , Bacteriophages/classification , Denmark , Genome, Viral , Phylogeny
19.
Int J Food Microbiol ; 422: 110826, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39024730

ABSTRACT

This study investigated the safety characteristics and potential probiotic properties of Enterococcus faecium by using whole genome analysis, and then explored the effect of this strain on the virulence of Listeria monocytogenes in vitro and during the storage of fermented sausages. Results showed that E. faecium B1 presented enterocin A, B, and P, enterolysin A, and UviB, and the exotoxin related genes and exoenzyme related genes were not detected in the genome of E. faecium B1. However, the adherence genes including acm and scm were present in this strain, which also positively correlated with characteristics related to probiotic potential. In addition, E. faecium could adapt to the condition of fermented sausages, and decrease the survival of L. monocytogenes in vitro and in vivo. The expression of the virulence genes (prfA, hly, inlA, and inlB) and sigB-related genes (prli42, rsbT, rsbU, rsbV, rsbW, and sigB) were all inhibited by E. faecium B1 to different extents during the storage of fermented sausages at 4 °C. Moreover, compared with the E. faecium B1 group, the expression level of entA, entB, and entP genes of E. faecium B1 in the co-culture of fermented sausages was increased during the storage, which may be the inhibition mechanism of E. faecium B1 on L. monocytogenes. These results demonstrated that E. faecium B1 could potentially be used as bio-protection to control L. monocytogenes in meat products.


Subject(s)
Enterococcus faecium , Fermentation , Food Microbiology , Listeria monocytogenes , Meat Products , Listeria monocytogenes/genetics , Listeria monocytogenes/pathogenicity , Enterococcus faecium/genetics , Enterococcus faecium/pathogenicity , Meat Products/microbiology , Virulence/genetics , Animals , Genome, Bacterial , Probiotics , Food Storage , Virulence Factors/genetics , Whole Genome Sequencing , Fermented Foods/microbiology , Mice , Swine
20.
Microbiol Resour Announc ; : e0034724, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083682

ABSTRACT

We report the genome sequence of the pathogenic yeast Candida parapsilosis strain SR23 (CBS 7157) used in a number of experimental studies. The nuclear genome assembly consists of eight chromosome-sized contigs with a total size of 13.04 Mbp (N50 2.09 Mbp) and a G+C content of 38.7%.

SELECTION OF CITATIONS
SEARCH DETAIL