Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Phys Med Biol ; 69(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38788729

ABSTRACT

One challenge on the path to delivering FLASH-compatible beams with a synchrotron is facilitating an accurate dose control for the required ultra-high dose rates. We propose the use of pulsed RFKO extraction instead of continuous beam delivery as a way to control the dose delivered per Voxel. In a first feasibility test, dose rates in pulses of up to 600 Gy s-1were observed, while the granularity at which the dose was delivered is expected to be well below 0.5 Gy.


Subject(s)
Radiotherapy Dosage , Synchrotrons , Radiotherapy/methods , Radiotherapy/instrumentation , Humans , Feasibility Studies , Radiation Dosage
2.
Z Med Phys ; 34(1): 44-63, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37455230

ABSTRACT

Most of the astronauts experience visual illusions, apparent flashes of light (LF) in absence of light. The first reported observation of this phenomenon was in July 1969 by Buzz Aldrin, in the debriefing following the Apollo 11 mission. Several ground-based experiments in the 1970s tried to clarify the mechanisms behind these light flashes and to evaluate possible related risks. These works were supported by dedicated experiments in space on the following Apollo flights and in Low Earth Orbit (LEO). It was soon demonstrated that the LF could be caused by charged particles (present in the space radiation) traveling through the eye, and, possibly, some other visual cortical areas. In the 1990s the interest in these phenomena increased again and additional experiments in Low Earth Orbit and others ground-based were started. Recently patients undergoing proton and heavy ion therapy for eye or head and neck tumors have reported the perception of light flashes, opening a new channel to investigate these phenomena. In this paper the many LF studies will be reviewed, presenting an historical and scientific perspective consistent with the combined set of observations, offering a single comprehensive summary aimed to provide further insights on these phenomena. While the light flashes appear not to be a risk by themselves, they might provide information on the amount of radiation induced radicals in the astronauts' eyes. Understanding their generation mechanisms might also support radiation countermeasures development. However, even given the substantial progress outlined in this paper, many questions related to their generation are still under debate, so additional studies are suggested. Finally, it is also conceivable that further LF investigations could provide evidence about the possible interaction of single particles in space with brain function, impacting with the crew ability to optimally perform a mission.


Subject(s)
Cosmic Radiation , Heavy Ion Radiotherapy , Illusions , Space Flight , Humans , Protons , Phosphenes , Cosmic Radiation/adverse effects
3.
Phys Med ; 117: 103189, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043325

ABSTRACT

PURPOSE: The use of Monte Carlo (MC) simulations capable of reproducing radiobiological effects of ionising radiation on human cell lines is of great importance, especially for cases involving protons and heavier ion beams. In the latter, huge uncertainties can arise mainly related to the effects of the secondary particles produced in the beam-tissue interaction. This paper reports on a detailed MC study performed using Geant4-based approach on three cancer cell lines, the HTB-177, CRL-5876 and MCF-7, that were previously irradiated with therapeutic proton and carbon ion beams. METHODS: A Geant4-based approach used jointly with analytical calculations has been developed to provide a more realistic estimation of the radiobiological damage produced by proton and carbon beams in tissues, reproducing available data obtained from in vitro cell irradiations. The MC "Hadrontherapy" Geant4 application and the Local Effect Model: LEM I, LEM II and LEM III coupled with the different numerical approaches: RapidRusso (RR) and RapidScholz (RS) were used in the study. RESULTS: Experimental survival curves are compared with those evaluated using the highlighted Geant4 MC-based approach via chi-square statistical analysis, for the combinations of radiobiological models and numerical approaches, as outlined above. CONCLUSION: This study has presented a comparison of the survival data from MC simulations to experimental survival data for three cancer cell lines. An overall best level of agreement was obtained for the HTB-177 cells.


Subject(s)
Proton Therapy , Protons , Salicylates , Humans , Radiotherapy Dosage , Carbon , Radiotherapy Planning, Computer-Assisted , Monte Carlo Method , Relative Biological Effectiveness
4.
Molecules ; 28(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38138632

ABSTRACT

(1) Background: Radioprotective agents have garnered considerable interest due to their prospective applications in radiotherapy, public health medicine, and situations of large-scale accidental radiation exposure or impending radiological emergencies. Cystamine, an organic diamino-disulfide compound, is recognized for its radiation-protective and antioxidant properties. This study aims to utilize the aqueous ferrous sulfate (Fricke) dosimeter to measure the free-radical scavenging capabilities of cystamine during irradiation by fast carbon ions. This analysis spans an energy range from 6 to 500 MeV per nucleon, which correlates with "linear energy transfer" (LET) values ranging from approximately 248 keV/µm down to 9.3 keV/µm. (2) Methods: Monte Carlo track chemistry calculations were used to simulate the radiation-induced chemistry of aerated Fricke-cystamine solutions across a broad spectrum of cystamine concentrations, ranging from 10-6 to 1 M. (3) Results: In irradiated Fricke solutions containing cystamine, cystamine is observed to hinder the oxidation of Fe2+ ions, an effect triggered by oxidizing agents from the radiolysis of acidic water, resulting in reduced Fe3+ ion production. Our simulations, conducted both with and without accounting for the multiple ionization of water, confirm cystamine's ability to capture free radicals, highlighting its strong antioxidant properties. Aligning with prior research, our simulations also indicate that the protective and antioxidant efficiency of cystamine diminishes with increasing LET of the radiation. This result can be attributed to the changes in the geometry of the track structures when transitioning from lower to higher LETs. (4) Conclusions: If we can apply these fundamental research findings to biological systems at a physiological pH, the use of cystamine alongside carbon-ion hadrontherapy could present a promising approach to further improve the therapeutic ratio in cancer treatments.


Subject(s)
Cystamine , Linear Energy Transfer , Cystamine/pharmacology , Antioxidants , Radiation Dosimeters , Ions , Nucleons , Water/chemistry , Carbon
5.
Article in English | MEDLINE | ID: mdl-38030445

ABSTRACT

OBJECTIVE: To determine the indications for radiotherapy in salivary gland cancer and to specify the modalities and target radiation volumes. MATERIAL AND METHODS: The French Network of Rare Head and Neck Tumors (REFCOR) formed a steering group which drafted a narrative review of the literature published on Medline and proposed recommendations. The level of adherence to the recommendations was then assessed by a rating group, according to the formal consensus method. RESULTS: Postoperatively, radiotherapy to the primary tumor site±to the lymph nodes is indicated if one or more of the following adverse histoprognostic factors are present (risk>10% of locoregional recurrence): T3-T4 category, lymph node invasion, extraglandular invasion, close or positive surgical margins, high tumor grade, perineural invasion, vascular emboli, and/or bone invasion. Intensity-modulated radiation therapy (IMRT) is the gold standard. For unresectable cancers or inoperable patients, carbon ion hadrontherapy may be considered. CONCLUSION: Radiotherapy in salivary gland cancer is indicated in postoperative situations in case of adverse histoprognostic factors and for inoperable tumors.

6.
Cancers (Basel) ; 15(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37046623

ABSTRACT

Chondrosarcoma is a malignant cartilaginous tumor that is particularly chemoresistant and radioresistant to X-rays. The first line of treatment is surgery, though this is almost impossible in some specific locations. Such resistances can be explained by the particular composition of the tumor, which develops within a dense cartilaginous matrix, producing a resistant area where the oxygen tension is very low. This microenvironment forces the cells to adapt and dedifferentiate into cancer stem cells, which are described to be more resistant to conventional treatments. One of the main avenues considered to treat this type of tumor is hadrontherapy, in particular for its ballistic properties but also its greater biological effectiveness against tumor cells. In this review, we describe the different forms of chondrosarcoma resistance and how hadrontherapy, combined with other treatments involving targeted inhibitors, could help to better treat high-grade chondrosarcoma.

7.
Life (Basel) ; 13(3)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36983949

ABSTRACT

Primary mucosal melanoma (PMM) and pancreatic ductal adenocarcinoma (PDAC) are two aggressive malignancies, characterized by intrinsic radio-chemoresistance and neurotropism, a histological feature resulting in frequent perineural invasion (PNI), supported by neurotrophic factors secreted in the tumour microenvironment (TME), such as neurotrophin-3 (NT-3). Carbon-ion radiotherapy (CIRT) could represent an effective option in unresectable PMM and PDAC. Only a few data about the effects of CIRT on PNI in relation to NT-3 are available in the literature, despite the numerous pieces of evidence revealing the peculiar effects of this type of radiation on tumour cell migration. This in vitro study investigated for the first time the response of PMM and PDAC cells to NT-3 and evaluated the effects of conventional photon beam radiotherapy (XRT) and CIRT on cell viability, proliferation, and migration. Our results demonstrated the greater capacity of C-ions to generally decrease cell viability, proliferation, and migration, while the addition of NT-3 after both types of irradiation determined an increase in these features, maintaining a dose-dependent trend and acting more effectively as a chemoattractant than inductor in the case of migration.

8.
Cancer Radiother ; 27(2): 170-177, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36759242

ABSTRACT

Hadrontherapy is a form of radiation therapy (RT) that relies on heavy particles, such as proton, heavy ions, or neutrons, to enhance anti-tumoral efficacy based on their specific dosimetric and radio-biological properties. Neutrons are characterized by specific radiobiological properties that might deserve greater consideration, including the high linear energy transfer and the low oxygen enhancement ratio. Neutron brachytherapy, relying on interstitial or intracavitary neutron sources, has been developed since the 1950s using Californium-252 (252Cf) as a mixed emitter of fission fast neutrons and γ-photos. However, the place of NBT in the era of modern radiation therapy is yet to be precisely defined. In this systematic review, we aim to provide an up-to-date analysis of current experience and clinical evidence of NBT in the XXI th century, by answering the following clinical questions: How is NBT currently delivered? What are the current efficacy data and tolerance profiles of NBT?


Subject(s)
Brachytherapy , Neoplasms , Humans , Neutrons , Neoplasms/radiotherapy , Radiometry , Radiotherapy Dosage
9.
Phys Med Biol ; 68(5)2023 02 23.
Article in English | MEDLINE | ID: mdl-36731132

ABSTRACT

Purpose.Although charged particle therapy (CPT) for cancer treatment has grown these past years, the use of protons and carbon ions for therapy remains debated compared to x-ray therapy. While a biological advantage of protons is not clearly demonstrated, therapy using carbon ions is often pointed out for its high cost. Furthermore, the nuclear interactions undergone by carbons inside the patient are responsible for an additional dose delivered after the Bragg peak, which deteriorates the ballistic advantage of CPT. Therefore, a renewed interest for lighter ions with higher biological efficiency than protons was recently observed. In this context, helium and lithium ions represent a good compromise between protons and carbons, as they exhibit a higher linear energy transfer (LET) than protons in the Bragg peak and can be accelerated by cyclotrons. The possibility of accelerating radioactive8Li, decaying in 2α-particles, and8He, decaying in8Li byß-decay, is particularly interesting.Methods. This work aims to assess the interest of the use of8Li and8He ions for therapy by Monte Carlo simulations carried out withGeant4.Results. It was calculated that the8Li and8He decay results in an increase of the LET of almost a factor 2 in the Bragg peak compared to stable7Li and4He. This results also in a higher dose deposited in the Bragg peak without an increase of the dose in the plateau region. It was also shown that both8He and8Li can have a potential interest for prompt-gamma monitoring techniques. Finally, the feasibility of accelerating facilities delivering8Li and8He was also discussed.Conclusion. In this study, we demonstrate that both8Li and8He have interesting properties for therapy. Indeed, simulations predict that8Li and8He are a good compromise between proton and12C, both in terms of LET and dose.


Subject(s)
Proton Therapy , Protons , Humans , Lithium , Ions , Computer Simulation , Monte Carlo Method , Helium/therapeutic use , Carbon
10.
Int J Mol Sci ; 23(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35682798

ABSTRACT

Energetic carbon ions are promising projectiles used for cancer radiotherapy. A thorough knowledge of how the energy of these ions is deposited in biological media (mainly composed of liquid water) is required. This can be attained by means of detailed computer simulations, both macroscopically (relevant for appropriately delivering the dose) and at the nanoscale (important for determining the inflicted radiobiological damage). The energy lost per unit path length (i.e., the so-called stopping power) of carbon ions is here theoretically calculated within the dielectric formalism from the excitation spectrum of liquid water obtained from two complementary approaches (one relying on an optical-data model and the other exclusively on ab initio calculations). In addition, the energy carried at the nanometre scale by the generated secondary electrons around the ion's path is simulated by means of a detailed Monte Carlo code. For this purpose, we use the ion and electron cross sections calculated by means of state-of-the art approaches suited to take into account the condensed-phase nature of the liquid water target. As a result of these simulations, the radial dose around the ion's path is obtained, as well as the distributions of clustered events in nanometric volumes similar to the dimensions of DNA convolutions, contributing to the biological damage for carbon ions in a wide energy range, covering from the plateau to the maximum of the Bragg peak.


Subject(s)
Carbon , Water , Ions , Monte Carlo Method , Physical Phenomena
11.
Front Oncol ; 12: 780784, 2022.
Article in English | MEDLINE | ID: mdl-35402249

ABSTRACT

The advent of Graphics Processing Units (GPU) has prompted the development of Monte Carlo (MC) algorithms that can significantly reduce the simulation time with respect to standard MC algorithms based on Central Processing Unit (CPU) hardware. The possibility to evaluate a complete treatment plan within minutes, instead of hours, paves the way for many clinical applications where the time-factor is important. FRED (Fast paRticle thErapy Dose evaluator) is a software that exploits the GPU power to recalculate and optimise ion beam treatment plans. The main goal when developing the FRED physics model was to balance accuracy, calculation time and GPU execution guidelines. Nowadays, FRED is already used as a quality assurance tool in Maastricht and Krakow proton clinical centers and as a research tool in several clinical and research centers across Europe. Lately the core software has been updated including a model of carbon ions interactions with matter. The implementation is phenomenological and based on carbon fragmentation data currently available. The model has been tested against the MC FLUKA software, commonly used in particle therapy, and a good agreement was found. In this paper, the new FRED data-driven model for carbon ion fragmentation will be presented together with the validation tests against the FLUKA MC software. The results will be discussed in the context of FRED clinical applications to 12C ions treatment planning.

12.
Clin Transl Radiat Oncol ; 34: 1-6, 2022 May.
Article in English | MEDLINE | ID: mdl-35243028

ABSTRACT

OBJECTIVES: To provide an overview of the impact of the pandemic on the clinical activity and take a snapshot of the contingent challenges that European particle therapy centers are called to face, we surveyed the members of the European Particle Therapy Network (EPTN). MATERIAL AND METHODS: A 52-question survey was conducted from 4th April 2021 to 30th July 2021 using the Google Forms platform. Three dedicated sections analysed the clinical context of each participating institution, the staff management, and the clinical changes in the oncological workflow. RESULTS: Out of the 23 contacted European hubs of particle radiotherapy, a total of 9 (39%) responded to the survey. The number of in-person first evaluations and follow-up visits decreased, but telemedicine was implemented. Multidisciplinary tumour board discussions continued during the outbreak using web-based solutions. A delay in cancer diagnosis and oncological staging leading to an increment in more advanced diseases at first presentation was generally observed. Even if the total number of treatments (photons and particles) in the responding institutions showed a trend of decrease, there was or a stable situation or slight increase in particle treatments. The clinical treatment choices followed the national and international scientific recommendations and were patient/disease-oriented. Hypofractionation and short-schedule of chemotherapy, when applicable, were preferred. CONCLUSIONS: Our findings show a rapid and effective reaction of European particle RT hubs to manage the healthcare crisis. Considering the new waves and virus variants, the vaccination campaign will hopefully reduce the oncological impacts and consequences of the prolonged outbreak.

13.
Int J Radiat Biol ; 98(3): 383-394, 2022.
Article in English | MEDLINE | ID: mdl-34259611

ABSTRACT

PURPOSE: As a biologist who, since the beginning of her involvement in science, has collaborated closely with physicists, I want to share my forty years of experience describing the events that introduced me to the world of charged particle radiation biology as well as that of low doses/dose rates, with related implications in medicine and radiation protection. CONCLUSION: The main features of my experience can be summarized in the development of an interdisciplinary culture and in the interest in technological advances for the study of biological responses to radiation in different scenarios, relevant for public health. Mine was a journey that began by chance, but which led me to a world that proved to be of great interest to me. With the current advances in science, the new generations of scientists have new opportunities that I wish them to face with the same interest and enthusiasm that I felt for such an interdisciplinary field as that of radiation biology.


Subject(s)
Radiation Protection , Radiobiology , Biophysics , Female , Humans
14.
Front Oncol ; 11: 789079, 2021.
Article in English | MEDLINE | ID: mdl-34917512

ABSTRACT

Adenoid cystic carcinoma (ACC) is a rare, basaloid, epithelial tumor, arising mostly from salivary glands. Radiation therapy can be employed as a single modality for unresectable tumors, in an adjuvant setting after uncomplete resection, in case of high-risk pathological features, or for recurrent tumors. Due to ACC intrinsic radioresistance, high linear energy transfer (LET) radiotherapy techniques have been evaluated for ACC irradiation: while fast neutron therapy has now been abandoned due to toxicity concerns, charged particle beams such as protons and carbon ions are at present the beams used for hadron therapy. Carbon ion radiation therapy (CIRT) is currently increasingly used for ACC irradiation. The aim of this review is to describe the immunological, molecular and clinicopathological bases that support ACC treatment with CIRT, as well as to expose the current clinical evidence that reveal the advantages of using CIRT for treating ACC.

15.
Front Oncol ; 11: 738320, 2021.
Article in English | MEDLINE | ID: mdl-34707989

ABSTRACT

Radiation therapy is part of recommendations in the adjuvant settings for advanced stage or as exclusive treatment in unresectable thymic epithelial tumors (TETs). However, first-generation techniques delivered substantial radiation doses to critical organs at risk (OARs), such as the heart or the lungs, resulting in noticeable radiation-induced toxicity. Treatment techniques have significantly evolved for TET irradiation, and modern techniques efficiently spare normal surrounding tissues without negative impact on tumor coverage and consequently local control or patient survival. Considering its dosimetric advantages, hadrontherapy (which includes proton therapy and carbon ion therapy) has proved to be worthwhile for TET irradiation in particular for challenging clinical situations such as cardiac tumoral involvement. However, clinical experience for hadrontherapy is still limited and mainly relies on small-size proton therapy studies. This critical review aims to analyze the current status of hadrontherapy for TET irradiation to implement it at a larger scale.

16.
Int J Mol Sci ; 22(19)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34639218

ABSTRACT

Chromosome aberrations are widely considered among the best biomarkers of radiation health risk due to their relationship with late cancer incidence. In particular, aberrations in peripheral blood lymphocytes (PBL) can be regarded as indicators of hematologic toxicity, which is a major limiting factor of radiotherapy total dose. In this framework, a radiobiological database describing the induction of PBL dicentrics as a function of ion type and energy was developed by means of the BIANCA (BIophysical ANalysis of Cell death and chromosome Aberrations) biophysical model, which has been previously applied to predict the effectiveness of therapeutic-like ion beams at killing tumour cells. This database was then read by the FLUKA Monte Carlo transport code, thus allowing us to calculate the Relative Biological Effectiveness (RBE) for dicentric induction along therapeutic C-ion beams. A comparison with previous results showed that, while in the higher-dose regions (e.g., the Spread-Out Bragg Peak, SOBP), the RBE for dicentrics was lower than that for cell survival. In the lower-dose regions (e.g., the fragmentation tail), the opposite trend was observed. This work suggests that, at least for some irradiation scenarios, calculating the biological effectiveness of a hadrontherapy beam solely based on the RBE for cell survival may lead to an underestimation of the risk of (late) damage to healthy tissues. More generally, following this work, BIANCA has gained the capability of providing RBE predictions not only for cell killing, but also for healthy tissue damage.


Subject(s)
Cell Death , Chromosome Aberrations/radiation effects , Heavy Ion Radiotherapy/adverse effects , Lymphocytes/pathology , Monte Carlo Method , Neoplasms/radiotherapy , Relative Biological Effectiveness , Biophysics , Humans , Lymphocytes/drug effects
17.
Phys Med Biol ; 66(19)2021 09 28.
Article in English | MEDLINE | ID: mdl-34507306

ABSTRACT

While cancer therapy with protons and C-ions is continuously spreading, in the near future patients will be also treated with He-ions which, in comparison to photons, combine the higher precision of protons with the higher relative biological effectiveness (RBE) of C-ions. Similarly to C-ions, also for He-ions the RBE variation along the beam must be known as precisely as possible, especially for active beam delivery systems. In this framework the BIANCA biophysical model, which has already been applied to calculate the RBE along proton and C-ion beams, was extended to4He-ions and, following interface with the FLUKA code, was benchmarked against cell survival data on CHO normal cells and Renca tumour cells irradiated at different positions along therapeutic-like4He-ion beams at the Heidelberg Ion-beam Therapy centre, where the first He-ion patient will be treated soon. Very good agreement between simulations and data was obtained, showing that BIANCA can now be used to predict RBE following irradiation with all ion types that are currently used, or will be used soon, for hadrontherapy. Thanks to the development of a reference simulation database describing V79 cell survival for ion and photon irradiation, these predictions can be cell-type specific because analogous databases can be produced, in principle, for any cell line. Furthermore, survival data on CHO cells irradiated by a He-3 beam were reproduced to compare the biophysical properties of He-4 and He-3 beams, which is currently an open question. This comparison showed that, at the same depth, He-4 beams tend to have a higher RBE with respect to He-3 beams, and that this difference is also modulated by the considered physical dose, as well as the cell radiosensitivity. However, at least for the considered cases, no significant difference was found for the ratio between the RBE-weighted dose in the SOBP and that in the entrance plateau.


Subject(s)
Neoplasms , Proton Therapy , Animals , Cricetinae , Cricetulus , Humans , Neoplasms/radiotherapy , Protons , Relative Biological Effectiveness
18.
Front Oncol ; 11: 732766, 2021.
Article in English | MEDLINE | ID: mdl-34422672

ABSTRACT

Various definitions are currently in use to describe high-risk prostate cancer. This variety in definitions is important for patient counseling, since predicted outcomes depend on which classification is applied to identify patient's prostate cancer risk category. Historically, strategies for the treatment of localized high-risk prostate cancer comprise local approaches such as surgery and radiotherapy, as well as systemic approaches such as hormonal therapy. Nevertheless, since high-risk prostate cancer patients remain the group with higher-risk of treatment failure and mortality rates, nowadays, novel treatment strategies, comprising hypofractionated-radiotherapy, second-generation antiandrogens, and hadrontherapy, are being explored in order to improve their long-term oncological outcomes. This narrative review aims to report the current management of high-risk prostate cancer and to explore the future perspectives in this clinical setting.

19.
Oncotarget ; 12(11): 1116-1121, 2021 May 25.
Article in English | MEDLINE | ID: mdl-34084285

ABSTRACT

Xeroderma Pigmentosum (XP) is a rare genetic disorder with a poor prognosis due to high photosensitivity in affected patients. Herein, we describe the first case of the use of cemiplimab in a patient with XP, a 19-year-old girl presented with locally advanced squamous cell carcinoma of the right periorbital and nasal region. This treatment has been undertaken after a cycle of proton beam radiotherapy. Besides, it is reported a description of the few cases in the literature describing the effectiveness of immunotherapy on skin cancers in XP-patients. This case is in line with those reported, underlining how anti-PD1 monoclonal antibodies may be a promising treatment in this genodermatosis.

20.
Front Neurosci ; 15: 589906, 2021.
Article in English | MEDLINE | ID: mdl-33828444

ABSTRACT

Glioblastoma (GBM) is the most common tumor of the central nervous system. Current therapies, often associated with severe side effects, are inefficacious to contrast the GBM relapsing forms. In trying to overcome these drawbacks, (OC-6-44)-acetatodiamminedichlorido(2-(2-propynyl)octanoato)platinum(IV), also called Pt(IV)Ac-POA, has been recently synthesized. This new prodrug bearing as axial ligand (2-propynyl)octanoic acid (POA), a histone deacetylase inhibitor, has a higher activity due to (i) its high cellular accumulation by virtue of its high lipophilicity and (ii) the inhibition of histone deacetylase, which leads to the increased exposure of nuclear DNA, permitting higher platination and promoting cancer cell death. In the present study, we investigated the effects induced by Pt(IV)Ac-POA and its potential antitumor activity in human U251 glioblastoma cell line using a battery of complementary techniques, i.e., flow cytometry, immunocytochemistry, TEM, and Western blotting analyses. In addition, the synergistic effect of Pt(IV)Ac-POA associated with the innovative oncological hadrontherapy with carbon ions was investigated, with the aim to identify the most efficient anticancer treatment combination. Our in vitro data demonstrated that Pt(IV)Ac-POA is able to induce cell death, through different pathways, at concentrations lower than those tested for other platinum analogs. In particular, an enduring Pt(IV)Ac-POA antitumor effect, persisting in long-term treatment, was demonstrated. Interestingly, this effect was further amplified by the combined exposure to carbon ion radiation. In conclusion, Pt(IV)Ac-POA represents a promising prodrug to be incorporated into the treatment regimen for GBM. Moreover, the synergistic efficacy of the combined protocol using chemotherapeutic Pt(IV)Ac-POA followed by carbon ion radiation may represent a promising approach, which may overcome some typical limitations of conventional therapeutic protocols for GBM treatment.

SELECTION OF CITATIONS
SEARCH DETAIL