Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Evol Biol ; 36(5): 780-794, 2023 05.
Article in English | MEDLINE | ID: mdl-37026574

ABSTRACT

Chemical communication is ubiquitous in nature and chemical signals convey species-specific messages. Despite their specificity, chemical signals may not be limited to only one function. Identifying alternative functions of chemical signals is key to understanding how chemical communication systems evolve. Here, we explored alternative functions of moth sex pheromone compounds. These chemicals are generally produced in, and emitted from, dedicated sex pheromone glands, but some have recently also been found on the insects' legs. We identified and quantified the chemicals in leg extracts of the three heliothine moth species Chloridea (Heliothis) virescens, Chloridea (Heliothis) subflexa and Helicoverpa armigera, compared their chemical profiles and explored the biological function of pheromone compounds on moth legs. Identical pheromone compounds were present on the legs in both sexes of all three species, with no striking interspecies or intersex differences. Surprisingly, we also found pheromone-related acetate esters in leg extracts of species that lack acetate esters in their female sex pheromone. When we assessed gene expression levels in the leg tissue, we found known and putative pheromone-biosynthesis genes expressed, which suggests that moth legs may be additional sites of pheromone production. To determine possible additional roles of the pheromone compounds on legs, we explored whether these may act as oviposition-deterring signals, which does not seem to be the case. However, when we tested whether these chemicals have antimicrobial properties, we found that two pheromone compounds (16:Ald and 16:OH) reduce bacterial growth. Such an additional function of previously identified pheromone compounds likely coincides with additional selection pressures and, thus, should be considered in scenarios on the evolution of these signals.


Subject(s)
Moths , Sex Attractants , Male , Animals , Female , Pheromones , Sex Attractants/pharmacology , Moths/genetics , Species Specificity , Esters/metabolism
2.
Food Chem ; 397: 133773, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35908468

ABSTRACT

In this study, key aroma compounds of low-salt fermented sour fish were characterized using headspace solid-phase micro extraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS), odor activity values (OAV) and aroma recombination and omission experiments. Eighty-eight volatile compounds, including esters, aldehydes, alcohols, acids, furans and pyrazines, were identified by HS-SPME-GC-MS. Eighteen aroma-active compounds were quantified by employing calculation of OAV greater than 1. A recombination aroma model prepared using aroma-active compounds based on the odorless fish matrix sensorially matched the aroma of fermented sour fish with a score of 4.5 out of 5. The omission experiment showed that 7 out of 18 compounds had a significant contribution to the overall aroma (P < 0.05). The key aroma compounds of fermented sour fish were concluded to be ethyl acetate (OAV = 189), ethyl hexanoate (OAV = 66), isoamyl acetate (OAV = 424), ethyl butyrate (OAV = 26), hexanal (OAV = 49), 1-hexadecanal (OAV = 14) and 2-pentylfuran (OAV = 13).


Subject(s)
Odorants , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Olfactometry/methods , Solid Phase Microextraction/methods , Volatile Organic Compounds/analysis
3.
Mol Genet Metab Rep ; 30: 100839, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35242571

ABSTRACT

Sjögren-Larsson syndrome (SLS) is a neurocutaneous disease caused by mutations in ALDH3A2 that result in deficient fatty aldehyde dehydrogenase (FALDH) activity and impaired fatty aldehyde and fatty alcohol oxidation. The pathogenesis of SLS is thought to involve accumulation of long-chain fatty aldehydes and alcohols and/or metabolically-related ether glycerolipids. Fatty aldehydes are particularly toxic molecules that can covalently react with proteins and certain amino-containing lipids such as phosphatidylethanolamine (PE), generating an unusual aldehyde adduct, N-alkyl-PE (NAPE). Using Faldh-deficient Chinese hamster ovary cells (FAA-K1A) as a cellular model for SLS, we investigated the ability of an aldehyde trapping agent, ADX-102 [2-(3-amino-6-chloro-quinolin-2-yl)-propan-2-ol], to mitigate the harmful effects of fatty aldehydes. FAA-K1A cells were protected from octadecanal (C18:0-al) induced cytotoxicity and apoptosis by ADX-102. Metabolism of C18:0-al to fatty alcohol (octadecanol) was also inhibited by ADX-102. FAA-K1A cells accumulated 5-fold more NAPE with C16- and C18-linked N-alkyl chains compared to wild-type cells, but NAPE levels decreased to normal after growth for 4 days with 50 µM ADX-102. Our results suggest that small aldehyde-reactive molecules, such as ADX-102, should be explored as novel therapeutic agents for SLS by preventing aldehyde adduct formation with critical cellular targets and inhibiting fatty aldehyde metabolism to fatty alcohol.

4.
J Chem Ecol ; 48(1): 71-78, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34738202

ABSTRACT

Most known species of entomopathogenic nematodes (EPNs) are generalist obligate parasites of insects. They kill their hosts within days after infection and mortality is mainly caused by toxins produced by bacteria that co-infect the hosts and serve as food for the nematodes. EPNs can infect a very broad spectrum of insects and these insects can therefore be expected to have evolved strategies to avoid infection. Indeed, ants are known to avoid feeding on EPN-infected insect cadavers, most likely because they are repelled by semiochemicals that emanate from the cadavers. The source and nature of these repellents are so far unknown. In a series of behavioral and chemical analytical experiments we identified hexadecanal and 2-heptadecanone as two compounds that are emitted by insect larva that are infected by the EPN Steinernema feltiae, but not by uninfected larvae. When spiking honey water with the two semiochemicals, they were confirmed to be highly deterrent to the ant Lasius niger. The environmentally benign hexadecanal and 2-heptadecanone could be employed to ward off ants and possibly other pests. Additional experiments are needed to fully determine their application potential.


Subject(s)
Ants , Rhabditida , Animals , Cadaver , Insecta , Larva , Pest Control, Biological
5.
Insect Biochem Mol Biol ; 116: 103260, 2020 01.
Article in English | MEDLINE | ID: mdl-31682920

ABSTRACT

Most moths utilize sex pheromones released by the female to attract a mate. Females produce the sex pheromone in the pheromone gland in a biosynthetic pathway which consists of several key enzymes. Fatty acyl-CoA reductase is one of the key enzymes, which catalyzes the conversion of fatty acyl-CoA to the corresponding alcohol, playing an important role in producing the final proportion of each pheromone component. In Helicoverpa zea, (Z)-11-hexadecenal is the major sex pheromone component in female pheromone glands and previously a large amount of hexadecanal was also found in female and male tarsi. In our previous study, we compared the transcriptome between pheromone glands and tarsi and found 20 fatty acyl-CoA reductases in both tissues. In this study, we functionally characterized four FARs which were expressed at high levels according to the transcriptome of pheromone glands and tarsi. Fatty acyl-CoA reductase 1 was homologous to other moth pheromone gland specific fatty acyl-CoA reductases, and it was also present in male tarsi. Functional expression in yeast cells indicates that only fatty acyl-CoA reductase 1 was able to produce fatty alcohols. In addition, a decreased mRNA level of fatty acyl-CoA reductase 1 in female pheromone glands and male tarsi by RNAi knockdown caused a significant decrease in the production of (Z)-11-hexadecenal in pheromone glands and hexadecanal in male tarsi. This study is the first to demonstrate the direct function of a fatty acyl-CoA reductase in male tarsi and also confirms its role in sex pheromone biosynthesis in H. zea.


Subject(s)
Aldehyde Oxidoreductases/genetics , Insect Proteins/genetics , Moths/metabolism , Aldehyde Oxidoreductases/chemistry , Aldehyde Oxidoreductases/metabolism , Aldehydes/metabolism , Amino Acid Sequence , Animals , Ankle , Exocrine Glands/chemistry , Female , Insect Proteins/chemistry , Insect Proteins/metabolism , Larva/growth & development , Larva/metabolism , Male , Moths/growth & development , Phylogeny , Sequence Alignment , Sex Attractants/biosynthesis , Transcriptome
6.
Article in English | MEDLINE | ID: mdl-31280038

ABSTRACT

The corn earworm, Helicoverpa zea, utilizes (Z)-11-hexadecenal as the major sex pheromone component. The saturated fatty acid derivative hexadecanal is also found in the pheromone gland and recently a large amount (0.5-1.5 µg) was found in male tarsi with lower amounts (0.05-0.5 µg) in female tarsi. In this study, we compared the transcriptome between female pheromone glands (including the ovipositor) and female and male tarsi to identify differences between these tissues, particularly the genes involved in sex pheromone biosynthesis and chemosensation. We found transcripts encoding 9 fatty acyl-CoA desaturases, 20 fatty acyl-CoA reductases, 8 alcohol oxidases, some G protein-coupled receptors and many transcripts involved in signal transduction and pheromone transportation. Also we found gustatory and olfactory receptors associated with the tarsi and ovipositor. Differential expression analysis showed that there were many genes differentially expressed between tissues, including the candidate desaturases, fatty acyl-CoA reductases, and alcohol oxidases. We discuss how some of these genes produce proteins that could be involved in the biosynthesis of hexadecanal in tarsi and (Z)-11-hexadecenal in the pheromone gland and the possible role of proteins in chemosensation of the tarsi and ovipositor.


Subject(s)
Moths/genetics , Pheromones/genetics , Transcriptome , Aldehydes/metabolism , Animals , Biosynthetic Pathways , Female , Insect Proteins/genetics , Male , Moths/anatomy & histology , Moths/metabolism , Oviposition , Pheromones/metabolism
7.
J Chem Ecol ; 42(5): 425-32, 2016 May.
Article in English | MEDLINE | ID: mdl-27155602

ABSTRACT

The Noctuidae are one of the most speciose moth families and include the genera Helicoverpa and Heliothis. Females use (Z)-11-hexadecenal as the major component of their sex pheromones except for Helicoverpa assulta and Helicoverpa gelotopoeon, both of which utilize (Z)-9-hexadecenal. The minor compounds found in heliothine sex pheromone glands vary with species, but hexadecanal has been found in the pheromone gland of almost all heliothine females so far investigated. In this study, we found a large amount (0.5-1.5 µg) of hexadecanal and octadecanal on the legs of males of four heliothine species, Helicoverpa zea, Helicoverpa armigera, H. assulta, and Heliothis virescens. The hexadecanal was found on and released from the tarsi, and was in much lower levels or not detected on the remaining parts of the leg (tibia, femur, trochanter, and coxa). Lower amounts (0.05-0.5 µg) of hexadecanal were found on female tarsi. This is the first known sex pheromone compound to be identified from the legs of nocturnal moths. Large amounts of butyrate esters (about 16 µg) also were found on tarsi of males with lower amounts on female tarsi. Males deposited the butyrate esters while walking on a glass surface. Decapitation did not reduce the levels of hexadecanal on the tarsi of H. zea males, indicating that hexadecanal production is not under the same neuroendocrine regulation system as the production of female sex pheromone. Based on electroantennogram studies, female antennae had a relatively high response to hexadecanal compared to male antennae. We consider the possible role of aldehydes and butyrate esters as courtship signals in heliothine moths.


Subject(s)
Aldehydes/chemistry , Aldehydes/pharmacology , Butyrates/chemistry , Butyrates/pharmacology , Moths/drug effects , Sex Attractants/chemistry , Sex Attractants/pharmacology , Animals , Courtship , Esters , Female , Male , Moths/chemistry , Sexual Behavior, Animal/drug effects
8.
Bioinformation ; 8(7): 336-40, 2012.
Article in English | MEDLINE | ID: mdl-22553392

ABSTRACT

Human CCRL1 belongs to the family of silent chemokine receptors. This transmembrane protein plays a role in blunting function of chemokines through binding to them. This will attenuate immune responses. Interaction between CCRL1 and CCL21 determines this immune extinction. Thus inhibiting the action of this atypical chemokine seems to stimulate immune responses especially in the case of suppressed and immune deficient conditions. In this study we predicted 3D structure of CCRL1 using comparative modeling and Hiddebn Markov Model algorithm. Final predicted model optimized by Modeller v9.8 and minimized regarding energy level using UCSF chimera candidate version1.5.3. ClasPro webserver was used to find interacting residues between CCRL1 and CCL21. Interacting residues were used as target for chemical inhibitors by simulated docking study. For finding potential inhibitors, library of KEGG compounds screened and 97 obtained chemicals docked against interacting residues between CCRL1- CCL21 and MolDock was used as docking scoring function. Results indicated that Hexadecanal is a potential inhibitor of CCRL1- CCL21 interaction. Inhibition of this interaction will increase intercellular level of CCl21 and interaction between CCL21 and CCR7 causes immune potentiaiton.

SELECTION OF CITATIONS
SEARCH DETAIL