Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 512
Filter
1.
New Phytol ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39253787

ABSTRACT

Microbiota have co-evolved with plants over millions of years and are intimately linked to plants, ranging from symbiosis to pathogenesis. However, our understanding of the existence of a shared core microbiota across phylogenetically diverse plants remains limited. A common garden field experiment was conducted to investigate the rhizosphere microbial communities of phylogenetically contrasting herbaceous families. Through a combination of metagenomic sequencing, analysis of plant economic traits, and soil biochemical properties, we aimed to elucidate the eco-evolutionary role of the core rhizosphere microbiota in light of plant economic strategies. We identified a conserved core microbiota consisting of 278 taxa that was closely associated with the phylogeny of the plants studied. This core microbiota actively participated in multiple nitrogen metabolic processes and showed a strong correlation with the functional potential of rhizosphere nitrogen cycling, thereby serving as an extended trait in the plant nitrogen acquisition. Furthermore, our examination of simulated species loss revealed the crucial role of the core microbiota in maintaining the rhizosphere community's network stability. Our study highlighted that the core microbiota, which exhibited a phylogenetically conserved association with plants, potentially represented an extension of the plant phenotype and played an important role in nitrogen acquisition. These findings held implications for the utilization of microbiota-mediated plant functions.

2.
Food Chem ; 462: 140943, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39217744

ABSTRACT

Application of microbial-based biopreparations as a pre-harvest strategy offers a method to obtain sustainable agricultural practices and could be an important approach for advancing food science, promoting sustainability, and meeting global food market demands. The impact of a bacterial-fungal biopreparation mixture on soil-plant-microbe interactions, fruit chemical composition and yield of 7 raspberry clones was investigated by examining the structural and functional profiles of microbial communities within leaves, fruits, and soil. Biopreparation addition caused the enhancement of the microbiological utilization of specific compounds, such as d-mannitol, relevant in plant-pathogen interactions and overall plant health. The biopreparation treatment positively affected the nitrogen availability in soil (9-160%). The analysis of plant stress marker enzymes combined with the evaluation of fruit quality and chemical properties highlight changes inducted by the pre-harvest biopreparation application. Chemical analyses highlight biopreparations' role in soil and fruit quality improvement, promoting sustainable agriculture. This effect was dependent on tested clones, showing increase of soluble solid content in fruits, concentration of polyphenols or the sensory quality of the fruits. The results of the next-generation sequencing indicated increase in the effective number of bacterial species after biopreparation treatment. The network analysis showed stimulating effect of biopreparation on microbial communities by enhancing microbial interactions (increasing the number of network edges up to 260%) of and affecting the proportions of mutual relationships between both bacteria and fungi. These findings show the potential of microbial-based biopreparation in enhancing raspberry production whilst promoting sustainable practices and maintaining environmental homeostasis and giving inshght in holistic understanding of microbial-based approaches for advancing food science monitoring.

3.
Trends Cell Biol ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39256139

ABSTRACT

The highly proliferative gut tissue exhibits rapid telomere shortening with systemic effects on the host organism. Recent studies have demonstrated a bidirectionality in interactions between intestinal telomere length dynamics and the composition and activity of the gut microbiome thus linking processes of inflammation, dysbiosis and aging across different vertebrate species.

4.
Sci Rep ; 14(1): 18631, 2024 08 11.
Article in English | MEDLINE | ID: mdl-39128929

ABSTRACT

The complex interactions between epiphytic bacteria and marine macroalgae are still poorly understood, with limited knowledge about their community structure, interactions, and functions. This study focuses on comparing epiphytic prokaryotes community structure between three seaweed phyla; Chlorophyta, Rhodophyta, and Heterokontophyta in an easternmost rocky intertidal site of the Mediterranean Sea. By taking a snapshot approach and simultaneously collecting seaweed samples from the same habitat, we minimize environmental variations that could affect epiphytic bacterial assembly, thereby emphasizing host specificity. Through 16S rRNA gene amplicon sequencing, we identified that the microbial community composition was more similar within the same seaweed phylum host compared to seaweed host from other phyla. Furthermore, exclusive Amplicon Sequence Variants (ASVs) were identified for each algal phyla despite sharing higher taxonomic classifications across the other phyla. Analysis of niche breadth indices uncovers distinctive affinities and potential specialization among seaweed host phyla, with 39% of all ASVs identified as phylum specialists and 13% as generalists. Using taxonomy function prediction, we observed that the taxonomic variability does not significantly impact functional redundancy, suggesting resilience to disturbance. The study concludes that epiphytic bacteria composition is connected to host taxonomy, possibly influenced by shared morphological and chemical traits among genetically related hosts, implying a potential coevolutionary relationship between specific bacteria and their host seaweeds.


Subject(s)
Bacteria , Microbiota , RNA, Ribosomal, 16S , Seaweed , Mediterranean Sea , Seaweed/microbiology , Seaweed/genetics , Microbiota/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Phylogeny , Ecosystem
5.
ISME Commun ; 4(1): ycae046, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39165397

ABSTRACT

Interactions between bacteria and microalgae are important for the functioning of aquatic ecosystems, yet interactions based on the biodiversity of these two taxonomic domains have been scarcely studied. Specifically, it is unclear whether a positive biodiversity-productivity relationship in phytoplankton is largely facilitated by niche partitioning among the phytoplankton organisms themselves or whether associated bacterial communities play an additional role in modifying these diversity effects. Moreover, the effects of intraspecific diversity in phytoplankton communities on bacterial community diversity have not been tested. To address these points, we factorially manipulated both species and intraspecific richness of three diatoms to test the effects of diatom species/strain diversity on biomass production and bacterial diversity in algae-bacteria communities. The results show that diatom intraspecific diversity has significant positive effects on culture biomass and the diversity of the associated free-living bacterial community (0.2-3 µm size fraction), which are comparable in magnitude to species diversity effects. However, there were little to no effects of diatom diversity on host-associated bacterial diversity (>3 µm size fraction), or of bacterial diversity on biomass production. These results suggest a decoupling of bacterial diversity from the diatom diversity-productivity relationship and provide early insights regarding the relations between diversity across domains in aquatic ecosystems.

6.
PeerJ ; 12: e17707, 2024.
Article in English | MEDLINE | ID: mdl-39184395

ABSTRACT

Dysbiosis and acclimatization are two starkly opposing outcomes of altered holobiont associations in response to environmental pollution. This study assesses whether shifts in microbial taxonomic composition and functional profiles of the cosmopolitan sponge Hymeniacidon perlevis indicate dysbiotic or acclimatized responses to water pollution. To do so, sponge and water samples were collected in a semi-enclosed environment (San Antonio Bay, Patagonia, Argentina) from variably polluted sites (i.e., eutrophication, heavy metal contamination). We found significant differences in the microbiome of H. perlevis with respect to the pollution history of the sites. Several indicators suggested that acclimatization, rather than dysbiosis, explained the microbiome response to higher pollution: 1) the distinction of the sponge microbiome from the water microbiome; 2) low similarity between the sponge and water microbiomes at the most polluted site; 3) the change in microbiome composition between sponges from the different sites; 4) a high similarity in the microbiome among sponge individuals within sites; 5) a similar ratio of common sponge microbes to opportunistic microbes between sponges at the most and least polluted sites; and 6) a distinctive functional profile of the sponge microbiome at the most polluted site. This profile indicated a more expansive metabolic repertoire, including the degradation of pollutants and the biosynthesis of secondary metabolites, suggesting a relevant role of these microbial communities in the adaptation of the holobiont to organic pollution. Our results shed light on the rearrangement of the H. perlevis microbiome that could allow it to successfully colonize sites with high anthropogenic impact while resisting dysbiosis.


Subject(s)
Dysbiosis , Microbiota , Porifera , Animals , Porifera/microbiology , Argentina , Dysbiosis/microbiology , Acclimatization , Bays/microbiology , Water Pollutants, Chemical/adverse effects , Water Pollutants, Chemical/analysis
7.
Trends Ecol Evol ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39209587

ABSTRACT

As most life-forms exist as holobionts, reduction of host-level biodiversity drives parallel habitat losses to their host-adapted microorganisms. The holobiont concept helps us to understand how species are habitats for - often ignored - coevolved microorganisms also worthy of conservation. Indeed, loss of host-associated microbial biodiversity may accelerate the extinction risks of their host.

8.
Environ Microbiome ; 19(1): 64, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39210412

ABSTRACT

BACKGROUND: The composition of the root microbiome affects the host's growth, with variation in the host genome associated with microbiome variation. However, it is not known whether this intra-specific variation of root microbiomes is a consequence of plants performing targeted manipulations of them to adapt to their local environment or varying passively with other traits. To explore the relationship between the genome, environment and microbiome, we sampled seeds from teosinte populations across its native range in Mexico. We then grew teosinte accessions alongside two modern maize lines in a common garden experiment. Metabarcoding was performed using universal bacterial and fungal primers to profile their root microbiomes. RESULTS: The root microbiome varied between the two modern maize lines and the teosinte accessions. We further found that variation of the teosinte genome, the ancestral environment (temperature/elevation) and root microbiome were all correlated. Multiple microbial groups significantly varied in relative abundance with temperature/elevation, with an increased abundance of bacteria associated with cold tolerance found in teosinte accessions taken from high elevations. CONCLUSIONS: Our results suggest that variation in the root microbiome is pre-conditioned by the genome for the local environment (i.e. non-random). Ultimately, these claims would be strengthened by confirming that these differences in the root microbiome impact host phenotype, for example, by confirming that the root microbiomes of high-elevation teosinte populations enhance cold tolerance.

9.
J Hazard Mater ; 479: 135650, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39216249

ABSTRACT

Emerging nanopesticides are gradually gaining widespread application in agriculture due to their excellent properties, but their potential risks to pollinating insects are not fully understood. In this study, lambda-cyhalothrin nanocapsules (LC-NCs) were constructed by electrostatic self-assembly method with iron mineralization optimization, and their effects on bee gut microbial communities and host immune-related factors were investigated. Microbiome sequencing revealed that LC-NCs increase the diversity of gut microbial communities and reduce the complexity of network features, disrupting the overall structure of the microbial communities. In addition, LC-NCs also had systemic effects on the immune response of bees, including increased activity of SOD and CAT enzymes and expression of their genes, as well as downregulation of Defensin1. Furthermore, we noticed that the immune system of the host was activated simultaneously with a rise in the abundance of beneficial bacteria in the gut. Our research emphasizes the importance of both the host and gut microbiota of holobiont in revealing the potential risks of LC-NCs to environmental indicators of honey bees, and provides references for exploring the interactions between host-microbiota systems under exogenous stress. At the same time, we hope that more research can focus on the potential impacts of nanopesticides on the ecological environment.

10.
Environ Res ; 262(Pt 1): 119848, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39216737

ABSTRACT

Global warming intensifies the water cycle, resulting in significant increases in precipitation and river runoff, which brings severe hypo-salinity stress to nearshore coral reefs. Ecological investigations have found that some corals exhibit remarkable adaptability to hypo-salinity stress during mass-bleaching events. However, the exact cause of this phenomenon remains unclear. To elucidate the potential molecular mechanism leading to high tolerance to hypo-salinity stress, Pocillopora damicornis was used as a research object in this study. We compared the differences in transcriptional responses and symbiotic microbiomes between bleaching and unbleaching P. damicornis during hypo-salinity stress caused by extreme pre-flood rainfall over South China in 2022. The results showed that: (1) Under hypo-salinity stress, the coral genes related to immune defense and cellular stress were significantly upregulated in bleaching corals, indicating more severe immune damage and stress, and the Symbiodiniaceae had no significant gene enrichment. Conversely, metabolic genes related to glycolysis/gluconeogenesis were significantly downregulated in unbleaching corals, whereas Symbiodiniaceae genes related to oxidative phosphorylation were significantly upregulated to meet the energy requirements of coral holobiont; (2) C1d was the dominant Symbiodiniaceae subclade in all samples, with no significant difference between the two groups; (3) The symbiotic bacterial community structure was reorganized under hypo-salinity stress. The abundance of opportunistic bacteria increased significantly in bleaching coral, whereas the relative abundance of probiotics was higher in unbleaching coral. This may be due to severe immune damage, making the coral more susceptible to opportunistic infection and bleaching. These results suggest that long-term hypo-salinity acclimation in the Pearl River Estuary enhances the tolerance of some corals to hypo-salinity stress. Corals with higher tolerance may reduce energy consumption by slowing down their metabolism, improve the energy metabolism of Symbiodiniaceae to meet the energy requirements of the coral holobiont, and alter the structure of symbiotic bacterial communities to avoid bleaching.

11.
Front Cell Dev Biol ; 12: 1427798, 2024.
Article in English | MEDLINE | ID: mdl-39071805

ABSTRACT

Organisms are now seen as holobionts, consortia of several species that interact metabolically such that they sustain and scaffold each other's existence and propagation. Sympoiesis, the development of the symbiotic relationships that form holobionts, is critical for our understanding the origins and maintenance of biodiversity. Rather than being the read-out of a single genome, development has been found to be sympoietic, based on multigenomic interactions between zygote-derived cells and symbiotic microbes. These symbiotic and sympoietic interactions are predicated on the ability of cells from different kingdoms of life (e.g., bacteria and animals) to communicate with one another and to have their chemical signals interpreted in a manner that facilitates development. Sympoiesis, the creation of an entity by the interactions of other entities, is commonly seen in embryogenesis (e.g., the creation of lenses and retinas through the interaction of brain and epidermal compartments). In holobiont sympoiesis, interactions between partners of different domains of life interact to form organs and biofilms, wherein each of these domains acts as the environment for the other. If evolution is forged by changes in development, and if symbionts are routinely involved in our development, then changes in sympoiesis can constitute an important factor in evolution.

12.
Integr Zool ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39072987

ABSTRACT

Acute environmental changes cause stress during conventional deep-sea biological sampling without in situ fixation and affect gene expressions of samples collected. However, the degree of influence and underlying mechanisms are hardly investigated. Here, we conducted comparative transcriptomic analyses between in situ and onboard fixed gills and between in situ and onboard fixed mantles of deep-sea mussel Gigantidas haimaensis to assess the effects of incidental sampling stress. Results showed that transcription, translation, and energy metabolism were upregulated in onboard fixed gills and mantles, thereby mobilizing rapid gene expression to tackle the stress. Autophagy and phagocytosis that related to symbiotic interactions between the host and endosymbiont were downregulated in the onboard fixed gills. These findings demonstrated that symbiotic gill and nonsymbiotic mantle responded differently to sampling stress, and symbiosis in the gill was perturbed. Further comparative metatranscriptomic analysis between in situ and onboard fixed gills revealed that stress response genes, peptidoglycan biosynthesis, and methane fixation were upregulated in the onboard fixed endosymbiotic Gammaproteobacteria inside the gills, implying that energy metabolism of the endosymbiont was increased to cope with sampling stress. Furthermore, comparative analysis between the mussel G. haimaensis and the limpet Bathyacmaea lactea transcriptomes resultedidentified six transcription factor orthologs upregulated in both onboard fixed mussel mantles and limpets, including sharply increased early growth response protein 1 and Kruppel-like factor 5. They potentially play key roles in initiating the response of sampled deep-sea macrobenthos to sampling stress. Our results clearly show that in situ fixed biological samples are vital for studying deep-sea environmental adaptation.

13.
BMC Plant Biol ; 24(1): 692, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030484

ABSTRACT

The bacterial microbiome plays crucial role in plants' resistance to diseases, nutrient uptake and productivity. We examined the microbiome characteristics of healthy and unhealthy strawberry farms, focusing on soil (bulk soil, rhizosphere soil) and plant (roots and shoots). The relative abundance of most abundant taxa were correlated with the chemical soil properties and shoot niche revealed the least amount of significant correlations between the two. While alpha and beta diversities did not show differences between health groups, we identified a number of core taxa (16-59) and marker bacterial taxa for each healthy (Unclassified Tepidisphaerales, Ohtaekwangia, Hydrocarboniphaga) and dysbiotic (Udaeobacter, Solibacter, Unclassified Chitinophagales, Unclassified Nitrosomonadaceae, Nitrospira, Nocardioides, Tardiphaga, Skermanella, Pseudomonas, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Curtobacterium) niche. We also revealed selective pressure of strawberry rhizosphere soil and roots plants in unhealthy plantations increased stochastic ecological processes of bacterial microbiome assembly in shoots. Our findings contribute to understanding sustainable agriculture and plant-microbiome interactions.


Subject(s)
Bacteria , Fragaria , Microbiota , Rhizosphere , Soil Microbiology , Fragaria/microbiology , Bacteria/classification , Bacteria/genetics , Plant Roots/microbiology , Plant Shoots/microbiology , Farms
14.
Trends Ecol Evol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960756

ABSTRACT

Food webs are typically defined as being macro-organism-based (e.g., plants, mammals, birds) or microbial (e.g., bacteria, fungi, viruses). However, these characterizations have limits. We propose a multilayered food web conceptual model where microbial food webs are nested within food webs composed of macro-organisms. Nesting occurs through host-microbe interactions, which influence the health and behavior of host macro-organisms, such that host microbiomes likely alter population dynamics of interacting macro-organisms and vice versa. Here, we explore the theoretical underpinnings of multilayered food webs and the implications of this new conceptual model on food web ecology. Our framework opens avenues for new empirical investigations into complex ecological networks and provides a new lens through which to view a network's response to ecosystem changes.

15.
Metabolomics ; 20(4): 66, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886248

ABSTRACT

The coral holobiont is underpinned by complex metabolic exchanges between different symbiotic partners, which are impacted by environmental stressors. The chemical diversity of the compounds produced by the holobiont is high and includes primary and secondary metabolites, as well as volatiles. However, metabolites and volatiles have only been characterised in isolation so far. Here, we applied a paired metabolomic-volatilomic approach to characterise holistically the chemical response of the holobiont under stress. Montipora mollis fragments were subjected to high-light stress (8-fold higher than the controls) for 30 min. Photosystem II (PSII) photochemical efficiency values were 7-fold higher in control versus treatment corals immediately following high-light exposure, but returned to pre-stress levels after 30 min of recovery. Under high-light stress, we identified an increase in carbohydrates (> 5-fold increase in arabinose and fructose) and saturated fatty acids (7-fold increase in myristic and oleic acid), together with a decrease in fatty acid derivatives in both metabolites and volatiles (e.g., 80% decrease in oleamide and nonanal), and other antioxidants (~ 85% decrease in sorbitol and galactitol). These changes suggest short-term light stress induces oxidative stress. Correlation analysis between volatiles and metabolites identified positive links between sorbitol, galactitol, six other metabolites and 11 volatiles, with four of these compounds previously identified as antioxidants. This suggests that these 19 compounds may be related and share similar functions. Taken together, our findings demonstrate how paired metabolomics-volatilomics may illuminate broader metabolic shifts occurring under stress and identify linkages between uncharacterised compounds to putatively determine their functions.


Subject(s)
Anthozoa , Light , Metabolomics , Stress, Physiological , Animals , Anthozoa/metabolism , Metabolomics/methods , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Photosystem II Protein Complex/metabolism
16.
Microbiologyopen ; 13(3): e13, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825966

ABSTRACT

The factors that influence the distribution of bacterial community composition are not well understood. The role of geographical patterns, which suggest limited dispersal, is still a topic of debate. Bacteria associated with hosts face unique dispersal challenges as they often rely on their hosts, which provide specific environments for their symbionts. In this study, we examined the effect of biogeographic distances on the bacterial diversity and composition of bacterial communities in the gastrointestinal tract of Ampullaceana balthica. We compared the effects on the host-associated bacterial community to those on bacterial communities in water and sediment. This comparison was made using 16S ribosomal RNA gene sequencing. We found that the bacterial communities we sampled in Estonia, Denmark, and Northern Germany varied between water, sediment, and the gastrointestinal tract. They also varied between countries within each substrate. This indicates that the type of substrate is a dominant factor in determining bacterial community composition. We separately analyzed the turnover rates of water, sediment, and gastrointestinal bacterial communities over increasing geographic distances. We observed that the turnover rate was lower for gastrointestinal bacterial communities compared to water bacterial communities. This implies that the composition of gastrointestinal bacteria remains relatively stable over distances, while water bacterial communities exhibit greater variability. However, the gastrointestinal tract had the lowest percentage of country-specific amplicon sequence variants, suggesting bacterial colonization from local bacterial communities. Since the overlap between the water and gastrointestinal tract was highest, it appears that the gastrointestinal bacterial community is colonized by the water bacterial community. Our study confirmed that biogeographical patterns in host-associated communities differ from those in water and sediment bacterial communities. These host-associated communities consist of numerous facultative symbionts derived from the water bacterial community.


Subject(s)
Bacteria , Gastrointestinal Tract , Geologic Sediments , RNA, Ribosomal, 16S , Snails , Geologic Sediments/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Gastrointestinal Tract/microbiology , Animals , Snails/microbiology , Germany , Denmark , Gastrointestinal Microbiome/genetics , Water Microbiology , Biodiversity , Estonia , Phylogeny , DNA, Bacterial/genetics , Sequence Analysis, DNA
17.
Microbiome Res Rep ; 3(2): 19, 2024.
Article in English | MEDLINE | ID: mdl-38846022

ABSTRACT

Aim: Microbiomes influence the physiology and behavior of multicellular organisms and contribute to their adaptation to changing environmental conditions. However, yeast and bacterial microbiota have usually been studied separately; therefore, the interaction between bacterial and yeast communities in the gut of Drosophila melanogaster (D. melanogaster) is often overlooked. In this study, we investigate the correlation between bacterial and yeast communities in the gut of D. melanogaster. Methods: We studied the shifts in the joint microbiome of Drosophila melanogaster, encompassing both yeasts and bacteria, during adaptation to substrate with varying salt concentrations (0%, 2%, 4%, and 7%) using plating for both yeasts and bacteria and NGS-sequencing of variable 16S rRNA gene regions for bacteria. Results: The microbiome of flies and their substrates was gradually altered at moderate NaCl concentrations (2% and 4% compared with the 0% control) and completely transformed at high salt concentrations (7%). The relative abundance of Acetobacter, potentially beneficial to D. melanogaster, decreased as NaCl concentration increased, whereas the relative abundance of the more halotolerant lactobacilli first increased, peaking at 4% NaCl, and then declined dramatically at 7%. At this salinity level, potentially pathogenic bacteria of the genera Leuconostoc and Providencia were dominant. The yeast microbiome of D. melanogaster also undergoes significant changes with an increase in salt concentration in the substrate. The total yeast abundance undergoes nonlinear changes: it is lowest at 0% salt concentration and highest at 2%-4%. At a 7% concentration, the yeast abundance in flies and their substrate is lower than at 2%-4% but significantly higher than at 0%. Conclusions: The abundance and diversity of bacteria that are potentially beneficial to the flies decreased, while the proportion of potential pathogens, Leuconostoc and Providencia, increased with an increase in salt concentration in the substrate. In samples with a relatively high abundance and/or diversity of yeasts, the corresponding indicators for bacteria were often lowered, and vice versa. This may be due to the greater halotolerance of yeasts compared to bacteria and may also indicate antagonism between these groups of microorganisms.

18.
Environ Microbiome ; 19(1): 37, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851755

ABSTRACT

BACKGROUND: Sponge-associated bacteria play important roles in the physiology of their host, whose recruitment processes are crucial to maintain symbiotic associations. However, the acquisition of bacterial communities within freshwater sponges is still under explored. Spongilla lacustris is a model sponge widely distributed in European rivers and lakes, producing dormant cysts (named gemmules) for their asexual reproduction, before winter. Through an in vitro experiment, this study aims to describe the dynamics of bacterial communities and their transmission modes following the hatching of these gemmules. RESULTS: An overall change of bacterial ß-diversity was observed through the ontology of the juvenile sponges. These temporal differences were potentially linked, first to the osculum acquisition and the development of a canal system, and then, the increasing colonization of the Chlorella-like photosymbionts. Gemmules hatching with a sterilized surface were found to have a more dispersed and less diverse microbiome, revealing the importance of gemmule epibacteria for the whole holobiont stability. These epibacteria were suggested to be vertically transmitted from the maternal tissues to the gemmule surface. Vertical transmission through the incorporation of bacterial communities inside of the gemmule, was also found as a dominant transmission mode, especially with the nitrogen fixers Terasakiellaceae. Finally, we showed that almost no ASVs were shared between the free-living community and the juveniles, suggesting that horizontal recruitment is unlikely to happen during the first stages of development. However, the free-living bacteria filtered are probably used as a source of nutrients, allowing an enrichment of copiotrophic bacteria already present within its microbiome. CONCLUSIONS: This study brings new insight for a better understanding of the microbiome acquisition during the first stages of freshwater sponge development. We showed the importance of epibacterial communities on gemmules for the whole holobiont stability, and demonstrated the near absence of recruitment of free-living bacteria during the first stages.

19.
Sci Total Environ ; 945: 174001, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38879040

ABSTRACT

Micro- and nano-plastics (MNPs) in the soil can impact the microbial diversity within rhizospheres and induce modifications in plants' morphological, physiological, and biochemical parameters. However, a significant knowledge gap still needs to be addressed regarding the specific effects of varying particle sizes and concentrations on the comprehensive interplay among soil dynamics, root exudation, and the overall plant system. In this sense, different omics techniques were employed to clarify the mechanisms of the action exerted by four different particle sizes of polyethylene plastics considering four different concentrations on the soil-roots exudates-plant system was studied using lettuce (Lactuca sativa L. var. capitata) as a model plant. The impact of MNPs was investigated using a multi-omics integrated approach, focusing on the tripartite interaction between the root metabolic process, exudation pattern, and rhizosphere microbial modulation. Our results showed that particle size and their concentrations significantly modulated the soil-roots exudates-plant system. Untargeted metabolomics highlighted that fatty acids, amino acids, and hormone biosynthesis pathways were significantly affected by MNPs. Additionally, they were associated with the reduction of rhizosphere bacterial α-diversity, following a size-dependent trend for specific taxa. The omics data integration highlighted a correlation between Pseudomonadata and Actinomycetota phyla and Bacillaceae family (Peribacillus simplex) and the exudation of flavonoids, phenolic acids, and lignans in lettuce exposed to increasing sizes of MNPs. This study provides a novel insight into the potential effects of different particle sizes and concentrations of MNPs on the soil-plant continuum, providing evidence about size- and concentration-dependent effects, suggesting the need for further investigation focused on medium- to long-term exposure.


Subject(s)
Lactuca , Metabolome , Microplastics , Plant Roots , Rhizosphere , Soil Pollutants , Lactuca/microbiology , Plant Roots/microbiology , Soil Pollutants/metabolism , Microplastics/toxicity , Soil Microbiology , Microbiota/drug effects , Particle Size
20.
Microbiome ; 12(1): 116, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943206

ABSTRACT

BACKGROUND: Population stratification based on interindividual variability in gut microbiota composition has revealed the existence of several ecotypes named enterotypes in humans and various animal species. Enterotypes are often associated with environmental factors including diet, but knowledge of the role of host genetics remains scarce. Moreover, enterotypes harbor functionalities likely associated with varying abilities and susceptibilities of their host. Previously, we showed that under controlled conditions, 60-day-old pig populations consistently split into two enterotypes with either Prevotella and Mitsuokella (PM enterotype) or Ruminococcus and Treponema (RT enterotype) as keystone taxa. Here, our aim was to rely on pig as a model to study the influence of host genetics to assemble enterotypes, and to provide clues on enterotype functional differences and their links with growth traits. RESULTS: We established two pig lines contrasted for abundances of the genera pairs specifying each enterotype at 60 days of age and assessed them for fecal microbiota composition and growth throughout three consecutive generations. Response to selection across three generations revealed, per line, an increase in the prevalence of the selected enterotype and in the average relative abundances of directly and indirectly selected bacterial genera. The PM enterotype was found less diverse than the RT enterotype but more efficient for piglet growth during the post-weaning period. Shotgun metagenomics revealed differentially abundant bacterial species between the two enterotypes. By using the KEGG Orthology database, we show that functions related to starch degradation and polysaccharide metabolism are enriched in the PM enterotype, whereas functions related to general nucleoside transport and peptide/nickel transport are enriched in the RT enterotype. Our results also suggest that the PM and RT enterotypes might differ in the metabolism of valine, leucin, and isoleucine, favoring their biosynthesis and degradation, respectively. CONCLUSION: We experimentally demonstrated that enterotypes are functional ecosystems that can be selected as a whole by exerting pressure on the host genetics. We also highlight that holobionts should be considered as units of selection in breeding programs. These results pave the way for a holistic use of host genetics, microbiota diversity, and enterotype functionalities to understand holobiont shaping and adaptation. Video Abstract.


Subject(s)
Feces , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/genetics , Swine/microbiology , Feces/microbiology , Bacteria/classification , Bacteria/genetics , Metagenomics/methods , Prevotella/genetics , Prevotella/classification , Ruminococcus/genetics , Treponema/genetics
SELECTION OF CITATIONS
SEARCH DETAIL