Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Int Immunopharmacol ; 141: 112938, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39163683

ABSTRACT

Alcoholic liver disease (ALD) is a broad category of disorders that begin with liver injury, lead to liver fibrosis, and ultimately conclude in alcohol-induced liver cirrhosis, the most chronic and irreversible liver damage. Liver fibrosis (LF) is a common pathological characteristic observed in most chronic liver inflammatory conditions that involve prolonged inflammation. In this review, we have summarized ethanol-mediated hepatic stellate cell (HSCs) activation and its role in liver fibrosis progression. We highlight important molecular mechanisms that are modulated by ethanol, play a role in the activation of HSCs and the progression of liver fibrosis and identifying potential targets to ameliorate liver fibrosis.

2.
FASEB J ; 38(15): e23870, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39120151

ABSTRACT

Hematopoietic stem and progenitor cells (HSPCs) are successfully employed for hematological transplantations, and impaired HSPC function causes hematological diseases and aging. HSPCs maintain the lifelong homeostasis of blood and immune cells through continuous self-renewal and maintenance of the multilineage differentiation potential. TMEM106B is a transmembrane protein localized on lysosomal membranes and associated with neurodegenerative and cardiovascular diseases; however, its roles in HSPCs and hematopoiesis are unknown. Here, we established tmem106bb-/- knockout (KO) zebrafish and showed that tmem106bb KO reduced the proliferation of HSPCs during definitive hematopoiesis. The differentiation potential of HSPCs to lymphoid lineage was reduced, whereas the myeloid and erythroid differentiation potentials of HPSCs were increased in tmem106bb-/- zebrafish. Similar results were obtained with morpholino knockdown of tmem106bb. Mechanistically, TMEM106B interacted with LAMP2A, the lysosomal associated membrane protein 2A, impaired LAMP2A-Cathepsin A interaction, and enhanced LAMP2A stability; tmem106bb KO or TMEM106B knockdown caused LAMP2A degradation and impairment of chaperone-mediated autophagy (CMA). Knockdown of lamp2a caused similar phenotypes to that in tmem106bb-/- zebrafish, and overexpression of lamp2a rescued the impaired phenotypes of HSPCs in tmem106bb-/- embryos. These results uncover a novel molecular mechanism for the maintenance of HSPC proliferation and differentiation through stabilizing LAMP2A via TMEM106B-LAMP2A interaction.


Subject(s)
Cell Differentiation , Cell Proliferation , Hematopoietic Stem Cells , Lysosomal-Associated Membrane Protein 2 , Membrane Proteins , Zebrafish , Animals , Lysosomal-Associated Membrane Protein 2/metabolism , Lysosomal-Associated Membrane Protein 2/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Lysosomes/metabolism , Humans , Hematopoiesis/physiology
3.
Stem Cell Res Ther ; 15(1): 253, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39135088

ABSTRACT

Stem cell therapy (SCT) is a promising solution for addressing health challenges in Africa, particularly non-communicable diseases (NCDs). With their regenerative potential, stem cells have the inherent capacity to differentiate into numerous cell types for tissue repair. Despite infrastructural, ethical, and legal challenges, SCT holds immense promise for managing chronic illnesses and deep-seated tissue injuries. The rising prevalence of NCDs in Africa highlights the need for innovative strategies and treatment options. SCT offers hope in combating conditions like burns, osteoarthritis, diabetes, Alzheimer's disease, stroke, heart failure and cancer, potentially reducing the burden of NCDs on the continent. Despite SCT's opportunities in Africa, there are significant obstacles. However, published research on SCT in Africa is scarce, but recent initiatives such as the Basic School on Neural Stem Cells (NSC) express interest in developing NSC research in Africa. SCT research in African regions, notably on neurogenesis, demonstrates a concentration on studying neurological processes in indigenous settings. While progress has been made in South Africa and Nigeria, issues such as brain drain and impediments to innovation remain. Clinical trials have investigated the efficacy of stem cell treatments, emphasising both potential benefits and limitations in implementing these therapies efficiently. Financing research, developing regulatory frameworks, and resolving affordability concerns are critical steps toward realizing the potential of stem cell treatment in Africa.


Subject(s)
Noncommunicable Diseases , Stem Cell Transplantation , Humans , Noncommunicable Diseases/therapy , Africa/epidemiology , Stem Cell Transplantation/methods , Cell- and Tissue-Based Therapy/methods
4.
Biomed Pharmacother ; 178: 117240, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39094546

ABSTRACT

Infection with Schistosoma japonicum (S. japonicum) is an important zoonotic parasitic disease that causes liver fibrosis in both human and domestic animals. The activation of hepatic stellate cells (HSCs) is a crucial phase in the development of liver fibrosis, and inhibiting their activation can alleviate this progression. Total flavonoids of litchi seed (TFL) is a naturally extracted drug, and modern pharmacological studies have shown its anti-fibrotic and liver-protective effects. However, the role of TFL in schistosomiasis liver fibrosis is still unclear. This study investigated the therapeutic effects of TFL on liver fibrosis in S. japonicum infected mice and explored its potential mechanisms. Animal study results showed that TFL significantly reduced the levels of Interleukin-1ß (IL-1ß), Tumor Necrosis Factor-α (TNF-α), Interleukin-4 (IL-4), and Interleukin-6 (IL-6) in the serum of S. japonicum infected mice. TFL reduced the spleen index of mice and markedly improved the pathological changes in liver tissues induced by S. japonicum infection, decreasing the expression of alpha-smooth muscle actin (α-SMA), Collagen I and Collagen III protein in liver tissues. In vitro studies indicated that TFL also inhibited the activation of HCSs induced by Transforming Growth Factor-ß1 (TGF-ß1) and reduced the levels of α-SMA. Gut microbes metagenomics study revealed that the composition, abundance, and functions of the mice gut microbiomes changed significantly after S. japonicum infection, and TLF treatment reversed these changes. Therefore, our study indicated that TFL alleviated granulomatous lesions and improved S. japonicum induced liver fibrosis in mice by inhibiting the activation of HSCs and by improving the gut microbiomes.

5.
Drug Des Devel Ther ; 18: 2715-2727, 2024.
Article in English | MEDLINE | ID: mdl-38974122

ABSTRACT

Hepatic fibrosis (HF) is a pathological process of structural and functional impairment of the liver and is a key component in the progression of chronic liver disease. There are no specific anti-hepatic fibrosis (anti-HF) drugs, and HF can only be improved or prevented by alleviating the cause. Autophagy of hepatic stellate cells (HSCs) is closely related to the development of HF. In recent years, traditional Chinese medicine (TCM) has achieved good therapeutic effects in the prevention and treatment of HF. Several active ingredients from TCM (AITCM) can regulate autophagy in HSCs to exert anti-HF effects through different pathways, but relevant reviews are lacking. This paper reviewed the research progress of AITCM regulating HSCs autophagy against HF, and also discussed the relationship between HSCs autophagy and HF, pointing out the problems and limitations of the current study, in order to provide references for the development of anti-HF drugs targeting HSCs autophagy in TCM. By reviewing the literature in PubMed, Web of Science, Embase, CNKI and other databases, we found that the relationship between autophagy of HSCs and HF is currently controversial. HSCs autophagy may promote HF by consuming lipid droplets (LDs) to provide energy for their activation. However, in contrast, inducing autophagy in HSCs can exert the anti-HF effect by stimulating their apoptosis or senescence, reducing type I collagen accumulation, inhibiting the extracellular vesicles release, degrading pro-fibrotic factors and other mechanisms. Some AITCM inhibit HSCs autophagy to resist HF, with the most promising direction being to target LDs. While, others induce HSCs autophagy to resist HF, with the most promising direction being to target HSCs apoptosis. Future research needs to focus on cell targeting research, autophagy targeting research and in vivo verification research, and to explore the reasons for the contradictory effects of HSCs autophagy on HF.


Subject(s)
Autophagy , Drugs, Chinese Herbal , Hepatic Stellate Cells , Liver Cirrhosis , Medicine, Chinese Traditional , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Autophagy/drug effects , Humans , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Animals
6.
Antioxidants (Basel) ; 13(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38929168

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) affects approximately one-third of the global population. MASLD and its advanced-stage liver fibrosis and cirrhosis are the leading causes of liver failure and liver-related death worldwide. Mitochondria are crucial organelles in liver cells for energy generation and the oxidative metabolism of fatty acids and carbohydrates. Recently, mitochondrial dysfunction in liver cells has been shown to play a vital role in the pathogenesis of MASLD and liver fibrosis. Mitophagy, a selective form of autophagy, removes and recycles impaired mitochondria. Although significant advances have been made in understanding mitophagy in liver diseases, adequate summaries concerning the contribution of liver cell mitophagy to MASLD and liver fibrosis are lacking. This review will clarify the mechanism of liver cell mitophagy in the development of MASLD and liver fibrosis, including in hepatocytes, macrophages, hepatic stellate cells, and liver sinusoidal endothelial cells. In addition, therapeutic strategies or compounds related to hepatic mitophagy are also summarized. In conclusion, mitophagy-related therapeutic strategies or compounds might be translational for the clinical treatment of MASLD and liver fibrosis.

7.
J Zhejiang Univ Sci B ; 25(6): 499-512, 2024 Jun 01.
Article in English, Chinese | MEDLINE | ID: mdl-38910495

ABSTRACT

Artificial vascular graft (AVG) fistula is widely used for hemodialysis treatment in patients with renal failure. However, it has poor elasticity and compliance, leading to stenosis and thrombosis. The ideal artificial blood vessel for dialysis should replicate the structure and components of a real artery, which is primarily maintained by collagen in the extracellular matrix (ECM) of arterial cells. Studies have revealed that in hepatitis B virus (HBV)-induced liver fibrosis, hepatic stellate cells (HSCs) become hyperactive and produce excessive ECM fibers. Furthermore, mechanical stimulation can encourage ECM secretion and remodeling of a fiber structure. Based on the above factors, we transfected HSCs with the hepatitis B viral X (HBX) gene for simulating the process of HBV infection. Subsequently, these HBX-HSCs were implanted into a polycaprolactone-polyurethane (PCL-PU) bilayer scaffold in which the inner layer is dense and the outer layer consists of pores, which was mechanically stimulated to promote the secretion of collagen nanofiber from the HBX-HSCs and to facilitate crosslinking with the scaffold. We obtained an ECM-PCL-PU composite bionic blood vessel that could act as access for dialysis after decellularization. Then, the vessel scaffold was implanted into a rabbit's neck arteriovenous fistula model. It exhibited strong tensile strength and smooth blood flow and formed autologous blood vessels in the rabbit's body. Our study demonstrates the use of human cells to create biomimetic dialysis blood vessels, providing a novel approach for creating clinical vascular access for dialysis.


Subject(s)
Hepatic Stellate Cells , Polyesters , Renal Dialysis , Rabbits , Animals , Polyesters/chemistry , Viral Regulatory and Accessory Proteins , Tissue Scaffolds , Transfection , Bionics , Polyurethanes , Blood Vessel Prosthesis , Extracellular Matrix/metabolism , Humans , Hepatitis B virus/genetics , Collagen , Tissue Engineering/methods , Trans-Activators
8.
J Gene Med ; 26(6): e3693, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860366

ABSTRACT

BACKGROUND: Liver cancer is typified by a complex inflammatory tumor microenvironment, where an array of cytokines and stromal cells orchestrate a milieu that significantly influences tumorigenesis. Interleukin-17A (IL-17A), a pivotal pro-inflammatory cytokine predominantly secreted by Th17 cells, is known to play a substantial role in the etiology and progression of liver cancer. However, the precise mechanism by which IL-17A engages with hepatic stellate cells (HSCs) to facilitate the development of hepatocellular carcinoma (HCC) remains to be fully elucidated. This investigation seeks to unravel the interplay between IL-17A and HSCs in the context of HCC. METHODS: An HCC model was established in male Sprague-Dawley rats using diethylnitrosamine to explore the roles of IL-17A and HSCs in HCC pathogenesis. In vivo overexpression of Il17a was achieved using adeno-associated virus. A suite of molecular techniques, including RT-qPCR, enzyme-linked immunosorbent assays, Western blotting, cell counting kit-8 assays and colony formation assays, was employed for in vitro analyses. RESULTS: The study findings indicate that IL-17A is a key mediator in HCC promotion, primarily through the activation of hepatic progenitor cells (HPCs). This pro-tumorigenic influence appears to be mediated by HSCs, rather than through a direct effect on HPCs. Notably, IL-17A-induced expression of fibroblast activation protein (FAP) in HSCs emerged as a critical factor in HCC progression. Silencing Fap in IL-17A-stimulated HSCs was observed to reverse the HCC-promoting effects of HSCs. CONCLUSIONS: The collective evidence from this study implicates the IL-17A/FAP signaling axis within HSCs as a contributor to HCC development by enhancing HPC activation. These findings bolster the potential of IL-17A as a diagnostic and preventative target for HCC, offering new avenues for therapeutic intervention.


Subject(s)
Carcinoma, Hepatocellular , Hepatic Stellate Cells , Interleukin-17 , Liver Neoplasms , Animals , Humans , Male , Rats , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Disease Models, Animal , Endopeptidases/metabolism , Endopeptidases/genetics , Gene Expression Regulation, Neoplastic , Hepatic Stellate Cells/metabolism , Interleukin-17/metabolism , Interleukin-17/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Rats, Sprague-Dawley , Tumor Microenvironment
9.
Br J Haematol ; 205(2): 580-593, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38887897

ABSTRACT

The transcription factor GATA2 has a pivotal role in haematopoiesis. Heterozygous germline GATA2 mutations result in a syndrome characterized by immunodeficiency, bone marrow failure and predispositions to myelodysplastic syndrome (MDS) and acute myeloid leukaemia. Clinical symptoms in these patients are diverse and mechanisms driving GATA2-related phenotypes are largely unknown. To explore the impact of GATA2 haploinsufficiency on haematopoiesis, we generated a zebrafish model carrying a heterozygous mutation of gata2b (gata2b+/-), an orthologue of GATA2. Morphological analysis revealed myeloid and erythroid dysplasia in gata2b+/- kidney marrow. Because Gata2b could affect both transcription and chromatin accessibility during lineage differentiation, this was assessed by single-cell (sc) RNA-seq and single-nucleus (sn) ATAC-seq. Sn-ATAC-seq showed that the co-accessibility between the transcription start site (TSS) and a -3.5-4.1 kb putative enhancer was more robust in gata2b+/- zebrafish HSPCs compared to wild type, increasing gata2b expression and resulting in higher genome-wide Gata2b motif use in HSPCs. As a result of increased accessibility of the gata2b locus, gata2b+/- chromatin was also more accessible during lineage differentiation. scRNA-seq data revealed myeloid differentiation defects, that is, impaired cell cycle progression, reduced expression of cebpa and cebpb and increased signatures of ribosome biogenesis. These data also revealed a differentiation delay in erythroid progenitors, aberrant proliferative signatures and down-regulation of Gata1a, a master regulator of erythropoiesis, which worsened with age. These findings suggest that cell-intrinsic compensatory mechanisms, needed to obtain normal levels of Gata2b in heterozygous HSPCs to maintain their integrity, result in aberrant lineage differentiation, thereby representing a critical step in the predisposition to MDS.


Subject(s)
Epigenesis, Genetic , GATA2 Transcription Factor , Heterozygote , Zebrafish , Animals , GATA2 Transcription Factor/genetics , Zebrafish Proteins/genetics , Erythroid Cells/metabolism , Erythroid Cells/pathology , Myeloid Cells/metabolism , Myeloid Cells/pathology , Erythropoiesis/genetics , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/metabolism
10.
Cells ; 13(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38727270

ABSTRACT

Self-renewal and differentiation are two characteristics of hematopoietic stem cells (HSCs). Under steady physiological conditions, most primitive HSCs remain quiescent in the bone marrow (BM). They respond to different stimuli to refresh the blood system. The transition from quiescence to activation is accompanied by major changes in metabolism, a fundamental cellular process in living organisms that produces or consumes energy. Cellular metabolism is now considered to be a key regulator of HSC maintenance. Interestingly, HSCs possess a distinct metabolic profile with a preference for glycolysis rather than oxidative phosphorylation (OXPHOS) for energy production. Byproducts from the cellular metabolism can also damage DNA. To counteract such insults, mammalian cells have evolved a complex and efficient DNA damage repair (DDR) system to eliminate various DNA lesions and guard genomic stability. Given the enormous regenerative potential coupled with the lifetime persistence of HSCs, tight control of HSC genome stability is essential. The intersection of DDR and the HSC metabolism has recently emerged as an area of intense research interest, unraveling the profound connections between genomic stability and cellular energetics. In this brief review, we delve into the interplay between DDR deficiency and the metabolic reprogramming of HSCs, shedding light on the dynamic relationship that governs the fate and functionality of these remarkable stem cells. Understanding the crosstalk between DDR and the cellular metabolism will open a new avenue of research designed to target these interacting pathways for improving HSC function and treating hematologic disorders.


Subject(s)
DNA Damage , DNA Repair , Hematopoietic Stem Cells , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Humans , Animals , Genomic Instability , Energy Metabolism , Oxidative Phosphorylation
11.
PeerJ ; 12: e17356, 2024.
Article in English | MEDLINE | ID: mdl-38766485

ABSTRACT

Background: Hepatic stellate cell (HSC) activation and hepatic fibrosis mediated biliary atresia (BA) development, but the underlying molecular mechanisms are poorly understood. This study aimed to investigate the roles of circRNA hsa_circ_0009096 in the regulation of HSC proliferation and hepatic fibrosis. Methods: A cellular hepatic fibrosis model was established by treating LX-2 cells with transforming growth factor ß (TGF-ß1). RNaseR and actinomycin D assays were performed to detect hsa_circ_0009096 stability. Expression of hsa_circ_0009096, miR-370-3p, and target genes was detected using reverse transcription-qPCR. Direct binding of hsa_circ_0009096 to miR-370-3p was validated using dual luciferase reporter assay. Cell cycle progression and apoptosis of LX-2 cells were assessed using flow cytometry. The alpha-smooth muscle actin (α-SMA), collagen 1A1 (COL1A1), and TGF beta receptor 2 (TGFBR2) protein levels in LX-2 cells were analyzed using immunocytochemistry and western blotting. Results: Hsa_circ_0009096 exhibited more resistance to RNase R and actinomycinD digestion than UTRN mRNA. Hsa_circ_0009096 expression increased significantly in LX-2 cells treated with TGF-ß1, accompanied by elevated α-SMA and COL1A1 expression. Hsa_circ_0009096 siRNAs effectively promoted miR-370-3p and suppressed TGFBR2 expression in LX-2 cells, mediated by direct association of hsa_circ_0009096 with miR-370-3p. Hsa_circ_0009096 siRNA interfered with the cell cycle progression, promoted apoptosis, and reduced α-SMA and COL1A1 expression in LX-2 cells treated with TGF-ß1. MiR-370-3p inhibitors mitigated the alterations in cell cycle progression, apoptosis, and α-SMA, COL1A1, and TGFBR2 expression in LX-2 cells caused by hsa_circ_0009096 siRNA. In conclusion, hsa_circ_0009096 promoted HSC proliferation and hepatic fibrosis during BA pathogenesis by accelerating TGFBR2 expression by sponging miR-370-3p.


Subject(s)
Biliary Atresia , Hepatic Stellate Cells , Liver Cirrhosis , MicroRNAs , RNA, Circular , Receptor, Transforming Growth Factor-beta Type II , Humans , Actins/metabolism , Actins/genetics , Apoptosis , Biliary Atresia/pathology , Biliary Atresia/genetics , Biliary Atresia/metabolism , Cell Line , Cell Proliferation , Collagen Type I/metabolism , Collagen Type I/genetics , Collagen Type I, alpha 1 Chain/genetics , Collagen Type I, alpha 1 Chain/metabolism , Hepatic Stellate Cells/cytology , Hepatic Stellate Cells/pathology , Liver Cirrhosis/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Receptor, Transforming Growth Factor-beta Type II/genetics , Receptor, Transforming Growth Factor-beta Type II/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics
12.
Heliyon ; 10(7): e28865, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38576562

ABSTRACT

Inhibition of activated hepatic stellate cells (HSCs) is a promising approach for treating liver fibrosis, and the ferroptosis has emerged as a pivotal mechanism to achieve this inhibition. The effects of naringenin, a flavonoid with anti-inflammatory properties, have not been thoroughly examined in liver fibrosis. Therefore, we used cholestasis model to study the effect of naringenin on liver fibrosis. Our findings demonstrated a significant exacerbation of liver tissue damage and fibrosis in mice subjected to bile duct ligation (BDL), accompanied by a substantial upregulation of fibrogenesis-related gene expression. Notably, naringenin administration markedly alleviated liver injury and fibrosis in these mice. Furthermore, naringenin exhibited inhibitory effects on the activation of HSCs, concurrently inducing ferroptosis. Importantly, naringenin significantly increased autophagic activity in HSCs. This effect was counteracted by co-administration of the autophagy inhibitor 3-MA, leading to a notable reduction in naringenin-induced HSC ferroptosis. In BDL model mice, naringenin demonstrated a mitigating effect on liver fibrosis, suggesting a potential correlation with naringenin-induced ferroptosis of HSCs. These results provide novel insights into the molecular mechanisms of naringenin-induced ferroptosis and highlight autophagy-dependent ferroptosis as a promising therapeutic strategy for liver fibrosis.

13.
Front Oncol ; 14: 1347402, 2024.
Article in English | MEDLINE | ID: mdl-38571491

ABSTRACT

Hematopoiesis is a tightly regulated process that produces all adult blood cells and immune cells from multipotent hematopoietic stem cells (HSCs). HSCs usually remain quiescent, and in the presence of external stimuli like infection or inflammation, they undergo division and differentiation as a compensatory mechanism. Normal hematopoiesis is impacted by systemic inflammation, which causes HSCs to transition from quiescence to emergency myelopoiesis. At the molecular level, inflammatory cytokine signaling molecules such as tumor necrosis factor (TNF), interferons, interleukins, and toll-like receptors can all cause HSCs to multiply directly. These cytokines actively encourage HSC activation, proliferation, and differentiation during inflammation, which results in the generation and activation of immune cells required to combat acute injury. The bone marrow niche provides numerous soluble and stromal cell signals, which are essential for maintaining normal homeostasis and output of the bone marrow cells. Inflammatory signals also impact this bone marrow microenvironment called the HSC niche to regulate the inflammatory-induced hematopoiesis. Continuous pro-inflammatory cytokine and chemokine activation can have detrimental effects on the hematopoietic system, which can lead to cancer development, HSC depletion, and bone marrow failure. Reactive oxygen species (ROS), which damage DNA and ultimately lead to the transformation of HSCs into cancerous cells, are produced due to chronic inflammation. The biological elements of the HSC niche produce pro-inflammatory cytokines that cause clonal growth and the development of leukemic stem cells (LSCs) in hematological malignancies. The processes underlying how inflammation affects hematological malignancies are still not fully understood. In this review, we emphasize the effects of inflammation on normal hematopoiesis, the part it plays in the development and progression of hematological malignancies, and potential therapeutic applications for targeting these pathways for therapy in hematological malignancies.

14.
Magn Reson Chem ; 62(8): 610-618, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38666325

ABSTRACT

The spin Hamiltonian parameters and defect structures are theoretically studied for the substitutional Mn2+ at the core of CdSe nanocrystals and in the bulk materials from the perturbation calculations of spin Hamiltonian parameters for trigonal tetrahedral 3d5 clusters. Both the crystal-field and charge transfer contributions are taken into account in the calculations from the cluster approach. The impurity-ligand bond angles are found to be about 1.84° larger and 0.10° smaller in the CdSe:Mn2+ nanocrystals and bulk materials, respectively, than those (≈109.37°) of the host Cd2+ sites. The quantitative criterion of occupation (at the core or surface) for Mn2+ in CdX (X = S, Se, Te) nanocrystals is presented for the first time based on the inequations of hyperfine structure constants (HSCs). This criterion is well supported by the experimental HSCs data of Mn2+ in CdX nanocrystals. The previous assignments of signals SI as Mn2+ at the core of CdS nanocrystals are renewed as Mn2+ at the surface based on the above criterion. The present studies would be helpful to achieve convenient determination of occupation for Mn2+ impurities in CdX semiconductor nanocrystals by means of spectral (e.g., HSCs) analysis.

15.
Gene ; 920: 148497, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38677350

ABSTRACT

BACKGROUND: Circular RNA (circRNA) is a novel functional non-coding RNA(ncRNA) that plays a role in the occurrence and development of multiple human liver diseases, including liver fibrosis (LF). LF is a reversible repair response after liver injury, and the activation of hepatic stellate cells (HSCs) is the core event. However, the regulatory mechanisms by which circRNAs induce the activation of HSCs in LF are still poorly understood. The circAno6/miR-296-3p/toll-like receptor 4 (TLR4) signaling axis that mediates the inflammatory response and causes the activation of HSCs was investigated in this study. METHODS: First, a circAno6 overexpression plasmid and small interfering RNA were transfected into cells to determine whether circAno6 can affect the function of HSCs. Second, real-time quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), western blotting (WB) and immunofluorescence (IF) were used to detect the effects of circAno6 plasmid/siRNA transfection on HSC activation indices, inflammatory markers and the circAno6/miR-296-3p/TLR4 signaling axis. The subcellular position of circAno6 was then examined by nucleo-cytoplasmic separation and fluorescence in situ hybridization (FISH). Finally, a luciferase reporter gene assay was used to identify the relationship between circAno6 and miR-296-3p as well as the relationship between miR-296-3p and TLR4. RESULTS: CircAno6 was considerably upregulated in HSCs and positively correlated with cell proliferation and alpha-smooth muscle actin (α-SMA), collagen I, NOD-likereceptorthermalproteindomainassociatedprotein 3 (NLRP3), interleukin-1ß (IL-1ß) and interleukin-18 (IL-18) expression. Overexpression of circAno6 increased the inflammatory response and induced HSC activation, whereas interference resulted in the opposite effects. FISH experiments revealed the localization of circAno6 in the cytoplasm. Then, a double luciferase reporter assay confirmed that miR-296-3p significantly inhibited luciferase activity in the circAno6-WT and TLR4-WT groups. CONCLUSION: This study suggests that circAno6 and miR-296-3p/TLR4 may form a regulatory axis and regulate the inflammatory response, which in turn induces HSC activation. Targeting circAno6 may be a potential therapeutic strategy to treat LF.


Subject(s)
Hepatic Stellate Cells , MicroRNAs , RNA, Circular , Signal Transduction , Toll-Like Receptor 4 , Hepatic Stellate Cells/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Inflammation/genetics , Inflammation/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Animals , Cell Proliferation
16.
Stem Cell Res Ther ; 15(1): 68, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443990

ABSTRACT

BACKGROUND: Mesenchymal stem/stromal cells (MSCs) are of great therapeutic value due to their role in maintaining the function of hematopoietic stem/progenitor cells (HSPCs). MSCs derived from human pluripotent stem cells represent an ideal alternative because of their unlimited supply. However, the role of MSCs with neural crest origin derived from HPSCs on the maintenance of HSPCs has not been reported. METHODS: Flow cytometric analysis, RNA sequencing and differentiation ability were applied to detect the characteristics of stromal cells from 3D human brain organoids. Human umbilical cord blood CD34+ (UCB-CD34+) cells were cultured in different coculture conditions composed of stromal cells and umbilical cord MSCs (UC-MSCs) with or without a cytokine cocktail. The hematopoietic stroma capacity of stromal cells was tested in vitro with the LTC-IC assay and in vivo by cotransplantation of cord blood nucleated cells and stroma cells into immunodeficient mice. RNA and proteomic sequencing were used to detect the role of MSCs on HSPCs. RESULTS: The stromal cells, derived from both H1-hESCs and human induced pluripotent stem cells forebrain organoids, were capable of differentiating into the classical mesenchymal-derived cells (osteoblasts, chondrocytes, and adipocytes). These cells expressed MSC markers, thus named pluripotent stem cell-derived MSCs (pMSCs). The pMSCs showed neural crest origin with CD271 expression in the early stage. When human UCB-CD34+ HSPCs were cocultured on UC-MSCs or pMSCs, the latter resulted in robust expansion of UCB-CD34+ HSPCs in long-term culture and efficient maintenance of their transplantability. Comparison by RNA sequencing indicated that coculture of human UCB-CD34+ HSPCs with pMSCs provided an improved microenvironment for HSC maintenance. The pMSCs highly expressed the Wnt signaling inhibitors SFRP1 and SFRP2, indicating that they may help to modulate the cell cycle to promote the maintenance of UCB-CD34+ HSPCs by antagonizing Wnt activation. CONCLUSIONS: A novel method for harvesting MSCs with neural crest origin from 3D human brain organoids under serum-free culture conditions was reported. We demonstrate that the pMSCs support human UCB-HSPC expansion in vitro in a long-term culture and the maintenance of their transplantable ability. RNA and proteomic sequencing indicated that pMSCs provided an improved microenvironment for HSC maintenance via mechanisms involving cell-cell contact and secreted factors and suppression of Wnt signaling. This represents a novel method for large-scale production of MSCs of neural crest origin and provides a potential approach for development of human hematopoietic stromal cell therapy for treatment of dyshematopoiesis.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Humans , Animals , Mice , Proteomics , Stromal Cells , Antigens, CD34 , Organoids , Prosencephalon , RNA
17.
Methods Mol Biol ; 2783: 93-107, 2024.
Article in English | MEDLINE | ID: mdl-38478227

ABSTRACT

Murine models of obesity or reduced adiposity are a valuable resource for understanding the role of adipocyte dysfunction in metabolic disorders. Adipose tissue stromal vascular cells or primary adipocytes derived from murine adipose tissue and grown in culture are essential tools for studying the mechanisms underlying adipocyte development and function. Herein, we describe methods for the isolation, expansion, and long-term storage of murine adipose-derived stromal/stem cells, along with protocols for inducing adipogenesis to white or beige adipocytes in this cell population and osteogenic differentiation. Isolation of the adipose stromal vascular fraction cells for flow cytometric analysis is also described.


Subject(s)
Adipogenesis , Adiposity , Mice , Humans , Animals , Flow Cytometry/methods , Osteogenesis , Adipocytes , Adipose Tissue , Cell Differentiation , Obesity/metabolism , Stem Cells
18.
Phytomedicine ; 128: 155477, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38489890

ABSTRACT

BACKGROUND: The alleviating effect of paeoniflorin (Pae) on liver fibrosis has been established; however, the molecular mechanism and specific target(s) underlying this effect remain elusive. PURPOSE: This study was to investigate the molecular mechanism underlying the regulatory effect of Pae on hepatic stellate cells (HSCs) activation in liver fibrosis, with a specific focus on the role of Pae in modulating histone methylation modifications. METHODS: The therapeutic effect of Pae was evaluated by establishing in vivo and in vitro models of carbon tetrachloride (CCl4)-induced mice and transforming growth factor ß1 (TGF-ß1)-induced LX-2 cells, respectively. Molecular docking, surface plasmon resonance (SPR), chromatin immunoprecipitation-quantitative real time PCR (ChIP-qPCR) and other molecular biological methods were used to clarify the molecular mechanism of Pae regulating HSCs activation. RESULTS: Our study found that Pae inhibited HSCs activation and histone trimethylation modification in liver of CCl4-induced mice and LX-2 cells. We demonstrated that the inhibitory effect of Pae on the activation of HSCs was dependent on peroxisome proliferator-activated receptor γ (PPARγ) expression and enhancer of zeste homolog 2 (EZH2). Mechanistically, Pae directly binded to EZH2 to effectively suppress its enzymatic activity. This attenuation leaded to the suppression of histone H3K27 trimethylation in the PPARγ promoter region, which induced upregulation of PPARγ expression. CONCLUSION: This investigative not only sheds new light on the precise targets that underlie the remission of hepatic fibrogenesis induced by Pae but also emphasizes the critical significance of EZH2-mediated H3K27 trimethylation in driving the pathogenesis of liver fibrosis.


Subject(s)
Carbon Tetrachloride , Enhancer of Zeste Homolog 2 Protein , Glucosides , Hepatic Stellate Cells , Histones , Liver Cirrhosis , Monoterpenes , PPAR gamma , Animals , Glucosides/pharmacology , Enhancer of Zeste Homolog 2 Protein/metabolism , PPAR gamma/metabolism , Monoterpenes/pharmacology , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Histones/metabolism , Mice , Liver Cirrhosis/drug therapy , Liver Cirrhosis/chemically induced , Male , Humans , Mice, Inbred C57BL , Methylation , Transforming Growth Factor beta1/metabolism , Cell Line , Molecular Docking Simulation
19.
Mol Ther ; 32(6): 1658-1671, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38532630

ABSTRACT

Base editing of hematopoietic stem/progenitor cells (HSPCs) is an attractive strategy for treating immunohematologic diseases. However, the feasibility of using adenine-base-edited HSPCs for treating X-linked severe combined immunodeficiency (SCID-X1), the influence of dose-response relationships on immune cell generation, and the potential risks have not been demonstrated in vivo. Here, a humanized SCID-X1 mouse model was established, and 86.67% ± 2.52% (n = 3) of mouse hematopoietic stem cell (HSC) pathogenic mutations were corrected, with no single-guide-RNA (sgRNA)-dependent off-target effects detected. Analysis of peripheral blood over 16 weeks post-transplantation in mice with different immunodeficiency backgrounds revealed efficient immune cell generation following transplantation of different amounts of modified HSCs. Therefore, a large-scale infusion of gene-corrected HSCs within a safe range can achieve rapid, stable, and durable immune cell regeneration. Tissue-section staining further demonstrated the restoration of immune organ tissue structures, with no tumor formation in multiple organs. Collectively, these data suggest that base-edited HSCs are a potential therapeutic approach for SCID-X1 and that a threshold infusion dose of gene-corrected cells is required for immune cell regeneration. This study lays a theoretical foundation for the clinical application of base-edited HSCs in treating SCID-X1.


Subject(s)
Adenine , B-Lymphocytes , Disease Models, Animal , Gene Editing , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , T-Lymphocytes , X-Linked Combined Immunodeficiency Diseases , Animals , Mice , Hematopoietic Stem Cells/metabolism , X-Linked Combined Immunodeficiency Diseases/therapy , X-Linked Combined Immunodeficiency Diseases/genetics , X-Linked Combined Immunodeficiency Diseases/immunology , Hematopoietic Stem Cell Transplantation/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Humans , Adenine/analogs & derivatives , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Mice, SCID , Genetic Therapy/methods , CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems
20.
Stem Cell Res ; 76: 103326, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38324932

ABSTRACT

Hoxb5 exhibits preferential expression in hematopoietic stem cells (HSCs) and uniquely marks the long-term HSCs (LT-HSCs). Previous studies have demonstrated the remarkable capability of Hoxb5 to alter cell fates when enforced expression in blood progenitors, such as B cell progenitors and multipotent progenitors. Additionally, Hoxb5 deficiency does not hinder the generation of LT-HSCs. However, the specific impact of Hoxb5 deletion on LT-HSCs has remained unexplored. To address this, we developed a conditional Hoxb5 knockout-reporter mouse model, wherein Hoxb5 was knock out by the Vav-cre recombinase, and the endogenous Hoxb5 promoter drove the expression of the blue fluorescent protein (BFP). Our findings revealed that the primary recipients, who transplanted with HSCs indicating Hoxb5 deficiency by the presence of BFP (BFP-positive HSCs), exhibited comparable levels of donor chimerism and lineage chimerism to recipients transplanted with HSCs that spontaneously did not express Hoxb5 and thus lacked BFP expression (BFP-negative HSCs). However, during the secondary transplantation, recipients receiving total bone marrow (BM) from the primary recipients with BFP-positive HSCs showed significantly higher levels of donor chimerism and more robust multi-lineage chimerism compared to those receiving total BM from the primary recipients with BFP-negative HSCs. Our results indicate that deleting Hoxb5 in LT-HSCs transiently influences their lineage differentiation bias without compromising their long-term self-renewal capacity. These findings highlight the primary role of Hoxb5 in regulating lineage commitment decisions in LT-HSCs, while emphasizing that its presence is not indispensable for the maintenance of long-term self-renewal capacity.


Subject(s)
Hematopoietic Stem Cell Transplantation , Transcription Factors , Animals , Mice , Bone Marrow , Cell Differentiation/physiology , Hematopoietic Stem Cells/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice, Knockout , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL